Math 131 - Topology I: Topological Spaces
and the Fundamental Group

Taught by Clifford Taubes
Notes by Dongryul Kim

Fall 2015

In 2015, Math 131 was taught by Professor Clifford Taubes. We met on
Mondays, Wednesdays, and Fridays from 12:00 to 1:00 every week, and used
Topology by James Mukres as a textbook. There were projects instead of exams;
we had to write notes for hypothetical one-hour lectures we would give to the
class.
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Topology is the theory of shapes and relationships.

1.1 Definition

Definition 1.1. Let X be a set. A topology on X is a distinguished collection
T of subsets of X such that

1. XeTand D e T,

2. any union of subsets in 7 is in T,

3. and any intersection of finitely many elements from 7T is in 7.
Example 1.2. The set of open sets in R™ is a topology.

What is an open set?

Definition 1.3. A set A in R" is open if for each p € A there exists » > 0 so
that the open disk {x : |z — p| < r} is in A.

It is easy to check that the first two conditions are satisfied, and you can
check the third one.

1.2 Basis of a topology
Definition 1.4. B is a basis for a topology
1. if p € X, then B € B and p € B for some B,

2. and if p € By N By where By, By € B, then exists B3z € B so that p € Bg
and B3y C B1 N Bs.

From a basis B, we can make up a topology as follows: Let a set A be open
if for each p € A, there is a B € B for which p € B and B C A. Basically
the open sets in this topology are those which can be represented as a union of
some elements in B.

Example 1.5 (Zariski topology). Take any finite {p1,...,pn} and let B =
R\ A{p1,...,0n}. These kind of sets whose complement if finite form a topology
on R. This is called the Zariski topology on R.

1.3 An application: Knot theory

Trefoil is not a knot, i.e. an unknot. You can also try to change a trefoil to the
mirror image of itself, but it would not be easy. And it also would not be easy
to prove that it is impossible.

How do we understand knots mathematically? This is where topology comes
in. If K is a knot in R3, the topology of R?\ K does not change. (We will define
later what “not changing” means.) In fact, this connects with graph theory in
combinatorics, and other areas in algebra.
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Today, we will be playing with topologies. Let us recall what a topology is.
For a set X, a topology T is a distinguished collection of subsets, and these
subsets are called open sets. There are three requirements.

e XcTandeT.
e Any union of subsets from 7 is also in 7.

e Finite intersections of subsets from 7 are in 7.

The standard topology on R" is given as the following: a set A is open if
for each p € A, there exists a r > 0 such that {x : |z — p| < r} is entirely in A.
A collection of subsets B is a basis for a topology if

e For any p € X, there exists a B € B with p € B.

e For any Bi, B; € B with p € By N By, there exists another Bs € B with
p e B3.

In the topology T generated by B, a set A would be open if for any p € A,
there exists B € B with p € B and B C A. You can check that these open sets
actually forms a topology.

2.1 Some examples

Example 2.1. Consider the real line R. The basis for the standard topology is
B = {(a,b) : a < b}.The open sets are those whose each point in the set has a
whole interval around in the set.

Example 2.2. There is also the lower limit topology on R. Consider the
topology generated by the basis B = {[a,b) : a < b}. It is possible to check that
if two basis element have nonempty intersection, the intersection is again an
element of the basis.

In this topology, a set A is open if, given any p € A, there is an interval
[a,b) containing p and [a,b) C A.

Example 2.3. There is also an upper limit topology . A basis for this
topology is B = {(a,b] : a < b}.

Example 2.4. What about the upper & lower limit topology? Let’s check if
B ={[a,b] : a < b} is a basis. Consider two basis elements [0,2] and [2,4]. The
intersection is [0,2] N [2,4] = {2}, but this does not contain any basis element.
So there is no upper € lower limit topology.

Example 2.5. I'm going to give two bases on the plane. The first one is
Bi={{z:|x—p|<r}:peR?® and r > 0},
and the second one is

By ={(a,a+7) x (¢c,c+r):a,c€R andr>0}.
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Using pictures, it is possible to check that both are bases. The question is: do
they generate the same topology?

You can see that the answer is yes, using the following lemma.
Lemma 2.6. Two bases B and B’ give the same topology when:

e IfB' e B and p € B’, then there is a B € B withp € B and BC B'.
e I[f B€ B andp € B, then there is a B' € B’ with p € B’ and B’ C B.
The first condition actually is saying that every open set in the set generated

by B’ is also open in the topology generated by B. If this is the case, we say
that the topology generated by B is finer than the topology generated by B’'.

Example 2.7. The lower limit topology and the upper limit topology are finer
that the standard topology on R.

As we have seen, the upper & lower topology did not work. So, let’s introduce
a new definition.

2.2 Subbasis of a topology

Definition 2.8. A subbasis S can be any collection of subsets. You can
generate a topology T from S, first by adding X and @), and then adding any
unions and finite intersections to the collection of open sets.

By this new definition, the upper & lower topology can be resurrected. The
problem was the intersection [a,b] N [b,¢] = {b}. So we can allow all one-point
sets to the basis to form a new basis

B ={[a,b] : a < b}.

But actually, the topology generated by this basis is the set of all subsets of R,
which is not so useful.
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There are some ways to make new topologies from old topologies.

3.1 Product topology
For two sets X and Y, the Cartesian product X x Y is

XxY={(z,y):z€X,ye Y}

For example, R x R is the 2-dimensional Euclidean space. The n-dimensional
Euclidean space is defined as R® = R x R*~!. You can even think spaces like
St x St

Let’s define a topology on the product

Definition 3.1. For two topological spaces X and Y, the product topology
on X X Y is defined as the topology generated by the basis

B={UxV :Uisopenin X and V is open in Y}.
Example 3.2. A basis for the topology on R x R is
{(a,b) x (¢,d) : a < b and ¢ < d}.

The interesting thing is that the topology generated by this basis is exactly the
same as the standard topology on R?. This can be proved by Lemma 2.6. Also,
the product topology on RP x R™™P is identical to the standard topology.

Actually, you just need the bases for topologies on X and Y to construct a
basis of the product topology.

Proposition 3.3. Let Bx be a basis for the topology on X and By be a basis
for the topology on'Y. Then the topology generated by the basis {U xV : U €
Bx,V € By} is same as the product topology.

3.2 Subspace topology
Let us define a topology on S' = {(z,y) € R? : 22 + y? = 1}.

Definition 3.4. A set in S! is open if it is the intersection with an open set in
R2.

If B is a basis for topology R?, then a basis for the subspace topology on S*
is {BNS!: B €B}. We can generalize this to define the subspace topology for
any topological space.

Definition 3.5. Let X be a topological space, and let Y be a subset of X. The
subspace topology on Y is defined as

T={ACY:A=Y NV for some open set V C X}.
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It can be verified that this is indeed a topology. Let A is a collection of open
sets in Y. For each A € A, let V4 be the open set for which A = V4 NY. Then

LJA:LJU@me:(Ux@)my
AcA AcA AcA

Example 3.6. Consider the subspace topology on' Y = [0,1) C R. Then the
interval [0,1/2) is an open set since [0,1/2) =1[0,1) N (—=1/2,1/2).

Example 3.7. A basis for the subspace topology on S* C R is the set of open
“intervals” on the circle.

Example 3.8. Consider the map

ﬂw:{ﬂJ) —2r <t <0

(cost,sint), 0<t<2rm

and the subspace topology generated on the image f((—2m,2m)). This looks sim-
ilar to the subspace topology on just the interval (—2m,2m), but because f(t) gets
near (1,0) when t — 27, every open set containing 0 must also contain an open
interval (a,2m) for some a < 27.

3.3 Infinite product topology

Consider the infinite product
I
n=1

This looks like the set of infinitely long vectors

(1'1,332,.133,.-.,1'71,---)-

Or more generally, we can think of the product set [[ -, X,, where each X, is
a topological space. How do we define the topology on this space? There are
two ways.

The first one is called the box topology, and the second is called the product
topology. It turns out that the box topology is bad, and the product topology
is good.

Definition 3.9. The box topology on [], is the topology generated by the
basis
{Uy x Uy x -+ : Uy, is a open set in X, }.

The product topology is the topology generated by the basis
{U1 x -+ x Uy x Xpy1 X Xpy2 X - : Uy, is a open set in X, }.

We will talk more next class.
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I want to start with reviewing the things we did last Wednesday. Given a
topological space X (for example, R") and a subset Y C X, there is a subspace
topology on Y which comes from the topology on X. A set A C Y is open in
the subspace topology if it is the intersection of Y with an open set in X. This
is useful because anything which can fit in the Euclidean space can be given a
natural topology.

I also talked about the product topology. The product of n spaces X1, ..., X,
is

X1 XX2 Xoeee XXn:{(Il,IQ,...,In)SZ1 EX17...,177,, EXn}

The topology defined on this the one generated by U x - - - x U,, where Uy, C Xy,
is open in each topology. But what if there is a countable number of topological
spaces X1, Xo,...7

4.1 Infinite products

One motivating example is the Fourier decomposition of a function. For a
function f defined on [—, 7], Fourier decomposition of the function would be

f@t)=ao+ Za,mosnt—&— ansinnt.

n=1 n=1

For example,
= 2
t= —1)" T = sinnt.
2 (e

This actually means that a function f: [—m, 7] — R corresponds to a sequence
o0
(G/Oab17a17b27~ . ) S H R.
n=1

The labeling set in this product is J = [—m, 7).

Another way to look at the space is function is thinking that a real number
is assigned for each ¢t € [—m, 7]. This can be thought as a vector of uncountable
length. This lead to the following definition.

Definition 4.1. Let J be a labeling set and for each o € J assign any set X,,.
Let X = U,cs Xa- Then
I x.

acJ
is the set of maps from J to X which send any o € J to a point in X,.

The product can be complex, for instance, if 7 is a torus and X = S2, any
smashing of a doughnut on an apple is an element of the product [],. 7 X.

There are two ways to put a topology in the product Haej X, as I have
said last class.
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Definition 4.2. Let X, be a topological space for each a € J. The box
topology on Haej X, is the topology generated by the sets of form

10
aeJ

where U, is a open set in X,. The product topology is the topology generated
by the sets of form
11 v

aeJ
where U, is a open set in X, and only finitely many U, are not X,.

Example 4.3. In the box topology, an open set in Hte[—w,w] R looks like

{f: () € (Jt, % + ¢+ 1)}
In the product topology, an open set looks like

{f:F(1) € (=1,1), £(2) € (0,1), f(=1/2) € (1,2)}.

4.2 Some set theory

The axiom of choice state that for any collection of nonempty sets, you can
choose one elements from a each set, even if there are uncountably many sets.

Axiom of Choice. If J is a nonempty set, and if X, is a nonempty set for

each «, then
H X, #0.
aceJ
Definition 4.4. A set J is called countably infinite if there exists a bijection
0:{1,2,3,...} = J.
Proposition 4.5.
o A subset of a countably infinite set is finite our countably infinite.
o A countable union of a countable set is countable.
The second statement can be proved by labeling the sets as X1, Xo,... and
then labeling the elements of the sets as X; = {X; 1, X, 2,... }. Then count the
elements in the lexicographical order of (k +1,1).

Are there uncountable sets? We can prove that R is uncountable. Suppose
that there exist a bijection f : {1,2,...,n,...} = R. Let the decimal expansion
of f(1) =(...).a1(...) and f(2) = (...).eaz(...) and f(3) =(...).eea3(...) and
so on. Then 0.afa) ... is not in the image of f, where aj, # aj, for all k. Thus
we arrive at a contradiction.

In fact, there is a whole hierarchy of uncountable sets. If we denote P(X)
be the set of all subsets of X, the sets

Z.,R,P(R), P(P(R)),...

have all distinct cardinality. One can prove that actually for any set X, the
power set P(X) has cardinality greater than X.
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We are going to do some more set theory.

5.1 More set theory

Definition 5.1. We say that two sets X and Y have the same cardinality if
there exists a bijection f: X — Y.

How many cardinalities are there? The set Z = {1,2, ...} is countable, and
R has a cardinality of continuum. In fact there are infinitely many cardinalities,
because of the following theorem.

Theorem 5.2. For any set X, the power set P(X) always has a cardinality
greater than X.

This mean that there is no surjective map X — P(X).

Let us try some examples. If X = (), then P = {}. For a one-element set
X = {z}, we have P(X) = {0, {z}}. Because we have verified it for | X| = 0,1,
we may—in a very unmathematical manner—say that P always has a cardinality
greater than X.

All proofs of these kind comes down to the Cretan barber paradox. If in a
village, a barber shaves everyone who, and only who, does not shave themselves,
who is going to shave the barber?

Proof. Let f: X — P(X) be a map. Let

A={zeX:z ¢ f(z)}.

Suppose that A = f(x) for some z. If x € A = f(z), this contradicts to
the definition of A. Therefore x ¢ A = f(x), but this also lead to a similar
contradiction. Thus A is not in the image of f. O

Actually, with this theorem, we can prove that the question “How many
cardinalities are there?” is unanswerable in the language of cardinalities. Sup-
pose there is indexing set I and a collection of sets {s;};c; which represent all
cardinalities. Then we can consider the union

Shig = | Si-
el

But then because there is no maximal cardinality, since P(X) is bigger than X
the new set Sp;q is always bigger than S; for any ¢ € I. This means that {s;}icr
did not have all cardinalities in the first place.
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5.2 Closed sets, interior, closure, and limit points
Definition 5.3. A set A is a closed set when X \ A is an open set.

Do not make the mistake that all sets are either open or closed. For example,
the set [0,1) is neither open nor closed since [0, 1) and (—o0,0)U[1, c0) are both
not open.

Proposition 5.4. A few observations:

o Infinite, arbitrary intersections of closed sets are closed.
e Finite unions of closed sets are closed.

Note that we are not allowed to take infinite unions, since the union of
[1/n,1] for n =1,2,... is (0, 1], which is not an open set.

Definition 5.5. For a set A, we define the interior of A

Int(A) = Union of all open sets in A

= Union of all basis sets in A

Example 5.6. Consider the set A = {(z,y) : 2?+y? < 1}. For any point (x,y)
for which z? + y? < 1, there exists a neighborhood inside A, but for any point
(x,y) for which x®> +y? =1, an open ball goes outside the set. Hence

A={(z,y): 2* +y* <1}

Definition 5.7. For a set A, we define the closure of A

A = Intersection of all closed sets that contain A.

Example 5.8. What is the closure of (0,1)¢ The closed interval [—1,3/2] is
a closed set containing (0,1), and we can recede the size to [0,1]. In fact, the
closure of (0,1) 4s [0,1].

If A is closed, the closure is itself, i.e., A = A. The closure of a non-closed
set is the union of A and some other set. A point  in A\ A is a point such that
every open set (or basis) that contains x intersects A and X \ A.

Definition 5.9. A point z is a limit point of A if every open set containing
x has points from A\ {z}.

Example 5.10. For the set A= {0} U (1,2), the limit points are [1,2].

In the plane, it is clear what a convergence of a sequence {x}72 , means.
The sequence {zx} converges to x if given any € > 0, |z — x| < € if k is large.
There is an analogue of this notion in topological spaces.

Definition 5.11. Let z be a point in a topological space X. A sequence {x}}7°
in X is said to be converge to x if, given any open set U containing z, all z, € U
if « is sufficiently large.
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Now we can say the difference between the box topology and the product
topology. Consider [];-,[0,1], and a sequence of points

{xi = (inaxliainu cee )}

What does it mean for this sequence to converge to (0,0,...)? A natural defi-
nition would be each term converging to 0. Then the sequence for which

0 1>y
g

Y 1 i<y
should converge in a “good” topology. In the box topology, this sequence
does not converge to (0,0,...), because no point it contained in the open set
(1/2,-1/2) x (1/2,-1/2) x ---. But we can easily prove that it converges in
the product topology.
5.3 Hausdorff spaces

Definition 5.12. A topological space X is said to be Hausdorff when given
any p # q, there is an open set U containing p and V' containing ¢ with UNV = ().

There were many variations, but this proved out to be most useful. Note
that the Euclidean space is Hausdorff, because given two distinct points, we can
easily give open balls around each of them.

Example 5.13. Recall that in the Zariski topology, open sets are sets of form

R_{plv"'7pk}

whose complement are finite sets. This is not Hausdorff, because any two open
sets intersect.

We will talk about functions next class.
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For two sets X, Y, we can think of a function f : X — Y. For example, there
is the function which maps S' to a knot K embedded in R3. There is also a
Gauss map, which maps each point in a smooth surface in R? to a unit vector
ii € S? perpendicular to the surface at that point.

Recall that X and Y has the same cardinality if there exists a bijection
between them. This is a notion of equivalence in sets. What would be the
analogue of this for topological sets?

6.1 Homeomorphisms

Definition 6.1. Consider two topological spaces X,Y, A function f: X — Y
is called a homeomorphism if it satisfies the following.

e f is a bijection.
e f(U) is open for each open U C X.
e f~1(V) to be open in X for open V C Y.

Example 6.2. The real line R and the subspace topology it imposes on (—1,1)
is homeomorphic by the map

0=

Likewise, the interior both disc {(x,y) : 2> + y? < 1} is homeomorphic to R? be
the map

—

R z
i
V14|72
We can generalize it to the fact that R™ is homeomorphic to the open ball in it.

Homeomorphism is a equivalence relation, because if f : X — Y and ¢ :
Y — Z are homeomorphism, go f : X — Z is a homeomorphism.

Example 6.3. The upper limit topology and the lower limit topology are homo-
morphic by the map t — —t.

How do you tell two spaces are not homeomorphic? One way is to think
about the connectedness.

Definition 6.4. A space is connected if it can’t be decomposed to Uy U U,
where U; and U, are non-empty open sets and U; N Uy = ().

Until next Friday, try to figure out if R and R? are homeomorphic or not.

Another question: what topological spaces are homeomorphic to a subspace
of a Euclidean space?

In the Euclidean space, the basis for the standard topology were the balls of
radius € > 0 centered on Z. These kind of spaces are called the metric space.
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Definition 6.5. A space X with a distance function d : X x X — [0,00)
satisfying the following conditions is called a metric space.

e d(z,y) > 0 with d(z,y) =0 if and only if z = y.
o d(z,y) = d(y, ).
o d(z,y) +d(y, 2) > d(z, 2).

In these spaces, you can give a topological space by giving a basis

B.(p) ={q€ X :d(p,q) < ¢}

These are most useful in spaces of functions.

Example 6.6. The space RR of functions f : R — R can be given the following
metric.

dist(f, f) = min {1,sup|f(t) — f'(t)|}
teR

Let me give yet another question: Is every topology a metric space topology?
The answer is no. This is because all metric spaces are Hausdorff. If dist(p, ¢) =
r, then the ball B, /4(p) and B, 4(q) are two disjoint open sets.

This rises yet another question: Is every Hausdorfl space a metric space?
We will all answer these questions in a week or two.

6.2 Continuous maps

One last definition. There is a notion of continuity which is half of homeomor-
phism.

Definition 6.7. A map f: X — Y is continuous if f~*(U) is open in X for
any open set U C Y.

The definition uses inverse image because if we use the image, then the
constant map f(z) = 1 would not be continuous.
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Let X and Y be topological space, and consider the functions f : X — Y. Con-
tinuous functions are a set of distinguished functions, such that f~!(open set in Y)
is open in X. The classical case is f : X — R. For example, we can let X = R?
and walk around with a thermometer. In some cases, there are no non-constant
continuous function. If X = R with the Zariski topology, this is the case. For
f(t1) = a and f(t2) = b, then we can give two open sets a € O and b € Oy
which are disjoint. Then f~(O;) and f~1(O3) cannot both be open, because
they are disjoint. This is a really impoverished example.

Theorem 7.1. Suppose that X is not Hausdorff. Let p,q € X be distinct points
such that every open set containing p contains q. Then for any f : X — R which

is continuous, f(p) = f(q). Also, one can replace R with any Hausdor(f space
Y.

In analysis, we gave the following definition for a continuous function.

Definition 7.2. Consider a function f : R — R. The function continuous at x
if given € > 0, there is a 6 > 0 such that |f(z) — f(z')| < eif z — 2’ < 4.

In the language of topology, what it means is: “You give me an open set O
around f(x) and I can give you an open set @', around x such that f(O’") C 0.
And after playing around, we see that this is actually equivalent to f~*(open set)
is open.

7.1 Convergence of a sequence

Definition 7.3. A sequence {z;} in X converges to z, if given any open set
U > z then {z;};~~1 are all in U.

To be on the safe side, let us just assume all spaces are Hausdorff.

Does the continuity of f : X — Y implies that {f(x;)} converges to f(z)?
Does the converse hold? 1 tried to figure out, but fell asleep last night, so I
don’t know yet. Bonus problem.

7.2 Topologies induced by maps

Note that for any spaces X and Y, finer the topology on X is, the easier the
function f : X — Y to be continuous. Conversely, the finer the topology on Y
is, the harder the function to be continuous. For example the step function is
not continuous if X has the standard topology, but it is continuous if X has the
lower limit topology. In fact, given a function, you can define your own topology
on X to make it continuous.

Definition 7.4. Let X — Y where only Y is a topological space. Then a set
U € X is open in the induced topology on X if and only if U is an inverse of
an open set in Y.
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Definition 7.5. Let X — Y where only X is a topological space. Then a set
U €Y is open in the quotient topology on Y if and only if f~*(U) is open.

You can glue two topological spaces by the quotient topology. Let us con-
struct a wormhole in Interstellar. Let us take a ball By in R3, which is one end
of the wormhole. An think of a second ball By which is the other end of the
wormhole. We take the complement of two balls. Now think of another space,
which is the ball with a smaller hole inside it. We glue the inner side of the hole
to B; and the outer side of the ball to Bs. Then we get a wormhole!
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8.1 Using quotient spaces

Last time I pointed out that if there is a set X and a topological space Y and a
map f: X — Y, then there we can give a induced topology on X which makes
f continuous; U C X is open when it is f~1(0). Note that his is the coarsest
topology on X which makes f continuous.

You can do it the other way round. If X is a topological space and Y is set,
then the quotient topology on Y can be defined; O C Y is open when f~1(0O)
is open in X. This is the finest topology on Y which makes f continuous.

This quotient topology is very useful. Let A C X a subset, and let C' be
some one-point set. Then we can collapse all points in A to C.

X o A
\f‘lfA
C

Let Y be the set of equivalence classes made by the relation x ~ 2’ if and only
if z,2/ € A. Then if x € X \ A, then it is its own equivalence class, and A is
another equivalence class. Using the map f induced by this equivalence classes,
we can define a quotient topology on Y. For instance, if X = $? and A is a
circle on the sphere, then Y would look like some kind of a snowman.

Example 8.1. Let X = X; U X5, and let Ay C Xy, Ay C Xo which are
homeomorphic to each other, and set A= A1 U As. Let C = Ay and fa: A1 —
As be the homeomorphism which can be extended to f : X — (X1 \ 41) U Xs.
Then in the quotient topology, X1 is glued to Xo on As.

8.2 Connected spaces

Definition 8.2. A topological space X is not connected when X can be
written as a union of two open sets AU B, both open non-empty and AN B = ().

Theorem 8.3. The open interval (a,b) is connected.

Proof. Suppose that it is not connected. Then there exist open sets A, B such
that AU B = (a,b). Let ¢ € A be any element. Since A is an open set,
there exists a small interval around ¢ which is inside A. Since B # (), either
[e,b) N B # 0 or (a,c] N B # (), but without loss of generality, let [c,b) N B # 0.
Let
d = inf([c, b) N B).

Then ¢ < d since there was a open interval around ¢ in A. If d € B, then since
B is open, d cannot be a lower bound. On the other hand, if d € A, then d
cannot be the greatest lower bound. Thus we get a contradiction. O

Example 8.4. In the lower limit topology, every open set is disconnected. This
is because [a,b) = [a,c) U[c,b) and (a,b) = (a,c) U[e,b).
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Example 8.5. Recall that the infinite product [],__, R has two topologies: the
product topology and the box topology. This space is not connected in the in box
topology, because the sets

A={(a1,az,...): {|lax|} bounded}, B = {(a1,as,...):{|ak|} not bounded}

are both open. But it is connected in the product topology.

8.3 Path connected spaces

Definition 8.6. Let X be a topological space. A path in X from zg € X
to 1 € X is a continuous function « : [0,1] — X such that v(0) = z¢ and
(1) = z1. The topological space X is path connected when when any two
points are joined by a path.

For example, [0, 1] is path connected.

Theorem 8.7. Suppose that X is a space, disconnected so that X = AU B
where A, B are open, non-empty, and disjoint. Let v : [0,1] — X, then the
image of v is either all in X or all in B.

Corollary 8.8. The only continuous maps from the [0,1] to (—oo,00) in the
lower limit topology are constant maps.
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I want to say more about path connected sets. As a reminder, X is not connected
if it can be written as X = AU B where A and B are nonempty open sets and
AN B = 0. T showed last time that the interval (a, b) is connected, and that the
space [ [,,c; R with the box topology is not connected, and also that Rz with
the lower limit topology is not connected.

9.1 More on connectedness

Theorem 9.1. Suppose A C X and A is connected. Then it closure Ais con-
nected. In fact, AU {some limit points} is also connected.

Proof. Suppose that A = C U B where B and C are nonempty disjoint open
sets. Since A is connected, either A C C or A C B. If we assume A C C
without loss of generality, then B must contain only limit points. But because
B is open, B should intersect with A. Hence we get a contradiction. O

Because (a,b) is connected, other kinds of intervals [a,b] or [a,b) are also
connected.

Another notion of connectedness is ‘being able to go from anywhere to any-
where.” For example, that the Science center is connected might mean that I
can go from room 507 to room 112. This is the notion of path connectedness.

Proposition 9.2. No two distinct points in Ry are connected by a continuous
path.

Proof. Let a < b any two points, and let A = (—o00,¢) and B = [¢, 00) for some
a < ¢ < b. Suppose that v is a path from a to b. Since A and B are open and
disjoint, y~(A4) and y~1(B) are also open and disjoint. But then this means
that [0, 1] is disconnected, which is false. Thus we arrive a contradiction. O

Actually copying the proof, it is also possible to prove the following lemma.

Lemma 9.3. If X = AU B where A and B are nonempty disjoint open sets,
and 7y : [0,1] = X is continuous, then v([0,1]) is either entirely in A or B. This
shows that disconnected implies not path connected.

Example 9.4. The converse is not true. Consider the topologist’s sine curve,
which is the subspace topology on

{(z,y) : x>0,y =sin(1/z)} U{(z,y) : = = 0}.

Then because the curve part is path connected, and the line part is path con-
nected, any connected open set should either contain or not intersect both parts.
But since any open set containing the origin should intersect the curve part, the
whole set is connected. But it is not path connected.
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Example 9.5. The circle S' and the interval (a,b) C R are not homeomorphic.
This is because if you erase one point from each set, the circle St \ {p} is
connected, while (a,b) \ {p} is not connected.

Example 9.6. Consider a two circles sharing one point. This is not homeo-
morphic to a circle because we can pluck out the shared point to make the two
circles not connected. If three circles are glued by one point, then this is home-
omorphic to neither the circle nor the two-circle, because if you pluck out the
shared point, there are three components.

Definition 9.7. A path component is a equivalence class made by the equiv-
alence relation x ~ z’ if and only if there is a path from z to x’.

The hardest thing to check is that the relation is transitive. This can be
done by walking twice fast along the paths.

Proposition 9.8. Consider the set
S? ={(a,y,2) : 2® +y* + 22 = 1}.

This is not homeomorphic to R2, and even to any open subset of R?.

9.2 Sequential compactness

Definition 9.9. A space X is called sequentially compact, if for any sequence
{Zk}r=1,2,.. C X, there is a subsequence

{mk1,$k27$k37« . }
with k1 < ke < ... which converges.

Theorem 9.10. A subspace X of R is sequentially compact if and only if it is
closed and bounded. (A is bounded means that |Z| are bounded.)

Example 9.11. For ezample, the sequence {0,1,0,1,...} in the interval [0, 1]
has a converging subsequence; the sequence of 0s converges.

Example 9.12. Let 0 be a irrational multiple of 27, and let {x, = k6}. Then
every point in S1 is a limit point.
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For a sequence {z,}n=12,.. C X, a subsequence is p,, Tnys Tngs---- A X is
said to be sequentially compact, if every sequence has a converging subsequence.
This is equivalent to saying that every sequence has a limit point. Oris it? There
is the issue of actually choosing the subsequence, even if there is a limit point.
If X is a metric space, you can just choose the distance to converge to zero, but
if X is not a metric space, we might not be able to choose a collection which
converge to it.
Anyways, we have the following.

Proposition 10.1. If X is sequentially compact, and f : X — Y is a continu-
ous map, then f(X) is also sequentially compact.

Proof. Let y1,...,Yn,... be a sequence in the image f(X). Then there is a
sequence {x,} for which f(x,) = y,. Since X is sequentially compact, there is

a subsequence %y, , Tn,,... which converges to come z. Then since f is contin-
uous, f(zn,), f(@n,),... converges to f(x). This means that yn,, ..., Yn.,- -
converges to f(z). O

Note that in proving this, we used the following lemma, which is one direction
of the extra credit problem.

Lemma 10.2. Let f: X — Y be a continuous function and {x1,x2,...} con-
verges to x. Then f(x1), f(x2),... converges to f(x).

One implication of this proposition is that if f : X — Y homeomorphism,
then X is sequentially compact if and only if Y is sequentially compact.

10.1 Bolzano-Wierstrass theorem

Theorem 10.3 (Bolzano-Wierstrass). A subset in R™ is sequentially compact
if and only if it is closed and bounded.

Proof. For instance, let us prove that S? is sequentially compact. We draw a
box [—2,2] x [-2,2] X [-2, 2] containing the sphere. Because there are infinitely
many points, we can divide the cube in half, and say that one half should contain
infinitely many point. If the top half [—2,2] x [—2,2] x [0, 2] contains infinitely
many points, then let x; be a point in it. Next divide it into the left half and
the right half, and choose the second point inside the part with infinitely many
point. If we continue to do this, then the points 1, 2, . .. gets closer and closer.
In fact,
|zp — Tptn| < L™

for some L and ¢ < 1. This mean that the points are a Cauchy sequence.
Because we are working in the Euclidean space, this converges. O

Corollary 10.4. The sphere S? is not homeomorphic to R?. In fact, the image
of 5% in R? should always be sequentially compact.
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10.2 Continuity and convergence of a sequence

Does the converse of Lemma above hold? Suppose that for any {z,} C X
converging to x, the sequence {f(z,)} C Y converges to f(z). Is f necessarily
continuous?

The answer is yes if X is a metric space, and moreover, if X is “first count-
) ’
able.”

Definition 10.5. A space X is first countable if for any p € X, there is a
sequence of open sets U, containing p such that for any neighborhood V of p,
there is a U,, which is contained in V.

Proof of converse of Lemma[I0.3 Let O CY be an open set and suppose that
f7Y(O) is not open. If x € f~1(O) such that every neighborhood of z is not
completely contained in f~1(0). Since X is first countable, there exist open
neighborhoods Uy, Us, ... of x such that every neighborhood V of z contains
U,, for some V. Now pick a point py € Uy \ O for each k. Then the sequence
{p1,p2,...} converges to x, but the sequence {f(p1), f(p2),...} does not con-
verge to f(x) because none of them are in O. Thus we get a contradiction. 0

Example 10.6. Let X = [[,cg[0,1] with the box topology, and let Y = [0,1].
Then there is a counterexample for the converse of the lemma, in this non-first-
countable space.
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A topological space X was said to be sequentially compact, if every sequence
{z,} has a convergent subsequence. We proved that a subset X C R™ is se-
quentially compact if and only if it is closed and bounded.

11.1 Compact spaces

Although this definition is more intuitive, there is also the notion of compact-
ness, which is not intuitive but more useful in many cases. A collection U is
called a cover of X if every point is in some some set from U, and is called an
open cover if its sets are open.

Definition 11.1. A space X is said to be compact if and only if every open
cover has a finite subcover.

Theorem 11.2. Compactness implies sequential compactness. In a metric
space, these two notions are equivalent.

Proof. Assume that a metric space X is compact, and let A = {z,},=12,.. be
a sequence in X. We need to show that there exists a point z and an infinite
subsequence that converges to x. In a metric space, it means that given any
ball B(z) with radius 1/k, I can find an element of the sequence in the ball. If
we assume that there is no convergent subsequence, A is a closed set. Moreover,
for each k I can find a open ball Uy which contains only zj from A. Then we
get a open cover

(U1, Us, ..., Up,..., X \ A}

But we cannot have a finite subcover, because it will leave out point of A. Thus
we arrive at a contradiction, and hence X is should be sequentially compact.

Now assume that for a metric space X, every sequence has a convergent
subsequence. Why is it compact? Actually we need a new notion of a Lebesgue
number.

Definition 11.3. For a open cover U, a number ¢ > 0 is called a Lebesgue
number if the radius € ball about each point is in some open set from .

Theorem 11.4 (Lebesgue number theorem). Every open cover U in a sequen-
tially compact metric spaces has a positive Lebesque number € > 0.

Proof. If not, for each n = 1,2, ... there is p, € X such that the ball of radius
1/n at p, is not entirely in any set from cover. Then the sequence {p,} have a
convergent subsequence which converges to p. The point p must be contained
in some U € U, and we can find a little ball B(p,d) which is in U. Since the
subsequence was convergent to p, there is a sufficiently large n for which p,
is in the ball B(p,d/2). If n is sufficiently large so that 1/n < §/2, the ball
B(pn,1/n) is in B(p,d), which is in U. Then we have a contradiction. O
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Now we need to prove that every open cover of a sequentially compact space
with positive Lebesgue number has a finite subcover. The proof is essentially
going to be something like “you can’t fill infinitely many mé&m’s inside a cup.”

Every point has a ball of radius € entirely in some subset of U. Let p; be
any point, and let Uy D Be(p1). If Uy is not the whole space, then there is point
p2 € Uq, and a set Us D Bc(p2). If Uy U Us is not the whole space, again there
is a point p3 & Uy U Us. We proceed in this way to make a sequence.

Now because the X is sequentially convergent, there must be a subsequence
Dkys Dy - - - Which converges to p. Then dist(p, pg,,) — 0 as m — oo, and also
dist(p,,, Pk,nsy) — 0 as m — oo. But since the ball B.(p,) C Uy, and the
points pn+1,Pn+2,--. are not in U,, those points cannot be really close to p,.
Therefore, we have a contradiction. O

Now I have a few minutes, and let me state the following theorem.

Theorem 11.5. Let X be a compact space and Y a Hausdorff space. If a map
f: X =Y is continuous bijection, it is a homeomorphism!
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12.1 Properties of compact spaces

Let me state some properties of a compact space.

1.

A closed subspace in a compact space X is compact.

Proof. Let Y C X be a closed space, and let Uy be an open cover of Y.
If U € Uy then there is a open Oy C X with Y N Oy = U. Then

{Op:UeclUyU{X -Y}

is a open cover of X, and thus have a finite subcover. Then Oy should
also have a finite subcover of Y. O

A compact subspace of a Hausdorff space X is closed.

Proof. Let Y C X be compact, and show that X \ Y is closed. Consider
any p € X\Y. For any y € Y, there exist two open sets O, in X containing
y, and O, , in X containing p such that O, , N O, = (). Since the set of
Oys is a open cover of Y, it must have a finite subcover. Let Oy, ,...,0,,
cover Y. Then Op,, N---N0O,,, is a open set containing p, and disjoint

from Y. O

Suppose f : X — Y is continuous and X is comapct. Then f(X) is
compact.

Proof. Take an open cover U be an open cover of f(X). Then {f~}(U) :
U € U} is an open cover of X, and hence there is a finite subcover
f~YUy),..., f~1(U,) which covers X. Then Uy, ...,U, covers f(X). O

Let X be a compact space and Y be a Hausdorff space. Then any contin-
uous bijection f: X — Y is a homeomorphism.

Proof. We need to prove that f(open) is open, or alternatively, f(closed) is
closed. X is compact, so closed sets are compact. So f(closed) is compact.
Since Y is Hausdorff, f(closed) are closed. O

Let f: X — R be a continuous map defined on a compact space X. Then
f achieve its maximum and minimum value. That is, there are z,,x, € X
such that f(z,) < f(z) < f(xp) for all z € X.

Proof. Let A= f(X) C R. Since A is compact, it is closed and bounded.
So it must have a maximum and the minimum value a,b € R such that
a <t <bforalte A Thereis a z, with f(z,) = a and x, with

f(zy) = 0. O
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12.2 Locally compact spaces

Definition 12.1. X is locally compact if for each p € X there is an open set
p € U C X which lies in a compact set.

Theorem 12.2. Let X be a locally compact space. Then there is a unique
compact Y andp € Y such that Y\ {p} is homeomorphic to X. ThisY is called
the one-point compactification of X.

We can define a topology on X U {p} where p is a point from nowhere. For
x € X, the basis for open sets containing = are the open sets in X. Also, the
open neighborhoods of p are the complements of compact sets in X.

Example 12.3. The one-point compactification of the real line R is the circle
S1. The ‘north pole’ is the p, and the homeomorphism is the stereographic
projection. Likewise, the one-point compactification of R? is S2.

Why is it unique? Suppose that we have two spaces Y and Y’. Because
Y\ {p} and Y’ \ {p'} are both homeomorphic to X, we have the diagram

!

Y Y’
U U
YA\ {p} — X 2 v\ ('}

and define f using ¢ and ¢’. It is possible to check that f is a homeomorphism,
especially for the neighborhood of p and p'.

12.3 Metrizable spaces

Definition 12.4. A topological space X is called metrizable if the topology
on X can be defined using a metric.

To ask what spaces are metrizable is to ask what the key properties of metric
spaces are. We try to list some properties.

o It is Hausdorff.

e Given p,q € X, there is a function which is zero at p and one at g, namely

dist(p, x)
dist(q,x)"

This is quite interesting, because it says that there is some function sepa-
rating any two points.
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13.1 Separability and countability axioms

Definition 13.1. X has a locally countable base if for any point p € X,
there are open neighborhoods U;,Us, ... such that for each open p € V., V is
contained in some U,,.

Definition 13.2. X has a countable base if and only if {U,, },,=12 .. is open
such that for any point p in an open set V, there exists U,, containing p, entirely
inV.

Definition 13.3. X is regular when If p € X and A is a closed subset p ¢ A,
there is a pair of disjoint open sets such that p is in one, and A is in the other.

Theorem 13.4 (Urysohn’s theorem). If X is regular, and it has a countable
base, then it is metrizable.

One thing to point about this theorem is that metric spaces are regular. Let
p be a point not in a closed set A. First, there is a § > 0 such that the radius
0 ball centered at p is disjoint from A. This is because the complement of A is
open. Then we set U; as at the radius 6/2 ball at p. Then we set Uy as the
complement of the closure of the radius %5 ball at p. Then p € Uy and A C Us
and U; NU; = 0.

However, metric spaces not necessarily have a countable base. So Urysohn’s
theorem does not give a completely equivalent condition. One thing to note is
that R has a countable base, because the set of {(a,b) : a,b € Q} is a countable
base. The product topology on R also has a countable base, which consists of
open set of (ar,b1) X -+ X (an,by) X R X -+ with a1,...,a,,b1,...,b, rational.

Theorem 13.5 (Nagata-Smirnov metrization theorem). A space X is metriz-
able if and only if it is reqular, and has a countably locally finite base. This
means a U = \Jo, U, such that given p € X, only finitely man sets from each
U, contain p.

Definition 13.6. A spaces X is normal if for any disjoint closed sets A and
B, there are disjoint open sets U4 and Upg containing A and B.

Metric spaces are also normal.

13.2 Flow chart of the proof of Urysohn’s theorem

Lemma 13.7 (Urysohn’s lemma). Let X be a normal space. Then for closed
A, B disjoint, there is f : X — R such that f(A) =0 and f(B) = 1.

This is brilliant, and is the key part in the theorem.
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X is regular + countable basis

1
X is normal
Urysohn’s lemma
\L-i-countable bases

{fn}n:l,Q,“.
4
F = (f17f27 .. ) : X - Hn:l,Q,...[O7 1}
4

F is continuous and homeomorphism onto F'(X) as X C [], ;5

Each step took Urysohn about two years.

10,1
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The question was “when does a topology come from a metric?” We introduced
the notion of regularity; a space is regular when a closed set can be separated
with a point.

Theorem 14.1. If X is regular and has a countable base, it is metrizable.

14.1 Metrizability of the product topology

As T have mentioned, in the proof, we construct functions f, : X — [0, 1] which
separate all the points, and this gives a embedding F' : X — szl’Q,_“[O, 1].
Then F is homeomorphic to a subspace of a [[,_; , [0,1]. Now what we need
to prove is that [[,_; , [0, 1] is a metric space. h
For two elements ¢ = (t1,t2,--+) and s = (81, 82, - - ), we define the distance
as )
D(t,s) = sup —|tx — skl
k=12, Kk

(If we wanted to show that [[,_, , R is a metrizable, we should have used

D(t,s) = sup + min{|t, — si|,1}.) First, I need to show that this is a metric,
and then that it gives the product topology. You can check that this is a
distance function. Let us show that this distance induces the product topology.
A basis element of [[,_;, Ris (a1,b1) X -+ X (an,bp) x R x ---. If ¢ €
(a1,b1),...,¢n € (an,bn); then there is an € > 0 for which ax < cx — € and
¢k 4+ € < by, for each k = 1,...,n. Then for any ¢ such that D(c,t) < ¢/n
actually lies in this (a1,b1) X -+ X (@pn,b,) X R x ---. This shows that an open
set in the product topology is an open set in the metric topology.

Now we have to do the other way round. Consider any ball in the metric
topology. How many t; does the condition D(c,t) < € constrain? Once 1/k
gets smaller than €, the value of ¢ can be anything. Hence, the open ball in
the metric topology is an open set in the product topology. This shows that the
metric topology and the product topology are the same.

14.2 Outline of the proof of Urysohn’s lemma

So we are left with constructing the embedding.

Lemma 14.2 (Urysohn’s lemma). Let X be a normal space and A, B be disjoint
closed subsets. Then there is a continuous function f: X — [0,1] with fl4 =0
and flp =1.

Proof. Rather than constructing the function, we construct level sets instead.
That is the great idea.

Start with closed sets A and B. Then we can find disjoint open O4 and
Op which contain A and B. Then I look at the closed sets B and X \ Op.
Using normality, we can choose an open set U; which contains B but does not
intersect X \ O. Then U; contains B, Uy = O4 contains A, and the closure of
Uy and Uy are disjoint. This is going to be the sublemma.



Math 131 Notes 32

Lemma 14.3. If X is normal and A, B are disjoint and closed, there are A C
O and B C Op with O, N Op = 0.

The first step is to choose open Uy which contains A and open U; which con-
tains B, whose closures are disjoint. Next, we label the rationals by {ro, 73, ... }.
Then for each rj, we construct a boundary using the normality inductively. [
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Recall that we were proving that a regular space with a countable basis is
metrizable. We were trying to embed

X L [1h21[0, 1] C TIh2 R

What we needed to prove was Urysohn’s Lemma, and then using the countable
basis, we can construct the embedding.

15.1 Proof of Urysohn’s Lemma

The basic idea is to prove it by induction. If you give a number, I give a set in
which the function attains a value less than that number.

Let A and B be disjoint sets. There is a open set Uy around A and U
around B which have disjoint closure. Uy will be a space where f = 0 and Us
will be a space where f = 1. Now we need to specify other values. Because the
real numbers are uncountable, we choose a dense countable set, for instance the
set of rational numbers. Let r9,73,... be a labeling of all the rational numbers
between 0 and 1. Now for 79 we will have 0 < r9 < 1. Then we have a open set
containing the closure of Uy and whose closure is disjoint from U;. Let this be
U,. For the next rational, suppose that 0 < r3 < ry. Then we construct Us as
the open set containing the closure of Uy and whose closure is in Us.

Generally, the rule is that for rationals r1,...,7, we construct Uy,..., Uy
inductively such that for any p,q € {1,...,k}, if r, < r, then U, C U,. If there
is a new rational 741, we can construct Uy well by using the normality of the
space. Now we have all the level sets at rational numbers {U, },cgnio,1], which
is nested, in the sense that if r </, then U, C U,.

We define the function

flx)=inf{r: 2z € U,}.

Why is this function continuous? Consider the inverse image of a basis element
(p,q). Then B
fﬁl((pv 7)) =Ug N (X\Uy)

is open. So f is continuous.

15.2 Dedekind cuts: a digression

This reminds me of Dedekind cuts. (This is a digression.) Dedekind has this
great idea of how to define the real numbers. A Dedekind cut is a partition
Q = AU B such that

e A does not contain its least upper bound.

o If x € Aand y < x then y € A.

o if x € Bandy >z theny € B.

Then the set of all Dedekind cuts is the rational numbers.



Math 131 Notes 34

15.3 Proof of Urysohn’s metrization theorem (1)

Let {G}52 1 be our countable basis. Define
0={(n,m)e{1,2,...} x{1,2,...} : G, C Gy, }.

If {G,} is a basis, then s0 is {Gpnm = Gy \ Gm}n,m)co. Why is this? Just use
the lemma about finding open sets with disjoint closure. Let p be a point inside
a basis element GG,,. Then applying the lemma, we have open sets U containing
p and O containing X \ G,,. Then a basis element in the open set O N G,, does
not contain p. Applying a bunch of times, we can actually choose it so that the
closure of O does not contain p but is inside G,,.

Now for any such (n,m) € ©, consider the map f,, » : X — [0, 1] such that
fn,m(C_?m) =0 and f,, m(X \ G,) = 1. Then define

F= [ fom:X- ][ 01

(n,m)€eO© (n,m)e0

Then F' is continuous, and it is an embedding.
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Today we will finish this point set topology and move to algebraic topology.

16.1 Proof of Urysohn’s metrication theorem (2)

The Urysohn’s theorem was that if X is a regular space with countable base,
it is metrizable. For a countable collection fi, f2,... such that for any p # ¢
there is a k such that fx(p) # fr(q), we define a metric

D)= s (G minllAo) - AlD).

k=1,2,...

The term % guarantees that the topology is finer than the metric topology.
So now if we have functions fr : X — [0,1], we can construct a function
X = [17=,[0,1] by sending

T = (fl(x)an(x)’)

But how do we choose the functions? We use a countable base {G,,}°2;. Now
this is a review of last class.
We let
O = {(n,m): G, C Gy}

and for each (n,m) € ©, we defined a function f, ,, : X — [0, 1] such that it is
0on X\ G, and 1 on G,,. Then these functions distinguishes any two distinct
points.

Now the function which maps X into the product topology is continuous,
and it is a bijection. But we still have to show that it is an open map. Because
the Gpm = Gp '\ G, is a basis element, it is sufficient to show that the image
of the complement if this set is closed. However, I think there is a flaw in the
proof I prepared. I will upload the modified proof in the website.

16.2 Manifolds

Definition 16.1. X is an n-dimensional manifold if

a) it has a countable basis,
b) it is Hausdorff,

c) if p € X, there is an open set O, C X with a homeomorphism f, : O, —
open set in R”.

If O, and O, are neighborhoods of r and ¢, and they overlap, there is a
homeomorphism between f,.(O, N O,) and f,(O, N O,) in the Euclidean space.
Then we can view a manifold as space obtained by gluing different open sets in
the Euclidean space.
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Example 16.2. The circle S' is a manifold, because for any point, we can
project it to some axis. Likewise, any smooth surface in R> is a manifold,
because we can project the neighborhood to a tangent plane.

Theorem 16.3. Suppose that X is a compact n-dimensional manifold. Then
there is an embedding F : X — RN for some finite N.

Proof. Consider any p € X and there should be a open O, containing p with
an homeomorphism f, : O, — R". Because the image is an open set, we can
choose a 1, > 0 such that the ball with radius r, centered at p is inside the
image of f,. Then

QL2 = f,1(1/2r, radius ball)

and

Qp = f, ' (rp radius ball)

are both open sets in O,.
Define a function h;, : R™ — R such that

1 rgéfrp
2(1-=-) 1rp§7"§rp.
0

2
outside

ARSI~

P
P
P

This function can be viewed as a continuous function which is 1 inside Q,l,/ % and
0 outside Qp.

Now the set {Qzl/2}pex is an open cover, so since X is compact, there is a
finite subcover {Q;,{Z, ce 11,{3} Define

hpk- (I)
ity by (@)

Then these v, are continuous maps, and they form a partition of unity, i.e.,

S U, (z) =1 for any .
Once I have a partition of unity, I am in business. Define F': X — [, Rr+L

where m is the number of sets {Q},{z, cee ,1){”2} Then we can set F(z) in the

kth factor of R"*t! be

17[}Pk -

(1/)1919 (x)fpk (:ZZ), 1- 1/}1919 ($))

in R” x R. You can easily check that it is an embedding, because it is locally
embedding. O
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Algebraic topology is the toolbox for studying topological spaces. Topology is
really visual to me, so I like to visualize things. Let me demonstrate one of the
motivating examples in topology.

There was a famous magician for freeing himself from knots. If I tie my ankle
and the leg of this projector, can I theoretically free myself form the projector,
when we are allowed to stretch the rope but not cut it?

17.1 Homotopy

Definition 17.1. Let Z and X be topological spaces, and f : Z — X and
'+ Z — X be continuous maps. Then a continuous map

F:Zx[0,1] =X

such that F(z,0) = f(z) and F(z,1) = f'(z) is called an homotopy from f
to f’, and if there exists a homotopy, the two maps f and f’ is called to be
homotopic.

Example 17.2. For any Z, consider the map fo : Z — R™ such that fo(z) =0
for all z. Consider any other map f: Z — R". Then F defined as

F(z,t) = tf(2)
s a homotopy from fo to f.

Homotopy is an equivalence relation. We will denote f ~ f’ if there is a
homotopy from f to f’.
1. Of course it is reflexive because we can take F'(z,t) = f(2).

2. If f ~ f and f' ~ f” then f ~ f”. Because an homotopy is a path
between maps, we can just put the two paths together. Let F(z,0) = f,
F(z,1) = f/, and G(#,0) = f', G(z,1) = f”. Then we walk two paths
twice faster and define

Hiet) = {F20) te0,1/2]
G(z2t—1) te[l/2,1]
3. To show f’ ~ f from f ~ f’, you can just walk backwards.

Equivalence class under homotopy equivalence of maps from Z to X is de-
noted by [Z, X], and is called homotopy classes.

Lemma 17.3. If h : X — X' is a map, then h induces a map hy : [Z,X] —
[Z,X']. If h is a homeomorphism then h, is bijective.

We can draw the following diagram.
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If [f] is the homotopy class of f : X — Z, then h,[f] is defined as the homotopy
class of ho f, which is a map X' — Z.

This is very useful tool. If [Z, X|] for some Z cannot be bijective with [Z, X'|
then X cannot be homeomorphic to X'.

Example 17.4. Suppose that Z = {*} is a point. What does it mean for
two maps fo(x) = xo and f1(x) = x1 to be homotopic? The homotopy is just
F:xx[0,1] = X, which is just a path between xo and x1. So [x, X] is just the
set of path components. Path components is just a baby version of homotopy.

The more common ones people take for Z are spheres; S*, 82,...,5". The
sphere is not too complicated that you can’t compute, but it is also not so simple
that the homotopy is trivial.

There is also a notion called pointed homotopy. We choose specific points
zo € Z and g € X, and confine our view to maps f : Z — X such that
f(20) = xo. Then a pointed homotopy is is a continuous map F such that
F(2,0)=f, F(z,1) = f" and F(29,t) = x¢ for all ¢.

The analogous lemma also holds for pointed homotopy.

Lemma 17.5. Pointed homotopy is an equivalence relation. Also, a map h :
X — X' such that xo — x, induces a map

ha : [(Z, 20), (X, 20)] = [(Z, 20), (X', 20)]-
If h is a homeomorphism then h, is a bijection.
Let Z = S™ c R""! and let 29 = (1,0,...,0). We denote
(X, 20) = [(S™, (1,0, ...,0)), (X, z0)].

This actually turns out to be a group!

17.2 Groups: a reminder

A group G is a set with a multiplication m : G x G — G such that (1) it is

associative: m(a,m(b,c)) = m(m(a,b),c), (2) there is an identity 7 such that
m(i,a) = a = m(a, ) or all a € G, (3) given a, there is an inverse a~! obeying
m(a,a™!) =m(a~",a) =

Example 17.6. The set of integers Z is a group. It is defined by m(a,b) = a+b
and i =0 and a=' = —a. This is an additive group, and is abelian

Example 17.7. The Z/p = {1,e>™/? ... 2™ ®=1/PY with m(n,n') = nn’ and
i=1andn ' =7 is a group. This is multiplicative, and is also a group.
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If T have a space Z and a space X, and two maps f, f' : Z — X, there is a
notion of homotopy. This is a map F : Z x [0,1] — X such that F(z,0) = f(z)
and F(z,1) = f'(z). Last time I said that homotopy is an equivalence relation.
This is the first observation and the second observation is that if I have a map
h: X — X', there is amap h, : [Z, X] — [Z, X']. The new map h, is a bijection
if h is a homeomorphism. Also there was a pointed homotopy (Z, zg) — (X, z),
which is a homotopy F such that F(zg,t) = ¢ for all ¢.

18.1 Fundamental group of a space

When Z = 8™ C R"*! with the base point 29 = (1,0,...,0), the homotopy
classes of based maps is denoted by 7, (X, o). It turns out that m,(X,z¢) is
a group, and it is called the nth homotopy group. If n = 1, the group = is
called the fundamental group.

The rest of the lecture, I will try to explain what the group is. We first
consider only S'. The good thing about the circle is that we can parameterize
it by the angle. Then map from S to X is the same as a path that begins and
ends at the same point.

We were able to concatenate paths. Suppose I have a path v : [0,1] = X
and 7' : [0,1] = X, and v(0) = xg,¥(1) = 21 and 7/(0) = z1,7'(1) = 22. Then
we can add them by walking along the path twice as fast. Likewise, if we have
two paths with the same base point xg, we can walk two paths and get another
path which starts and ends at xg.

So we give the group structure by

Y] =y *~],

where * means the concatenation. But there are a several things we have to
show. First, we need to show that [y*+'] does not depend on the representatives
~ and 7/ of their equivalence class. Then we need to show that this multiplication
satisfies the group axioms.

First let us prove that multiplication is well defined. Let ,7; € a be two
paths in a homotopy class o and 7 € 3 be any path. Then we need to show that
~*~" is homotopic to 1 x+'. Let F : [0,1] x [0,1] — X be a homotopy between
~ and 71 such that F(z,0) = v(z), F(z,1) = v1(2), and F(0,t) = xg = F(1,t)
for each t. We can define

_JF@st  2e00,1/2]
G(Z,t) = {7/(22 _ 1) z e [1/27 1] .

This gives an homotopy between a v *+" and v; * v and establishes a multipli-
cation.

Now we show that it is a group. What is the identity 4?7 It is going to be
the homotopy class of the constant map S' — zg.
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Lemma 18.1 (Reparametrization lemma). If v : [0,1] — X is a path and
h:[0,1] = [0,1] is any continuous map such that h(0) = 0 and h(1) = 1, then
Y1(2) = v(h(2)) and v are homotopic.

Proof. The map F' : [0,1] x [0,1] — X defined by
Fat) =1tz + (1 - )h(2))
is a homotopy, because F(z,0) = y,(z) and F(z,1) = v(2). O

Now the concatenation of ¢ and any path ~ is

@*w@:{w%>zemum

Zo z €[1/2,1]

and this is just a reparametrization of the path . Likewise, the other concate-
nation v * i is homotopic to . This shows that for any homotopy class «, we
have a-i =1 -a = a.

What about the inverse? The inverse of the path v will be y71(2) = v(1—2).
The concatenation vy * y~! will be homotopic to the constant map 4, because at
time ¢ we can set the path F(z,t) to be the path which walks the 1 — ¢ of the
path v, and then turn around and walks back. Then F(z,0) will be just vy*~y~*
and F(z,1) will be the consent map. This shows that the homotopy class of
~~1 will be the inverse of the homotopy class of .

Likewise, we can show that for any three paths v,~’,7”, the concatenation
~v*(v'%~") is homotopic to the (yxv")x~", because it is just a reparametrization.
Thus, multiplication is associative.

18.2 Some examples

We're there at last. The fundamental group is a group. Our next job is to
calculate it.

Example 18.2. The fundamental group w1 (R™,0) = 1, because we can always
shrink a map. The group 7 (S, z0) = Z.

Example 18.3. Let SO(3) be the group of rotations of the Euclidean space R3.
Then the fundamental group m(SO(3)) = Z/2Z.
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One of the things we’ll do today is compute the fundamental group 7 (S?).
This will be the homotopy classes of based maps from S' — S* with some base
point. Because we can parameterize the points of a circle by e?, we can instead
consider the group of loops in S'.

I’ll be using a few lemmas implicitly.

Lemma 19.1 (Reparametrization). Let f : [0,1] — X be a path, and h :
[0,1] = [0,1] be a continuous functions such that h(0) =0 and h(1) = 1. Then
f(h(2)) is path homotopic to f(z).

Lemma 19.2 (Concatenation). (a) Let f :[0,1] = X and g : [0,1] = X be
two paths from xy to x1 and x1 to xo. Suppose that f' is homotopic to f and
g’ is homotopic to g. Then [’ x g’ is homotopic to f * g.

(b) It does not matter up to homotopy how you put in the parentheses in

fix fox-ox f.

19.1 Fundamental group without the base point

Also, T should have mentioned this, but we have the following lemma.
Lemma 19.3. If X is path connected, then (X, x1) is isomorphic to w1 (X, o).

Proof. Suppose we have a homotopy class a € 71 (X, zg). Because X is path
connected, we can pick a path from x; to zp. Now if we have a path f:[0,1] —
X in a, which will be based on xg, there is a fairly straightforward way of getting
a loop; you follow ~, and then f, and then go back around. If we write it down,
it will be

T fry.

The concatenation lemma shows that if f’ is homotopic to f, then vy~ * f/ x v
is homotopic to v~ % f * . So this gives a map from the homotopy classes
m1(X, xo) to m (X, z1). Tt also preserves multiplication, because

(Vlafry) s (Y xgry) =T x fr(yry ) xgry=9"" % (fxrg)x.
0

19.2 (S

Now we get to 71 (St). I've been working on this all weekend, because I didn’t
like the proof in the book. It introduced a lot of machinery, but after all, it’s
just a circle! I think I have an alternative proof, but I need you guys to check
my proof.

Theorem 19.4.
™1 (Sl) = 7.
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Proof. Let f be any map f : S — S1. Consider the set f~1(S'\ {1}). Since it
is clearly open, it should be a countable union of disjoint open sets. Let

f_l(Sl \{1}) = U (bns an).

n=1

Because at points b,, and a,, the value of f should be 1, in the interval b,, a,, the
path either leaves 1 clockwise or counterclockwise, and enters 1 either clockwise
or counterclockwise. If it comes out and in above the x axis, or both below the
z axis, and does all the junk between, then it is just homotopic to not moving
at all. So the things we need to worry about is intervals for which the path exist
1 in one direction and enters it in the other direction.

Let N; be the number of intervals that wind the circle counterclockwise,
and N_ be the number of intervals that winds clockwise. Note that because
the map f should be continuous, there cannot be infinitely many these things.
That is, N, and N_ is finite. Now I give the homomorphism 71(S!) — Z as

f= Ny —N_.

We should get rid of the junk in the middle of the counterclockwise intervals.
If we parametrize the value of f by the angle, we have a map h : [0,1] — [0, 1]
such that ~(0) = 0 and (1) = 1. Then we see that f in the interval is just homo-
topic to the simple path walking along the circle in constant speed. Therefore,
the path f is actually homotopic to the concatenation of N, counterclockwise
paths and N_ clockwise paths, and we can cancel out each one of the paths. [
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We showed that 7 (S!) ~ Z. We shall prove that 71 (S™) =~ (1) for n > 1.

20.1 m(S™)
Let (1,0,0,...,0) be the base point, and consider

D={(z1,...y&ny1) : 1 —21| <r}nS",

where = 1/1000. Then the boundary will be

6D = {le - 1 -, |($2,...,xn+1)| = \/m}

Like when we proved that 71(S') ~ Z, we consider the image f~1(S™\ D) for
some closed path f. This will consist of countably many open intervals. Let U
be the set of those open intervals. Then on any intervals (a,b) € U, the function
(or path) f sends (a,b) to S™\ D and [a,b] to S™ \ (D \ 9D).

Now for any path f from f(a) to f(b) lying in S™ \ D, you can push the
path all around the sphere to make it inside D. (I will post a exact formula in
the notes.) Then all the paths lie in the D. Because D is homeomorphic to B,
every path is homotopic to the point. Therefore, there is only one element in
71'1(5”).

Lemma 20.1. Let A C X be a closed set, and let A C U C X be a open set
containing A. Let f : [a,b] — X such that f(a), f(b) € A. Then f~1(X \ A) is
a countable collection of disjoint intervals. Let the set of open intervals be U.

Then there are only finitely many intervals (a,b) from U such that there is a
point z € (a,b) such that f(z) € X \U.

20.2 Retractions on the plane

Why is there a spot on the head where the hair sticks out in all directions? We
will show that it is not some evolutionary thing, but a underlying principle in
topology.

Definition 20.2. Let X be a space and let A C X. A continuous map t: X —
A such that v(a) = a on A is called a retraction. If there is a reaction, A is
aid to be a retract of X.

Example 20.3. The origin is a retract of {(z,y) € R? : |z|? + |y|? < 1} because
we can let v(z,y) = (0,0). The sphere S~ is a retract of R™ \ 0 because
T Z/|Z| is a retraction.

Lemma 20.4. If A is a retract of X then j : A — X induces a injective
homomorphism
j* : 7T1(A,a()) — 7T1(X, ao).

11 did not attend class on October 21, 2015.
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Proof. Let f : [0,1] — A be a loop. Suppose that there is a homotopy F :
[0,1] x [0,1] — X in X such that F(z,0) = f(z) and F(z,1) = po. Then
t(F(z,t)) is a homotopy from f to a constant map in A. This shows that j, is
injective. O

Example 20.5. Let D be the disk ? + y? < 1, and let A be the boundary.
Because m1(A) ~ Z and 71 (D) = (1), the boundary A is not a retract of D.

Theorem 20.6. The identity map from i : S* — S' is not homotopic to the
map St — point € St.

Proof. Suppose that there is a point 1 € S, and a homotopy F(#,t) : S* x
[0,1] — S* such that
F(7,0)=1, F(@,1)=74.

We can define a retraction t: B2 — St by
t(t7) = F(7,t).

This is continuous, because if ¢ gets small, F'(7, t) gets closer to 1. But we already
proved that there is no retraction. Therefore we get a contradiction. O
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I want to deviate from the book and talk about why m,,(S™) is not zero.

21.1 The hair whorl lemma

A retraction of X onto subspace A was amap t : X — A such that the restriction
t|a is the identity. If A is a retract of X and j : A — X is the inclusion map,
then there is a canonical inclusion map j. : m(4,a9) — m (X, ap) which is
injective. Because m(S*) ~ Z and 71(S') =~ 0, the circle S* is not a retract of
the disk D2. This implies that the identity map from S to S is not homotopic
to the constant map (even allowing the base point moving).

Theorem 21.1. Let v : D?> — R? be a vector field, and suppose that v # 0
anywhere. Then there is a point on 0D where it points out and one where it
point in.

Proof. Because v # 0, we actually have a map v : D — R\ {0}. Then we get a
q:D — S' defined by
v(x)

>
|v(z)]
The ¢ on the boundary ¢|sp is null homotopic, i.e., homotopic to a constant
map, because there is a homotopy

F(a,t) = q(ta).

Suppose that ¢(1) # @ for any 4 € S'. (This means that the vector field never
points out.) Then there is homotopy G : S* x [0,1] — S defined by

(1 —=t)g(u) —ta
(1 —t)q(a) — ta|
This contradicts that the identity map is not null homotopic. O

Gla,t) =

This is known as the “Hair whorl lemma”. This also shows that there must
be an eye in a hurricane.

21.2 Deformation retract

Definition 21.2. Let A be a subspace of X. A deformation retract is a map
F: X x[0,1] = X such that F(x,0) =« and F(z,1) € A for any = € X, and
also F(a,t) =aforalla e A,0 <t <1.

If A is a deformation retract of X, then 71(X,ag) =~ m(4,ap). This is
because just you can retract any path of X into A.
Example 21.3. The space R™"\ {0} deformation retracts to S"~'. The function

T

F0 = T+l

s a deformation retract.
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This actually shows that 1 (R? \ {0}) = 71(S') = Z. Also, 71 (R" \ {0}) =
m1(S"71) = (1) for all n > 3. Hence R is not homeomorphic to R2.

Example 21.4. Consider a torus T ~ S' x S'. Then there is a retract T — S*
as the projection, but there is no deformation retract from T into a circle, because
the fundamental group of T is Z* and the fundamental group of S* is Z.

We want to show that 7,(S™) # (1). In particular, we shall show that the
identity ¢ is not based homotopic to a constant map. The proof will go something
like this. Assume for n > 2 that the identity map on S™~! is not homotopic to
a constant map. Then we prove that the identity on S™ is not homotopic to a
constant. If we assume the induction hypothesis, then the n-dimensional ball
does not retract onto the boundary. If there were a retract v : B3 — S2, then
let Q(1,t) = ti. The homotopy F(4,t) = v(Q(1,t)) will be a homotopy from
the identity map to a constant map.
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I will prove today that the identity map S™ to S™ is not homotopic to the
constant map, or at least convince you. This implies that there is no retraction
Bttt — 8™ Also, I won’t prove this, but if m < n, the homotopy group
Tm (S™) is trivial. It follows from this fact that R™ is not homeomorphic to R™.

What will be 7, 4,(S™) for & > 07 It turns out to be a really hard problem.
In many cases, it is nonzero, and it is hard to compute. For instance, 73(S?) = Z
and 74(S?) = Z/2Z.

22.1  7,(S")

Last time, we started by using induction. Suppose that the identity map on
5™~1 is not homotopic to S»~!. Then there is no retract of B™ onto S™1.
Now consider S™ lying inside R"*1. Consider the fixed point zo = (1,0, ...,0)
on the sphere S™. Consider the set of unit vectors whose angle from z is o.
Then the set of such points is the same as the S®~!. Also, we can consider

B" =r-jiw~ (xog=cosf,sinbdi) where 0(r)=(1—r)m +ro.

Then this embeds B™ onto S™ so that it misses only a small open disk enclosed
in the (n — 1)-sphere 6 = 0.
Now we want to push the map into some disk 6 < /4. For a homotopy F,
we define
Dy (x,t) =2 O(z)<o
Dy (z,t) = F(x,t) 0(x) > 20
Dy (z,t) = F(x,(0/c —1)t). 0<0<20

We want to find a continuous function 7 : S™ — [0, 1] such that @4 (x, 7(z))
has 6 between o and 7 /4 for every 6(x) > o. One possible candidate is stopping
x on the last crossing of w/4. That is, we define 7_(z) as the greatest lower
bound of ¢ such that ®;(x,t) has 6 < 7/4. Is this continuous? Unfortunately,
it is not. But if (z;) — z converges then lim; ,o 7 (2;) < 7(x). But it might
be strictly smaller. Likewise if we define 71 (x) as the last time ®q(z,t) comes
into the closed set 6 < o, then we get lim;_, o, 71 (2;) > 7(x).

Consider the interval [7_(x), 74 (x)]. Let B, be the ball centered at x such
that for any @’ € By, the point 3(7_(z) 4+ 74 (x)) is inside [r_ (', 74 (2’)]. Now
we have a open cover

B, =|JB.
xr
where By, is the ball § > o. Then there is a finite subcover By, ,...,Bg,. We
can consider the partition of unity ¢1,...,@nN, such that @i (z) = 0 outside of

By, for each k and ), ¢ = 1. Then we can let

(@) =Y ((r—(an) + 74 (21))/2) - pu(2).

k

This is a finite sum of continuous functions and hence continuous.
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We are going to talk about covering spaces.

23.1 Covering maps

Definition 23.1. Let p: E — B be a continuous and surjective map. An open
set U C B is called to be evenly covered by p if

pH(U) = Va

acA

where p : V,, — U is a homeomorphism. The map p is called a covering map
if for any x € B there is a open neighborhood of x which is evenly covered by p.

Let us make some observations. If p : E — B is a covering map, then
p~L(b) = > acA €a has a discrete topology. Also, p is open; p takes open sets
to open sets. This is because p is a “local homeomorphism,” i.e., given e € F
there is a neighborhood V of e such that p: V' — p(V) is a homeomorphism.

Example 23.2. Let A be any set with discrete topology. Let B be any space,
and let E = B x A. We can consider the projection map p : E — B which maps
(b,a) — b. This is a trivial covering space.

Example 23.3. Consider the map R — S which maps t — (cos(27t), sin(27t)).
This is a covering map. For instance, consider a small open neighborhood of
(1,0). The inverse image of this neighborhood will consist of copies of small
open intervals around 0,1,2,... and —1,—-2,....

Example 23.4. Consider the space of lines in R3 passing through the origin.
This space is called the RP?. We can give it a topology by the map R3\ {0} —
RP2. Let p: S? — RP? be the map x > (line through 0 and x). This is a
covering map. Likewise, we have a covering map S™ — RP"™. These are all
2-to-1 covering map.

Example 23.5. There is a 2-to-1 covering of a double torus by a triple torus.
It can be constructed by cutting one handle of the torus and gluing nontrivially.
Likewise, there is a n-to-1 covering of a double torus by a (n + 1)-torus

Example 23.6. Consider the figure eight. This is two S's glued by a point.
There are two loops a and b. If we interpret walking along a counterclockwise as
going up, and walking along b counterclockwise as going right, we get a covering
space from the grid graph on Z? to the figure eight. Actually, there is a more
complicated covering space, which is called the Caley graph.

23.2 Path lifting lemma

Lemma 23.7 (Path lifting lemma). Suppose we have a covering map p : E — B
and a point ey € E. Let by = p(ep). Given f :[0,1] — B with f(0) = by, there
is a unique “lift” f:[0,1] — E such that f(0) = eq and p(f(t)) = f(t).
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Proof. We know that f([0,1]) is compact. Also, for each ¢ € [0,1] there is an
open U; such that f(t) € U; and p~}(U;) = Uaca Vo where p : Vi, — Uy is a
homeomorphism. Because Uy is open, there is a small interval f : (t—e;, t+e€;) —
U;. Because these intervals {(t — €;,t + €)} cover [0, 1] there is a finite cover
0<t; <--<tp, <1such that (t; — €,,t; + €,) covers [0,1].

Consider the first interval [0,¢; + €). The path lines in U; and there is a
stack of sets homeomorphic to Uy over U;. Then the path f should lift into the
stack where the base point lies. Likewise, the original path in (t2 — €s,,t2 + €1,)
should stick into Uz and we can lift it uniquely to E. Doing this finitely many
times, we get a unique lifting of the path f. O
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Let p: E — B be amap. An open set U C B is evenly covered when p~1(U) =
Uaca Va for disjoint set where p : V,, — U is a homeomorphism. E is a covering
space of B if every b € B has an evenly covered neighborhood. We have a lifting
lemma. If f:[0,1] — B and f(0) = by then there is a unique lift f : [0,1] — E
of the path such that f(0) = eg and p(f) = f. There is also a lift of homotopies.

24.1 Homotopy lifting lemma

Lemma 24.1. Let F': [0,1] x [0,1] — B be a homotopy, and let F(0,0) = bo.
There therein a unique lift of F' to F':[0,1] x [0,1] — E such that F'(0,0) = eg

and p(F) = F.

Proof. We break up the square into a grid of smaller squares. If the squares are
small enough, then the image of one small square in B should be evenly covered
by p. Now for each square, there is a whole bunch of ways to lift it into £. The
only choice we have is where to lift it into.

We label the squares in the grid by labeling the squares in the first row by
1,2,...,k in order, and then second row by (k+1),...,2k, and proceeding in a
similar way. Then because before lifting a square there is already a base point
determined, we see that there is a unique way of lifting. O

The (possibly) annoying thing about lifting of paths is that two paths which
starts and ends at the same points can be lifted to two paths which starts at
the same point but ends at different points. However, if they are homotopic,
then the endpoints should be the same.

Theorem 24.2. If f is homotopic to g then f(l) =g(1).

Proof. There is a homotopy F': I x I — B such that
F(0,t) =by, F(1,t)=0b1, F(z,0)=f(z), F(z,1)=g(x).

We can lift the homotopy F to a homotopy F' such that F'(0,0) = eq. If ¢ is
fixed, then & — F(x,t) is a lifting of fi(z). how F(1,t) = by for all ¢, and
because p~1(b;) has a discrete topology, F(1,t) should be some constant point.
Then f(1) = §(1) = F(1,0) = F(1,1). O

Let us look at loops. If f : [0,1] — B is some loop with f(0) = f(1) = by,
then the lift of f should begin at some point ey and end at some point e; with
eo,e1 € p~1(bp). This induces a map

¢ (B, by) — p~t(bo).

If E is path connected, the map ¢ is surjective.
This is relatively easy to show. Let e; € p~1(bg) be any point in E. Because
FE is path connected, there is a path v from ey to e;. Project this downstairs to
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get p(y). This is a loop f in B which starts and ends at by. By the uniqueness
of lifting of paths, the lift of f back in E should be just 7. Then ¢ should
associate vy with e;.

The next question is when is it bijective? In fact, the set p~1(bg) is bijec-
tive with the set of right cosets 71 (B, bg)/p«(m1(E,ep)). That is, we have the
following exact sequence.

(1) —— m(E, e0) —2 m1(B,by) —2 p~L(by) —— (1)

We will try to prove this on Wednesday.



Math 131 Notes 52

25 November 4, 2015

Today I want to continue exploring covering spaces. Let me remind you that
the covering space consists of data (B, E,p). The p : E — B is a surjective map,
and every point in B has an evenly covered open neighborhood. By the path
and homotopy lifting lemma, we obtained a map ¢ : 7 (B, by) — p~1(by) which
is surjective if E is path connected. But what can we say about injectivity?

25.1 Covering map and the fundamental group

The covering map p : E — B induces a group homomorphism p, : 71 (F, eg) —
™1 (B, bo)

Lemma 25.1. p, is injective.

Proof. Let v, :[0,1] = E, and let F : [0,1] x [0,1] — B be a homotopy from
poy topo~’. Let’s take the lift of this homotopy and see what it does.

Let [ :[0,1] x [0,1] — E be the lift of F. We only need to check that the
sides are what we want. Using unique path lifting, we can just follow F along
the edges so that they are in fact what we want. O

What are the homotopy classes [f] € m1(B, bo) such that ¢([f]) = eo? These
are the paths whose lift is a loop which is actually in E. Then there would be

a loop [f] € m(F,ep) such that p.([f]) = f. Conversely, if [f] is in m1(E, eg)
then ¢ maps the projection [f] to just eg. What we have proved is the following:
@f] = eo if and only if [f] = p.[y] for [y] € m1(E,ep). Or alternatively, we have
the following exact sequence (of sets):

(1) —— m(E, e0) —2 m(B,by) —2— p~1(by) — (1)

25.2 Algebraic interlude

Let K and G be a group. To say that ¢ : K — G is a group homomorphism
is to say that 1 (kiks) = ¥ (k1)1 (k). This implies that (1) =1 and ¥(a™!) =
¥(a)~! and ¢ (K) C G is always a subgroup.

Example 25.2. Let G=7Z and K =Z and ¥, : K — G sends { — n - L.

If H C G is a subset, we can think of the right coset space G/H. This is the
equivalence classes induced by g ~ ¢’ when ¢’ = g - h for some h € H. One can
verify that this is an equivalence relation.

Theorem 25.3. We have the exact sequence of groups

1 —— 7T1<E,60> L 7T1(B,b0) e 7T1(B,b0)/(p,ﬂT1<E,€0)) — 1
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Most of today’s lecture will be about the existence of a covering space. What
I showed last time was that if p : £ — B is a covering map then the in-
duced map p, : m(F,eq) — 71(B, bg) is injective, and that there is a bijection
71'1(B7 bo)/’ﬂ'l(E, 60) <~ pil(bo).

26.1 Tree covering space of the figure eight loop

Consider the figure eight with the loops a and b. There is a covering space of
this which looks like a tree. For each point, there is a vertical branch and a
horizontal branch. If you walk clockwise on the a loop, then you walk right
in the covering space. If you walk clockwise on the b loop, you walk up. The
branches never intersect. This is not possible to draw in the R? plane, but
you can think it in the space R? and push around the branches so they don’t
intersect. This kind of thing is called a tree.

In the fundamental group, aba~'b~! is not the identity, because in the cov-
ering space, the path doesn’t bring you to the origin. This shows that the fun-
damental group is not commutative. In fact, any word a™*b™1a"™2b™2 - - . gk H""k
for m; # 0 and n; # 0 cannot be reduced into simple terms in the fundamen-
tal group. This kind of group is called the free group on 2 generators. I will
probably talk more about this in the following weeks.

26.2 Constructing a covering space (1)

Definition 26.1. A space X is called locally path connected if given any p
and open set p € U there is some p € V C U which is path connected.

Example 26.2. Consider the topologists sine curve with an extra segment con-
necting the curve and the y-axis. Then this space is path connected, but not
locally path connected.

Definition 26.3. A space X is semi-locally simply connected if for any
point b there is an open set b € U such that 71 (U, b) — 71 (B, b) sends everything
to 4.

Note that this is slightly weaker than “locally simply connected,” because
the loop can go outside U and then contract to a point.

Example 26.4. Consider the infinite earring, which is
(o)
U{@y): (@ —=5)?+4* = (2)*)
n=1

This is not semi-locally simply connected. But if you cover every circle with a
cup, then it is semi-locally simply connected.

To construct the covering space, we require our space B to be path con-
nected, locally path connected, and semi-locally simply connected.
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Theorem 26.5. Let B be a path connected, locally path connected, and semi-
locally simply connected space. Suppose that H C w1 (B,bg) is a subgroup. Then
there is a covering space data p : E — B such that p.(m1(E,ep)) = H.

We first construct F as a set. Then we say what p is. Then we give E a
topology, and then we verify that p is a covering space, and that p.(m (F,eq)) =
H.

Proof (part 1). Let
Qo = {Paths f : [0,1] — B such that f(0) =bo}.

We are going to consider the equivalence classes of €)y. The equivalence relation
is defined by f ~ f"if (i) f(1) = f(1) and (ii) f~!* f has its homotopy class in
H. We claim that this is an equivalence relation. First f ~ f because f~1x% f
is homotopic to bg. If f ~ f’ then f~!x f’is a class in H and then because H
is a group (f~1* f)"! = (f)"'* fisin H. Lastly, if f ~ f' and f' ~ f”, then
we have [f~1x f], [f”l x f] € H. If we multiply these two elements, we get

ol frs f/ T ) = [f 1w f € H.

Then we see that f ~ f” and hence this is an equivalence relation.
Now define F is the equivalence classes of €}y quotiented by the equivalence
relation. O
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We will continue our talk about constructing covering spaces.

27.1 Constructing a covering space (2)

Theorem 27.1. Let B be a path connected, locally path connected, and semi-
locally simply connected space. Let H C 71 (B,bgy) be a subgroup of the funda-
mental group. Then there is a covering space data p : E — B such that

p«(m1(E,e0)) = H.

Proof. Let
Qo = All paths in B that start at bg.

We give an equivalence relation so that f ~ f’ if and only if (i) f(1) = f/(1),
and (ii) f=! * f’ is a loop at by whose homotopy class is in H. Let

E = Set of equivalence classes.

For a path f denote its class by ff. We define a covering map p : E — B by
sending f# — f(1).

Example 27.2. If B = S! then m ~ Z. Suppose, for example, that H = 3Z.
The paths in E that are projected onto the base point by in B by the map p are
the elements of the fundamental group. But because going three times is same
as the constant map, we see that there are exactly three elements in p~*(bg).
Likewise, for any other point, the inverse image consists of three points. If you
move the three points around, you will get the 3-fold covering space.

We need now to give a topology on E. We give the basis of the topology.
For each open U C B and f* € E such that f(1) € U, define

B(U, f*) = {Equivalence classes of paths a * f with
a starting at f(1) and entirely in U}.

We give the topology in E so that {B(U, f*)} is a basis.

For any point b € B, consider a neighborhood U of b which is both path
connected, and 71 (U, b) — (1). Let f be a path in B which starts at by and ends
at b. The map p takes a path a x f € B(U, f*) and maps it to o(1). This shows
that p restricted on B(U, f*) is a surjection onto U. Moreover, it is one-to-one,
because for any «, 8 inside U with «(0) = (0) = b, we have, by semi-locally
connectedness,

B wax fl=[f" = f] =]

This shows that p|g(y, ) is a bijection between the set and U, and more work
shows that it is a homeomorphism.

Now if we choose a different path f’ from by to b, this (possibly) gives a
different set B(U, f’*). These all are homeomorphic to U by the restriction of
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p, and thus the inverse image of U will consist of these stacks homeomorphic to
U.

The inverse image p~!(bg) is the set of left cosets 71 (B,by)/H, by construc-
tion. This is because [f] = [f'] if and only if [f]~1x[f'] € H, or [f'] € [f]*H. O
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What I want to do today is finish the discussion on covering spaces. Then I will
do a new topic.
28.1 Constructing a covering space (3)

Theorem 28.1. Let b € B and let H be a subgroup of w1 (B, eq). Then there is
a covering space E with a map p: E — B such that p.(m1(E, ep)) = H.

Proof. On Q = {f : [0,1] — B, f(0) = by}, we gave a equivalence relation and
considered the equivalence classes. We should give a topology now.

A basis B for a topology is a set of subspaces such that for any By, Bs € B
and p € By N By, there is a Bz € B for which p € B3 C B; N By. We define

B(U, f*) = {a* f+h:[h] is in H, « starts at f(1) and stays in U}.
We have to check the intersection property. For instance, by definition we have
B(U, fYyNB(V, f*) = BUNV, f%).

But this is not only the possible form of intersection. Suppose that hf €
B(U, f*) N B(V,g*). We claim that B(U NV, h*) works.

Because h¥ is in both basis elements, we see that h(1) € U N V. Also, there
is a representation of h as

h=axfxT=0%xgx0o

where o C U, f C V, and 7,0 € H. By the thing we have shown above, we see
that
B(UNV,h%) = B(U,h*) N B(V, h*).

Lemma 28.2. If h € B(U, f*), then B(U,h%) = B(U, f%).

Proof. Because h € B(U, f*), there is a representation
h=axfxo

for some [0] € H. For any ¢ € B(U, h¥), there is a representation
Y=PFxhxT

for some [7] € H. Then we have

Y~ Bx(axfxo)xT
~(Bxa)x fx(o*xT).
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Applying the lemma, we see that
B(UNV,k*) = B(U, f*) N B(V, g*).
So this is indeed a basis. O

This is very beautiful in theory, but if you can’t guess the covering space,
you don’t know the fundamental group. So it is completely useless in computing
the fundamental group.

28.2 Motivation for Seifert-van Kampen theorem

Let U, V, and U NV be path connected open sets. What will a typical loop
in U UV based on a point in U NV look like? It will play around in U for
some time, then pass U NV and then play around in V for some time, then
go back and again to U and then come back to U NV and play around inside
the intersection and then go to the base point. Then by making a few “jogs,”
we can write this path in some form of v3 * 2 * 41 where v1,7v3 € m1(U) and
Yo € 7T1(V).

Now if V' is simply connected, then everything can be reduced into a loop
in U. This suggests that we might be able to figure out 71 (U U V) in terms of
m(U), m(V), and m (U NV).

28.3 Generators of a group

A group is a set G with a binary operation G x G — G which satisfies certain
certain properties. We can present a group using generators. A set {g1,...,9n}
is called a set of generators if every g € G can be expressed using the generators
by

ni ,n2

9= 90190z 9o
where go, € {g1,...,9n} and n; € {1, -1} for any j.

Example 28.3. The additive group Z is generated by 1. The multiplicative
group in the complex numbers generated by e2™/? is isomorphic to Z/pZ. The
group P, of permutations of {1,2,...,n}, which has n! elements, is generated
by the transposition (12) and (123---n).

An element in G is said to be torsion if zP = 1 for some p.

An abelian group is a group such that gh = hg for any h and g.

If G is an abelian group, and G1,G2 C G are subgroups, and every g € GG
can be written as g = g1 + go for g1 € Gy and g2 € Go, we write G = G + Gs.
If this decomposition is unique, we say that G is a direct sum and write

G =G @ Gs.
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Let U, V and U NV be path connected sets, and let zg be a base point inside
UNV. Then you can know what 71 (U U V,zq) by only knowing (U, zg),
m1(V, o), and m (UNV, zg). This is the idea of the Seifert-van Kampen theorem.

Example 29.1. You can cut a torus into a union of two bands, and a rectangle.
The union of two bands is homotopic to the figure eight, and we know that the
fundamental group of this is just the set of words, which is the free group Z x 7.

29.1 Freely generated abelian group

Because the free group of general groups is a bit complicated, let us talk about
abelian groups first. Let us look at G; = 2Z and G5 = 3Z. The group G = Z
is generated by G and Gs, because n = 3n — 2n, but there is a certain amount
of redundancy, because 6 =2+ 2+2 =3+ 3.

Definition 29.2. A group G is freely generated by {G,} when for every
g € G, there is a unique representation

g :ga1 +gOL2 +"'+gan~
If G is generated by {G,} we write
G=+G,.
If G is freely generated by {G,} we write

G:@Ga.

We now want to construct G that is freely generated by {Gq}aca. If J is
finite, we can just consider the product

[[Ga=6GixGax - xG,

aeJ

which is the set of tuples (g1,...,9»n) endowed with the binary operation in-
herited from each of G. There is a natural embedding G} — G, and one can
prove that G is indeed freely generated by its images.

If J is infinite, then there is a problem because ][, G is not generated by
{G4}. So we instead consider the subgroup of [, G consisting of elements g
such that (g)o = 0, except for only finitely many «. One can check that this
indeed is freely generated by {G,}.

For an element g € G, denote

Gq:{ 5_29a_gaoaga297}: <g>

Then we see that G is generated by {G,,_} if and only if G is generated by {ga}.
If G, is finite, we say that g is torsion. If G, is infinite, this is said to be
infinite cyclic, and is isomorphic to Z.
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Definition 29.3. A group G is said to be freely generated by {aq}tacs C G if
G = ®f=1 (k).
In this case, {a1,...,a,} is said to be a basis for G.
If J is finite and has n elements, then
G2Z®Z®- - DL

If G is a free abelian group, then G/2G can be regarded as a vector space over
Z/27Z. Because the dimension of a vector space is independent of the choice of
the basis, we see that the size of the basis for G is also independent of the choice
of the basis. This is a slick proof that we have some notion of “dimension.”

29.2 Freely generated group

Now let us look at the non-abelian groups. A group G is generated by {G,} if
any element in G' can be written as a word of elements in some G,,.

Example 29.4. Consider the permutation group of {1,2,3}. Let a = (12)(3)
and let b = (1)(23). Then a®> = 1 and b*> = 1 and we let G; = {1,a} and
Gy ={1,b}. Then G1 and G5 generate G, because

G ={1,a,b,ab,ba,bab}.
But it is not “freely generated” because aba = bab.

Definition 29.5. A group G is freely generated by {Go }aey if (i) GaNGp = {i}
for any a # 8, and (ii) ------ .
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We're still setting up the stage for the Seifert-van Kampen theorem.

30.1 Free product of groups

In the abelian case, given a set {Gq}acs of abelian groups, we were finding an
abelian G with a injective map i, : G, — G such that G is the direct sum of
{ia(Ga)}.

Now let us look at the non-abelian case. We want to find a group G with an
injection iy : G4 — G so that G is the free product of {i,(G4)}. This means
that for each g € G there is a unique representation

g=9g192-9n

with gr € G, and gry1 € Go,. We call this representation a reduced word.
Although this representation is sometimes useful, it is not easy to deal with.
Suppose that

/

9=91""9n, 9 =91 G

are reduced words. Then the product is

99 =1 gndy - G

and if g, and g¢{ are in the same G, then it is not a reduced wordE|

2 At this point there was an unconfirmed bomb threat and the Science Center was evacuated.
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I had a collection of groups {Gq}aecs. The free product of them is a group G
along with monomorphism i, : G, — G such that G is generated by {i,(Ga)}.
It should be freely generated so every g € G has a unique reduced word

g=9192 " Jk

so that gr € G, implies gx11 € Go. In other words, the identity I is repre-
sented by a unique empty word.

31.1 Construction of free product

We can construct G by considering the set of words
W ={g192 - gr} = {set of reduced words}.

You can give an obvious multiplicationon W. If w = g1 -+ - g, and w’' = hy - - by,
are two reduced words, we define

ww/ =41 'gnhl T hm~

If g, and h; are from the same group, we can reduce the two things to one
(gnh1). If it is the identity, you can just cancel it out. Associativity is tedious.

Now this group is called the free product of {Ga}aecs, and is denoted Gy *
Gg x -+ x G,,. By definition, (G * G2) * G3 = G1 * (G2 x G3). Let us get back
to the fundamental group. The fundamental group of the wedge sum of two S!
is the free product Z * Z.

Example 31.1. What is the free product (Z/2Z) x (Z/2Z)? It turns out it is
the isometry group of Z, where the metric on Z is given by d(m,n) = |m — n|.
This is called the infinite dihedral group. FEvery isometry 6 should be of the
form 6(n) = 6(0) + n, or of the form 6(n) = 0(0) — n. Let a(n) = —n, and let
b(n) =1 —n. Then a®> = b*> = 1, and everything is freely generated by a and b,
because ab is a translation.

Example 31.2. The space RP? has fundamental group Z/27. The space gluing
two RP? at a single point, denoted by RP?>VRP? has fundamental group (Z)27Z)
(Z/27). The simply connected covering space will look like an infinite chain of
spheres kissing at one point.
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31.2 Free group and the universal property

Let {aq}acs be a subset of a group G. Then G is called a free group with
basis {as} if G is freely generated by the groups G, where

— —1 2
Ga:{"' y Ao 5 Qg al,aouaa}'

Then every g € G has a unique representation as

g=aytay®---ap*
where a; € {an}, a; # a;11, and n; € Z \ {0}. For example, the fundamental
group of the figure eight is a free group.
Like the free product, we can construct the free group using formal expres-
sions. First for a € J, we let

_ -2 -1 2
Ga* Qg5 Ay, al,aouaa}'

This is a set, but we can give multiplication rules by a?a = a2+ and a2 = 1.
Then this becomes a group isomorphic to Z. Then we can consider the set of
all finite words, and then give a multiplication rule on that.

Lemma 31.3 (Free product lemma). Let G be a group, and {G,} be subgroups.
Suppose that G is the free product of {Gu}. Then for any group H and any
family of homomorphisms ¢, : G, — H, there is a unique ¢ : G — H such that

¢|G(Y = ¢a

Proof. What is going to be the homomorphism? Any g can be written as g1 - - - gk
where g; € G,,, and then there is one thing g can map to. If we actually define

?(g) = d(91) -~ 0(gk) = Doy (91) -+ - Do (91),
you can show that ¢ indeed is a homomorphism. O

Likewise, if G is a free group with basis {aq }aecs, specifying ¢(aq) specifies
the whole homomorphism ¢ : G — H.

31.3 Normal subgroup

Definition 31.4. A subgroup H C G is normal if ghg~! € H for all g € G
and h € H.

If H is normal in G, then we have G/H = H\G. In other words, the right
cosets and the left cosets are the same. This is because gHg~! = H and hence
gH = Hg. Also, G/H becomes a group. If we denote [g] denote the coset of G
containing g, then we can define [g1][g2] = [g192]. This does not depend on the
choice of a representative, because gihgah' = g192(g5 *hga)h' € [g1g2). Then
there is a natural homomorphism ¢ : G — G/H.

In general, let ¢ : G — K be a group homomorphism. We define the kernel
of ¢ to be ker¢p = ¢~ 1(ix). Then ker ¢ is always a normal subgroup of G,
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because ¢(g1) = ix and ¢(g2) = ix implies ¢(g192) = ¢(91)P(92) = i, and
¢(g1) = ix implies

H(g20195 ") = D(92)ind(9z ') = Bg205 1) = i
There is also a notion of the smallest normal subgroup containing K. Define
Ng = {{gkg™' k€ K,g € G})

be the group generated by the elements in that set. Then Ng is a normal
subgroup. Actually K does not have to be a subgroup.

31.4 Commutator subgroup and abelianization of a group

Define the commutator [z, y] to be

[z,y] = zyz 'y~

This is 1 if and only if x and y commute. We can define the commutator
subgroup of G to be

GGl = {[z,y] : 2,y € G}).

This is a normal subgroup, because

gryz~ 'yt = (gzg ) (gyg ) (gzg™ ) Hgyg ") ! = gz gyg ).

Also, G/[G, G] is always abelian. This is because

[91][92] = l9192] = [[91, 92]9192] = [9291] = [g2]lgn]-

The group G/[G, G] is called the abelianization of G.

This tells us an interesting fact about free groups. If G is free group with
basis {aq }acs, we have

G/IG,G) = P Za.
acJ

So if G is free with basis {ai,...,a,} and also with basis {b1,...,b,,}, then
m=n.

Let G be a group generated by {as}acs and F be the free group generated
by {@a}acs. Then there is a surjective homomorphism ¢ : FF — G defined by
o — aq. We get an exact sequence

1 ker ¢ F25a1 1

The kernel ker ¢ is called the group of relations. If a, freely generate, the map
¢ is a isomorphism. If a, do not freely generate, then there is a nontrivial
representation of the identity

1= Q109 Qy.

Then the word aqas - - - a,, is in ker ¢.
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Example 31.5. For instance, in the permutation subgroup Ps, the permutations
a = (12)(3) and b = (1)(23) generate Ps. However, it was not freely generated
because all a®> = b> = ababab = 1 is the identity. This is an example of a
relation.

If G has a finite set of generators, and the kernel of the corresponding ¢ also
is generated by a finite set, then we say that G is finitely presented. I suspect
Pj3 can be finitely presented.
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32 November 30, 2015

I was hoping to finish talking about Seifert-van Kampen theorem today. Let X
be a space and suppose that open sets U and V cover the space X. Assume
that U, V, and U NV are all path-connected, and let zg € U NV be the base
point. Then there are homomorphisms

m(U)
LN
m(UNV) w1 (X)

T (V)

and this induces a homomorphism 71 (U) * 71 (V) — m1(X). Now if we let N be

the smallest normal subgroup containing 71 (UNV) in 71 (U) * 71 (V'), we get an
exact sequence

0 —— N — m(U)xm (V) — m(X) — 0.

Then we see that m1(X) ~ (7 (U) * 7 (V))/N.

32.1 Application of the Seifert-van Kampen theorem

Now using this, we can calculate the fundamental group of a oriented surface
in R3. Consider a surface of genus 3, i.e., a triple torus. If we let U be a
disc on the surface, and let V' be the complement, it is not hard to see that V'
deformation contracts into 6 circles. This shows that 71 (U) = (1) and m (V) =
Zx 7T x 77+ 7ZxZ. Then the intersection deformation retracts to a circle, and
in terms of the free generators of 71(V), it is

aba"tb"tedetd e fem fL

So denoting the smallest normal subgroup containing this element by N, we
see that
m(X) >~ (Zx---x7Z)/N.

If we take the commutator subgroup of this group, we see that

71 /|71, ] = @Z

where ¢ is the genus of the surface. This shows that a doughnut is not homeo-
morphic to a pretzel.

31 did not attend class on November 23, 2015. Apparently Prof. Taubes has proved the
Seifert-van Kampen theorem during the last lecture.
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32.2 Attaching a 2-cell

Suppose that there is a Hausdorff space X, a closed subspace A C X, and a
map h : D? — X such that (i) h: 9D? — A, and (ii) h : int(D) — X \ Ais a
homeomorphism.

Theorem 32.1. The map 71 (A) — w1 (X) is surjective and the kernel of the
map is the smallest normal subgroup in 7w (A) containing the homotopy class

[h(S1)].

This means that when we attach a disc to a space, the only loops that gets
“killed” is the ones on the boundary.

Proof. Let g be the image of the origin of D? under h. Then X \{q} deformation
retracts onto A by the function

z

U(tz)=-—
42 =iy

This shows that 71 (X \ {¢}) ~ m1(A).
We now apply the Seifert-van Kampen theorem to

X = (X\ {g)) U(X\ 4).

Then because U NV = int(D?) \ {0}, we see that 71 (U N V) ~ Z and thus the
result follows. O

We recall that a finitely presented group is a group with finite generators
and m relations. Using the theorem above, given a finitely presented group we
can build a space for which the fundamental group is precisely that group. First
we take a bouquet of circles x1, ..., z,, which are generators. The fundamental
group of this space is just (z1,...,z,). Now to “kill” the relations rq,..., 7y,
we attach the 2-cells to the space. For instance, if r, = x12x2 then we attach
the disk Dy with the boundary z;x2. That is, we take the disjoint union and
quotient it out by some equivalence relation

B,UD{U--UDpy/ ~.

There is also an interesting conjecture about this. A balanced representation
is a representation where the number of generators is the number of relations.
There is a trivial representation for a trivial group, for instance, (x1,zs | 1, z2).
There is also a nontrivial representation for a trivial group, for instance,

(a,b| aba = bab,a® = b*).
Nielsen moves are the following five moves on the ordered set of relations:

® T1,T2,...4,Tn — T2,T1,73,...,Tn

® T1,T2,...,Tn — 2,73y +yTn,T1
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1

® T,To, ... Ty > Ty ,T2,...,Tn

® 7T1,T2,...,Tp — rire,r2,...,Tn
—1

® 71, T2,...,Th — grig “,T2,...,Tn

These moves do not change the represented group.

Conjecture 32.2 (Andrews-Curtis). Every balanced representation of a trivial
group can be changed to a trivial representation by a finite number of Nielsen
moves.

This is related to 4-manifolds; a counterexample of this conjecture would
lead to a potential counterexample of the 4-dimensional Poincaré conjecture.
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A Category theory

Definition A.1. A category is a collection of points, and a collection of arrows
between the points such that

e For any object x, there exists a map id, that sends ¢ — x, and composing
leaves other maps the same.

e For any two maps f: 2z — y and g : y — z, there exists a composite map
gof:x—z

e Composition is associative.

Example A.2. The set of one object, with one identity, is a category. The
category of sets Set has sets as objects, and maps as arrows. The category of
topologies Top has topological spaces as objects, and continuous maps as arrows.
There is the category of locally small categories Cat. Also, for any group, there
is a one-object category with each element of the group as arrows.

Definition A.3. A (covariant) functor is a map between categories, which
sets objects to objects and functions to functions, such that

o F-id, = idp,.
e FgoFf="F(gof).
Example A.4. There is the stupid functor, which sends the one-element cate-

gory to any category. There are the forgetful functor Grp — Set which forgets
the group structure.

Definition A.5. A natural transformation is a map between functors 7 :
F — G, thought of as a collection of maps, one for each object, such that the
following diagram commutes for all objects a,b € C.

Fa 245 Fp

J{"]a lnb
Ga 215 Gb
Example A.6. There is also a functor from Set to Grp, sending a set to a

free group generated by the elements.

A locally small category is a category for which for any x and y, the set of
maps from z to y can be defined. In locally small categories, C'(z,y) denotes
the set of maps from x to y.

Let U : Grp — Set be the forgetful functor, and F : Set — Grp be the
free functor. Then there is a natural isomorphism

Grp(FX,Q) = Set(X,UG).

This kind of thing is called the adjoint functor.
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Example A.7. There is the functor w; : Top — Grp which sends a topological
space to its fundamental group.

Definition A.8. Two functors F,G : C — D is said to be naturally iso-
morphic if there exists a natural transformation 7 : F — G such that 7. is a
isomorphism for each ¢ € C.

Definition A.9. Given two categories C, D and two functors F' : C' — D and
G : D — C, we say there is an equivalence of categories if GF' is naturally
isomorphic to the identity map idc¢.

Note that this is much more loose than what we usually call bijection for
maps.

Definition A.10. A locally small functor F': C — D is called
e full if C(a,b) is surjective onto D(Fa, Fb).
e faithful if C(a,b) is inject to D(Fa, Fb).

e essentially surjective if for any d € D, there exists ¢ € C such that
Fe=d.

Theorem A.11. Given an equivalence of categories F' : C — D and G :
D — C, we have F is full, faithful, and essentially surjective. Further, given
a full, faithful, essentially surjective functor F' : C' — D, there exists a functor
G : D — C such that the pair F,G induces an equivalence of categories.

Proof. Exercise, because it is ugly. O

Given ¢ € C, we have a functor C(c,—) : C' — Set which sends
d— C(c,d).
Consider the following diagram:

d— L

I I

Cle,d) 2= C(c,d)

We define f o — to be the map which sends g: ¢ —d to fog:c—d.

Theorem A.12 (Yoneda’s lemma). Let F' : C — Set be a functor, and let
he = C(c,—). Also, let Nat(he, F) be the set of natural transformations from h.
to F. Then we define a map Nat(he, F) = F(c) by T — T.(id.). Then this is a
natural isomorphism.

Proof. You should do it, because you need to get used to doing these things. It
is fairly straightforward. O
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