Math 230a - Differential geometry

Taught by Tristan Collins
Notes by Dongryul Kim

Fall 2016

This course was taught by Tristan Collins. We met on Mondays, Wednes-
days, and Fridays from 1:00pm to 2:00pm in Science Center 507. We used the
textbook Differential Geometry: Bundles, Connections, Metrics, and Curvature
by Clifford Taubes. There were 15 students enrolled, and the class was graded
based only on problem sets. The course assistance was Robert Martinez.
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Differential geometry is mostly about taking the derivative on spaces that are
not affine. When we are on a line, then we can define the derivative as

Vof(z) = %g% w_

But if we are on a circle, we already run into trouble because we can’t add
points. For instance if you are doing physics, these problems arise.

The basic objects we are going to study are smooth manifolds. The model
smooth manifold of dimension n is R™, which comes equipped with the coordi-
nates (z1,...,2,). Any manifold is going to look locally like R™.

In order to tell you what a smooth manifold is, I need to tell you what a
topological manifold is.

1.1 Topological spaces and manifolds
Definition 1.1. Let X be a set, and let 7 be a collection of subsets of X. The
pair (X, 1) is a topological space if
(i) Xerand ) er.
(ii) fUy € 7 and o € A then (J,c 4 Ua € 7.
(iii) ¥ Uy,..., Uy €7 then Uy N---NUN € 7.
We say that U € 7 is an open set.

A topology can be bizarre, and so we give some conditions.

Definition 1.2. A topological space (X, 7) is Hausdorff if, for any z,y € X
with & # vy, there exist open sets U,V € 7 such that x € U, y € V, and
unv =40.

Example 1.3. A stupid example is 7 = {0, X}. If X = R”, then it is not
Hausdorff.

Metric spaces are always Hausdorff topological spaces with 7 generated by
{Be (p)}e>0,p€X~

Definition 1.4. Let {W,}aeca be an open cover of X. A refinement of this
cover is a cover {Vz}gep such that for all 5 € B there exists an o € A with
Vs C W,.

A cover {W, }qca is called locally finite if for any z € X there exists an
open U, 3 z such that

#{lae A:WoNU, #0} < 0.

A topological space (X, 7) is called paracompact if every open cover has a
locally finite refinement.
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Definition 1.5. A topological manifold of dimension n is a Hausdorff, para-
compact topological space such that for any p € X there exists an open set
U C X containing p and a homeomorphism ¢y : U — R™.

The pair (U, p) is called a local coordinate chart or a local coordinate
patch. The set

A={(U,¢):U C X is open, ¢ : U — R" is a homeomorphism}
is an atlas if X = ,yeaU-

Definition 1.6. M is a smooth manifold of dimension n if it has an atlas such
that the transition functions

wotp L p(UNV) = UNV)
are C'° homeomorphisms for all (U, p), (V,v¢) € A.

Example 1.7. The circle S' cannot be covered by a single chart because it is
not homeomorphic to R!. But if you remove one point, say the South pole, then
ST\ {s} = R!. Doing the same thing on the North pole, you get two charts that
cover S'. You can check that the transition maps are C* maps and this gives
S1 a smooth structure.

Definition 1.8. A local patch (U, ¢) is compatible with the atlas A if for any
(V,1) € A, the maps ot~ and 9o p~! are C°.

In this case, we get a new atlas A" = AU (U, ¢) which is strictly larger than
A unless it was already in A. A smooth manifold is equipped with a maximal
atlas. This allows us to choose our favorite cover by local coordinate charts.

1.2 Maps between manifolds

Definition 1.9. A function f : X — R* is smooth if fo¢™!: p(U) — R* is
C* for every patch (U, ) € A.

Why is this definition independent of a choice of a coordinate system? If I
choose (V, 1)) then

fou™ = (fop)o(poy™)
and thus is also in C*°. Hence it is independent of the choice of (U, ¢)!

Definition 1.10. Let M and N be smooth manifolds. A map h: M — N is
C® if the map ohop~1 is C™ for any local coordinates (U, ¢) of M and (V)
of N. M and N are diffeomorphic if there exists a smooth map h: M — N
with A~! : N = M smooth.

It me give two key tools to construct examples of smooth manifolds.
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Theorem 1.11 (1.1, Taubes, Inverse Function Theorem). Let U C R™ be an
open set and let 1y : U — R™ be C°. Let p € U and suppose that the differential
Y« (p) of ¥ at p is invertible. Then there exists an open V. C R™ with ¥(p) € V
and a C* map o : V — U such that o o (x) = x on a small neighborhood of p
and Y oo(x) = x.

The next one is the Implicit Function Theorem, but I don’t have enough
time.
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Last time we introduced the notion of a manifold. So a manifold M is a Haus-
dorff paracompact topological space such that for each p € M there is a neigh-
borhood U and a homeomorphism ¢ : U — R". From now on, I am going to
assume that all manifolds are connected.

Lemma 2.1. If M is Hausdorff topological space which is locally Euclidean,
i.e., can be covered in coordinate charts, then M is paracompact if and only if
1t 1s second countable.

We call that (M, 1) is second countable if there exist open sets {U;}ien
such that if V' € 7 then there exists G C N such that

V:Uw

i€G

A standard example is M = R™. The balls centered at rational points with
rational radii form a countable base. This lemma makes it easier to prove
something like that the product of two manifolds is a manifold.

2.1 Constructing new manifolds

Theorem 2.2 (Implicit function theorem). Fix m > n, and open set U C R™,
and a C* map ¢ : U — R™™ ™. Suppose a € R™™™ is a reqular value. Then
Y~1(a) C U is a smooth manifold with C* structure given by “slice charts”,
i.e., for every p € ¢~1(a) there exists a ball B C R™ centered at p such that
the projection 7 : B — ker(di,) restricts to ¢~'(a) N B as a coordinate chart.
In addition, there exists a C™ map ¢ : B — R™ such that o(B Ny~ (a)) is a
neighborhood in the n-dimensional space (X1,...,X,,0,...,0).

For example, if ¢ : R™ — R and a is a regular value, then ¢~ (a) is a smooth
manifold covered by charts such that ¥~!(a) looks locally like a hyperplane.

Definition 2.3. A value a is a regular value of v if di is surjective at all
p e Ha).
Theorem 2.4 (Sard’s theorem). If ¢ : U — R™ is a C* map, then the regular

values have full measure.

Example 2.5. Consider the map f : R® — R with z + |2]2. The regular
values are R\ {0} and f~1({r?}) is the sphere of radius r centered at the origin.
In fact, for instance S is indeed a smooth manifold, as I told you last time.

2.2 Submanifolds

Definition 2.6. A submanifold of R” with dimension n is a subset ¥ such
that for all p € 3, there is an open neighborhood U, € R™ and a C'° map
Vp 2 Up = R"™™ with 0 as a regular value and ¥ N U, = ¢~1(0).
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In other words, for every p € ¥ there exists an open neighborhood U, C R™
and coordinates (1, ..., %) such that

SAU, ={(21,...,20,0,...,0)}.

Later we will have more abstract/intrinsic defintion of what it means to be a
submanifold of R™. But this is not useless because it tells us what a submanifold
should locally look like.

Lemma 2.7. Suppose n < m, and consider a ball B C R™ and an injective C*
map ¢ : B = R™ such that dy is also injective everywhere. Then there exists
an open W C B with W C B such that (W) is a smooth submanifold of R™
and ¢ : W — (W) is a diffeomorphism.

Proof. Fixp € p(W) and let z = ¢! (p). We need to find 9, as in the definition.
Since dyp, is injective, the linear subspace

K =imdy. = ker((dp,)T : R™ — R")
is a space of dimension m — n. Define the map A : W x K — R™ given by

(@,0) = (p(z) +v).

The map d\ is injective and surjective at (z,0) and so by the inverse function
theorem there exists a smooth map 7 : U, =+ W x K with U, open, p € U, such
that p- A=1and A-n=1.
Let m: W x K — K be the natural projection map. Then 7 - 7 satisfies
(- 7)1 (0) =17 (2,0) = A(,0) = p(z)

and 0 is a regular value since both dn and dr are surjective. Therefore 1, = 7-n
works. 0

Consider for example the map

(p:0) = ((L+ peos ) cosp, (14 peosp) siny, psin p)
which parametrizes the torus for p < 1. So a torus is a submanifold of R2.

Definition 2.8. For manifold M, a subset Y C M is a submanifold if for any
p € Y, there exist a neighborhood U C M and coordinates ¢ : U — R™ such
that ¢(U NY) is a submanifold of R™.

If f: M — NisaC® map and Y C M is a submanifold then f |y is also
smooth.
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So last time we had some strategies for constructing manifolds, and the definition
of a submanifold. Today I want to tell you what the tangent space to the
manifold is. I am going to give three definitions and prove that they are all
equivalent if there is time.

3.1 The tangent space
Suppose M is a manifold of dimension n, and let p € M.

Definition 3.1. A curve in M through p is a C* map ¢ : (—e,¢) — M such
that ¢(0) = p.

Our goal is to define the tangent vector to g at p. If M = R"”, then we can
dgq

just define it as
_ o 4(t) —4(0)
AL R

Here q(t) — ¢(0) makes sense because M = R™ is a vector space. So this is very
special. In general we can’t do this, so we need to instead use the fact that M
is locally Euclidean.

Definition T1 (Index Shuffling Definition). Choose a coordinate patch (U, p)
with p € U. Suppose we have a path ©(q(t)) : (—€,€) — R™ with ¢(q(t)) =
(21 (t),...,2"(t)). Define

4(0) = Tloplalt)).

This is not intrinsic because it requires a choice of p. If ¥ = (y',... ,y") is
another patch near p, then 1 (q(t)) =¥ op~top(q(t)) and so

%’t@)) - ZZ (w(q(t))%, ddi; = %[@(q(t))j}-

i=1

A tangent vector at p is an equivalence class [(V, (U, )], where V is a vector
in R™ and (U, ) is patch, and
- B .
V(U 0)) ~ (W, (0,0) i W = 22V,
The advantage of this definition is that it is explicit and so good for compu-
tations. But it is not great conceptually.

Definition T2 (Equivalence class of curves). The idea is that if q(t) and r(t)
are curves thorugh p, then either ¢'(0) = r'(0) is either true in all coordinate
systems or false in all coordinate systems. Define q(t) ~ t(t) if there exists a
patch (U, ) such that ¢'(r(0)) = ¢'(¢(0)). Then a tangent vector at p is an
equivalence class [q(t)].
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This definition is better conceptually because we have hidden all differentia-
tions, but we don’t know how to add tangent vectors. We would certainly want
the tangent vector to be an vector space.

Before getting into the third definition, let me give some motivational speech.
In R™, let V € R™ be a vector and p € R™ be a point. Moreover let f: U — R
with p € U be a C*' function. The directional derivative is

Vip)=Vafp)=Vip) V.

We can further recover this vector from the operation by pluggin in the coordi-
nate functions.
We are now going to extract the properties of the derivation. Dy satisfies

(1) Dy : {C"' functions defined near p} — R.
(2) Dy(af + Bg) = aDzf + SDgg for all o, 8 € R (Linear).
(3) Ds(fg) = 9Dsf + fDzg (Leibniz).

The first condition is not rigorous, so we make this rigorous.

Definition 3.2. Define
Cyo={(f,U):peUopen,f:U—=RisC*}/~

where the equivalence relation is (f,U) ~ (g, V) if there exists an open W C
UNV with p € W such that fw = glw. The elements of Cp° are called germs.

One can check that [(f,U)] + [(¢,V)] = [(f + ¢,U + V)] and o[(f,U)] =
[(af,U)] for a € R and [(f,U)] - [(g,V)] = [(fg,U N'V)]. This makes C° into
an associate commutative algebra.

Definition T3 (Derivations). A tangent vector V at p is an operator V :
Cp° — R such that

(1) V(af +Bg) =aVf+pVg.
(2) V(fg) = fVg+gVf.

This V is called a derivation.

The third definition is the most useful. The tangent space at p is

T, M = vector space of tanget vectors at p.

Example 3.3. If there is a local coordinates (x!,...,2"), then §/dz%|, for
1 <i < n are derivations defined by
0 of
(axi p>f T Qat (p)-

For this reason, we always denote 9/9x" the basis for the tangent space.
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3.2 Equivalences
Let pe M and ¢q : (—¢,¢) = M be a curve through p. Define a derivation

d

7(0)f = dtli—o

f(q(®)).

Theorem 3.4. (a) ¢.(0) is a derivation.

(b) If ¢ and r are equivalent curves then g.(0) = r.(0).

(¢) If D is a derivation then there exists a curve q such that q.(0) = D.

Proof. (a) Choose coordinates ¢ = (z!,...,2"). Then

d

qx (O)f r

7 O(f o) dat
T dt

Je w’l(w(q(t)))T T (#(a(0))),

t=

So ¢.(0) is a derivation by the property of the derivative.
(b) If ¢ ~ r then

4
dt

_ela) =S| p(rit). 0

Next time I will prove (c).
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There were three different ways of looking at tangent vectors. There was the
index suffling, equivalence classes of curves, and derivations.

Theorem 4.1. Let q: (—€,e) = M be a curve through p € M.

(a) g«(0) is a derivation.
(b) If r is an equivalent curve then r.(0) = ¢.(0).
(¢) If D is a derivation at p then there exists a curve q through p such that
2:(0) = D.
Last time we proved (a) and (b).

Proof of (¢). Fix a coordinate patch (U,p) near p. This is going to induce
coordinates ¢ = (x!,...,2") with ¢(p) = 0. Then z; is a C* function near p
and then can define a’ = D(2') € R". We are then going to define

- n 9

and guess that D = D.

We need to show that Df = D f for all C* map f defined near p. First of
all D(a) = D(a) = 0 for all @ € R. By linearity, D(3" 8;27) = D(3_ B;a7) for
every 3; € R. Note that

D(a*a!) = a*(p) + D(a') + 2! (p) D(a*) = 0 = D(a*a").
Given a f € C'* defined near p, we can write
f = f(O) + Zﬂjxj + Z Ikl‘lHkJ(l‘)
j=1 k=1

where H},; are smooth functions. This is possible by Hadarard’s lemma. Since
we can write

F=10)> pjal +Y alH(x)
j=1 =1
where H;(0) + f; = (8f/024)(0). If B; = (0f/dx")(0) then H;(0) = 0. Apply

Hadamard’s lemma again we get the equation.
So then because the quadratic terms go to zero,

D(f) =D} _Bja’) = D(>_ B;a?) = D(f)

for every f € C* defined near p. Now D = 3 aj(‘)/@xj so D = ¢.(0) where
q(t) = p~ast,. .. ant). O
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4.1 The differential

Suppose we have a map h : M — N. Then we can push-forward tangent
vectors from M to N.

One way is to do it using local coordinates. Suppose we have coordinates
(x',...,2™) near p and (y',...,y") near h(p). Then vpoho ! is a map that
looks like

Ypohop t(zt ..., x™) = (W (z1,...,2m),..., K" (zt, ... 2™)).

Then we can use are usual definition of the derivative as

1 1
hip) - L)) [w
dh(V)=| . : :
2’;? (p) --- gf; ()] [vm

where V = >, V'9/0x'. We can check that dh,V € Ty, N, ie., that this
is independent of the choice of coordinates. This is a consequence of the chain
rule.

We can use the equivalence of curves definition. If ¢(¢) is a curve through p,
then h(q(t)) is a curve through h(p). Then we can define

dhy = [q(t)] = [h(q(t))]-

To use the derivations definition of the tangent vector, we can pull back
functions. If f is a C* is a function defined near h(p), then f o h is a C*
function defined near p. So we set

dh,D(f) = D(f o h).

4.2 Immersions and submersions

Definition 4.2. A C°° map h: M — N is

(1) an immersion if dhy, : T,M — Ty, N is injective at every p € M. If h is
also a homeomorphism onto k(M) with the subspace topology, then h is
an embedding.

(2) a submersion if dh), : T, M — T}, N is surjective for every p € M.

Both of these definitions make sense locally, e.g., we can have local embed-
dings etc.

N C M is a submanifold if and only if the inclusion map i : N — M is
an embedding. This gives you a useful way to check whether something is a
submanifold.
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4.3 Vector fields

Definition 4.3. A C*° vector field on an open set U C M is a map U >
p — V(p) € T,M such that for all p € U, there exists local coordinates
(U, (2, ...,2™)) near p such that

V= Z a'(x) pp
i=1

with a* in C°.

We note that this makes TM = Upe v TpM into a smooth manifold, because
we have described what the smooth functions are.

Suppose we are given two C* vector fields X and Y over U, and a C*
function f : U — R. Then Y f : U — R is another smooth function, and then
we can define (XY)(f) = X(Y(f)). Is XY a vector field? The problem is that
the Leibniz rule fails. But the observation is that the error term is symmetric
with respect to X and Y. So XY — Y X is a vector field.
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A C* vector field on U C M is a map U — TM with p — V(p) € T,M such
that for every p € U there exist local coordinates (V,¢ = (x1,...,2,)) with
p € V such that

0 0
Vi(p) = 01(50)67561 +oo a"(x)T%
with all a; smooth.
Given X, Y smooth fector fields on U with p € U and f € Cp°(M), we could
try to define (XY)f = X(Y(f)) as a new vector field. But this doesn’t work
because it doesn’t satisfy the Leibniz rule. We have

(XY)(fg) = X(fY(9) +gY(f) = [X(Y(9) + X(f)Y(9) + X(9)Y (f) +gX (Y (f)).

There are these junk X (f)Y (g) that is not what we want. So we modify the
definition.

Definition 5.1. The Lie bracket of C*° vector fields X and Y is
[X,)Y]=XY -YX.

It is easy to see that this satisfies the Leibniz rule.

5.1 Flow of a vecor field

Let V' be a smooth vector field on M. For each point p € M, we can consider
the flow of p (or trajectory) under V. Intuitively it is the trajectory when you
drop a particle at p. So its velocity at a point is the vector field at that point.
This is a map 6(¢,p) : (—9,6) — M such that v(0,p) = p and

92 (5,p) = V(els.p)).

ot
Theorem 5.2. Let V be a C* wvector field on M. For every p € M there
exists an open set U C M with p € U and § > 0 along with a C* map
p(t,x) : (=0)xU — M such that for every x € U the curve p(t,z) : (—0,9) = M
1s the flow from p along V.

Note that ¢, is one-to-one by local existence and uniqueness of ODEs. That
is, for a fixed t, ¢i(p) = @(t,p) is a diffeomorphism onto its image. This is
because you can flow by —t to get to where you started. This is called the local
flow.

Theorem 5.3. If X and Y are local C* wvector fields on M with p € M. Let
¢ be the local flow of X mear p. Then

[X,Y](p) = —limM

t—0

(¢t(p))-
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Proof. Given f defined near p that is C*°, consider f(p:(q)) — f(q) = th(t,q)
with h(0,q) = X f(¢q) by Hadamard’s lemma.

Then
Y (f(e(p) =Y (f(p)) = tY (h(t,p)) + Y f(p),
and
}Ln%[sot*i;— Y}f(%(p)) _ tY(h(t,p)) + YJ;(I?) — Y f(pu(p))
_ _[Y(f(sot(p))) - Y(f(p) Yh(t,p)
t b

= =XY(f)(p) +YX [f(p) = —[X,Y]f.

5.2 Partitions of unity

Let M be a manifold. A partition of unity is a collection of C*° functions
fa : M —[0,1] such that

(1) {supp fa} is locally finite,
(2) Ypcafa=1on M.

We call that a partition of unity { fa }aca is subordinate to a cover {U;},cs
if for each a € A there is some j € J such that supp fo C Uj.

Theorem 5.4 (Existence). For any open cover {U;}jec,

(a) there is a countable partition of unity {f;}ien subordinate to {U;} such
that each supp f; is compact.

(b) there is a partition of unity {f:j}jej such that suppfj C U; and at most
countably many f; are not identically 0.

This is going to be a homework.

5.3 Lie groups

Definition 5.5. A Lie group is a manifold G which is a group such that the
multiplication and inverse are both C* maps.

Definition 5.6. Let M, (R) be the set of n x n matrices with entries in R.
This is just R™. The general linear group is defined as

GL,(R) = {4 € M, (R) : A is invertible with det A # 0}.

First of all GL,(R) is a group with the usual multiplication A - B = AB.
These are smooth, because everything is dividing a polynomial by a polynomial.
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We also define
SL,(R) = {A € GL,(R) : det A = 1}.

To show that this is a manifold, it suffices to shosw that 1 is a regular value of
the det function. We claim that

ddet |y = det(M) Tr(M~*dM).
Lastly, we define

O(n)={AcGL,(R): ATA=1T}.
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Definition 6.1. A Lie group G is C'*° manifold equipped with C'>° maps m :
G x G — G and -7': G — @G satisfying the group axioms.

Why would you want to look at Lie groups? The symmetry of objects like
the sphere has a structure of a group, and also has a smooth structure. So
these objects occur in nature, especially if you are a physicist. Also, if a group
has a smooth structure, you can differentiate a map ¢ : G — H to get a map
D¢ : T;gG — TiqH. If there is a group action G x M — M that is smooth, then
any tangent vector of G naturally gives a vector field on M.

Consider

O(n) = {A € GL,(R) : ATA =1}.

Is this a manifold? We would need the submersion theorem, which is a version
of the implicit function theorem.

Theorem 6.2. If f : M — N is a C* submersion, then for every n € N,
f~1(n) € M is a C> manifold.

Let’s show O(n) = ¢ ~!(a) for some a and ). We set
¥ : GL(n) — Sym,, (R), A AT A
This is a submersion, because
A = (dm)Tm +mTdm
and if you plug in @ = mh/2 then dip,,(a) = h.
Definition 6.3. Define SO(n) C O(n) as the set of A such that det A = 1.

You can show that SO(n) is a connected component of O(n). So SO(n) is a
Lie group.

6.1 Complex Lie groups
We define
M (n; C) = {n x n matrices over C} = R2",

Note that multiplication M (n;C) x M(n;C) — M(n;C) is C*°.
Like in the real case, we define

GL(n,C) ={M € M(n;C) : det M # 0}.

Then GL(n;C) is a open subset and thus a Lie group.
There is an equivalent definition for the general linear group.
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Definition 6.4. An almost complex structure is an element J € M (2n;R)
such that J? = —1.

For example,

0 -1
0
0 -1 1 0
O P LS
10
are almost complex structures. More generally, given any basis ey, ..., eq, of

R2™, the map J : ea_1 —> €2k, €2 — —eap_1 is an almost complex structure.

Definition 6.5. We define
My={me M©2n;R): mJ—Jm =0}
and call it matrices that intertwine J. Then we define

Gy={meM;y: d}gtm # 0}.

This G is Lie group, and in fact, G; = GL(n,C) as Lie groups.
Theorem 6.6. There is an isomorphism G j; = GL(n;C).

Proof. Fix a R-linear isomorphism f : R?® — C such that if = fJ. This
induces a map

M(n;C) — My, A fLAF

which is a bijection.

Now to prove the theorem, it suffices to show detc A # 0 if and only
if detg fAf~!. Inside GL(n;C) there exists an open and dense set of di-
agonalizable matrices. Such a matrix A has eigenvalues Aq,..., Apand then
detc A = A\;---\,. Moreover, f~'Af is now diaganolizable over R and the
eigenvalues are A1,...,A\p, Ai,..., Ay, S0 detRf~1Af = |detc A|? on a open
dense set, so the identity holds on all of M (n;C). O
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We are trying to learn about Lie groups, basically by realizing as the inverse
image of a regular value.

7.1 More examples of Lie groups

The special linear group over C is defined as
SL(n,C) ={A € M(n,C): dgtA =1}
We claim that this is a manifold. Consider the map detc : M(n,C) — C.
Clearly SL(n,C) is the preimage of 1. The derivative is det is given by
ddet : A det(M) Tr(M~'A).

To show surjectivity, for any c take A = ¢/(ndet M)M 1.
Let’s do another example. The unitary group is defined as

U(n)={Ae M(n,C): AAT =1}

where At = A" . Like in the case of O(n), we use the space of Hermitian matrices
as the image of ¢ : M(n,C) — Herm(n) given by A — AAT. The derivative is
given by

dip = (dA)AT + A(dA)T.

We need to show that this is surjective. Given any Hermitian matrix M, we
take G = M(A")~1/2. Then

dip(G) = %(M(AT)’lAT + A(A7TMY)) = M.

We define special unitary group as
SU(n)={Ae€U(n): d(gtA =1}

How would we prove this? We could try to show that 1 is the regural value of
detc : U(n) — S!, but this is hard because we don’t know the tangent space of
U(n). Instead we look at the map

¥ : M(n,C) - Herm(n) x R, A (AAT (i/2)(det A — det A)).

Then SU(n) is some union of connected components, because the preimage is
the matrices that have determinant +1. The derivative is given as

dips = ((dA)AT + A(dA)T, I(Tr(A™dA) det A)).
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If we try b= M(AT)~1/2, we get
da(B) = (M, S(Te(M) det A/2)) = (M,0).

This is not quite good, so we add something in the kernel of M — MAT + AM.
Particularly, we will take b = b + i¢A/n. Then

dpa(b) = (M, 3(edet A))

and so we can choose and appropriate ¢ to finish.

7.2 Vector bundles

Let M be a (C"°° manifold with real dimension n. Then a vector bundle of
rank m over M is another manifold F with dimension n + m together with

(1) a C* map 7 : E — M, called the projection map,
(2) a C* map 0: M — E, called the zero section,
(3) amultiplication map u : Rx E — FE satisfying w(u(r,v)) = w(v), p(r, p(r',v)) =

w(rr',v), u(1,v) = v, and p(r,v) = v implies r # 1 or v € im(0), and

(4) for any point p € M, an open set U C M with p € U and a map Ay :
7 1 (U) — R™ x U such that Ay : 7~ 1(x) — R" is a diffeomorphism for
every x € U and Ay (p(r,v)) = rAy(v) for every x € U.
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Last time we started learning about vector bundles 7 : F — M. There are maps
An 71'_1(U) — R™ where U C M are open sets. For a subset W C M, we write
E|lw = n~Y(W). In the case where W is a point x, the set E|, = 71z is called
the fiber of F over z. If U C M is an open subset such that a diffeomorphism
E|y 2 U x R™ exists, this py = (m, Ay) is called a local trivialization.

8.1 Local charts on a vector bundle

Let ¢ : U — R™ be local coordinates on U C M and admits a local trivi-
alization Ay. Then I get a diffeomorphism E|y — R™ x R™ given by v —
(¢(w(v)), A\v(v)). This gives a coordinate chart on F.

Proposition 8.1. The fiber of E over p has a canonical vector spaces structure.

Proof. Let p € M be an arbitrary point and let ¢y : Ely X R™ be a local
trivialization around p. Now define for v, v’ € 7~ 1(p),

vt =9, (p, Au(v) + Au (V)

We need to verify that this is independent of the choice of Ay, i.e., A and X are
two such maps then

N e+ e) =N e) + AATHe)).

This is saying that the map ¢y o (p[_]l over p is in a linear map R™ — R™.
Note that for any » € R and e € R",

NATHre) = N (u(r, \7He))) = rN A7 e).
Then by the following lemma, A’A~! is a linear map. O

Lemma 8.2. If a smooth map ¢ : R™ — R" satisfies ¥(rv) = riy(v) for all
r € R and v € R™, then ¢ is linear.

Proof. The derivative of 9 is

d
Yalio(0) = | _ o) = | r(e) = p(v).
So 1 is equal to its derivative, and it implies that v is linear. O

8.2 Cocycle definition

A vector bundle of rank n is also given by the following data:

(1) alocally finite open cover {U,} of M,
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(2) for any «, 3, a C* map gap : Uy NUg — GL(n,R) called “transition
functions” that satisfy

(1) Jap © 9Ba = 1,
(ii) gap © 98y = gay on Uy NUg N U,. (The cocyle condition.)
Given this data, we can define
E=|]J UsxR"/ ~,
acA
where (p,vs) ~ (p',vg) if and only if p = p’ and vy = gas(p)vs.
Example 8.3. The trivial bundle of rank n is simply M x R".

Example 8.4. Let ' = {(cosf,sinf)}, and consider E C S x R? given by

o= {i v [ty )] - (]}

This vector bundle is called the Mobius band. This vector bundle is not trivial.
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Let M be a manifold of dimension m and let A = {p1,...,pr} be points in M.
For each p;, let U; be a coordinate patch with o U, — R™. We are going to
assume that U, N U; = 0 for | # j and ¢(p;) = 0. Let U, = o; H(B1(0)). So
these are just small open balls around py, ..., pk.

For each [ choose a C™ map g; : S™ ! — GL(n,R), and let Uy = M — A.
Then Uy, Uy, ..., Ui cover M and the only overlaps are Uy N U; with 1 <1 < k.
Also no three overlap, so the cocycle condition is trivially met. Specify

go4:UoNU = GL(n,R); -z gz(l?ggl)'
p

This specifies a vector bundle of rank n.

9.1 The tangent bundle

Let M be a manifold of dimension m, and consider a local coordinate patch
(U, p= (331, R :L‘m)). Then
{ 0
ox?

span T, M for all p € U. So over U, we have a trivial bundle of rank m spanned
by 0/0x".

If (V9 = (y',...,y™)) is another coordinate patch, then (9/dy?)|, =
(0x%/0y7)(0/0x")|, by the chain rule. This gives us a map

:1§i§m}
p

{gjj}] :UNV — GL(mR).

So the tangent bundle T'M = UpeM T, M is a vector bundle, with the obvious
projection map = : (v,p) — p for v € T,M.

Example 9.1. The tangent bundle of R" is TR™ = R" x R™. Likewise, for an
open set U C R”, its tangent bundle is TU = U x R™.

Example 9.2. Consider a function f : R2 D U — R and let M be given by
®:U — M with (z,y) — (z,y, f(z,y)). The tangent vectors are

5= (o) g -(01F)

So the tangent bundle is TM = M x R2.

Example 9.3. What is the tangent bundle of SL(n,R)? The special linear
group is defined as

SL(n,R) = {A € GL(n,R) : det A = 1},
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and so the tangent bundle can be described as
TSL(n,R) ={(A,B): Ae SL(n,R),B € kerdi4}.

The derivative di is given by di4(B) = Tr(A~!B), and thus we can write the
whole thing as

TSL(n,R) = {(4, AC) : A € SL(n,R), Te(C) = 0} € M(n,R) x M(n,R).

If V/R is a finite dimensional vector space, we can define the dual V* =
Hom(V,R). Let ej,...,e, be a basis of V, where n = dimV. Then we can

define e}, ...,e* as e(e;) = 0;;. These e}, ...,e" is a basis for V*.
1 s Cn i\ J 1

T n

Let p € M and with local coordinates (x!,...,2™) near p. We have a basis
{8/0x!,...,0/0z™} for T, M.

Given a smooth function f defined near p, we define a linear functional
df - T,M — R; v = o(f).
Then df, € Ty M. If f = a7, then dz?(0/0z") = b;5. So {dx',...,dz™} is a
basis T* M for all r near p.

If {y',...,y™} is another set of coordinates, then by the chain rule,

oy

4 i
dy* = 83’“ dat.

Then we see that
"M = {(a,p) :a € TyM}

is a vector bundle because dy’/dz* : U NV — GL(n,R).
That equation about dy’ is true because

(=02l D )
(3 ) = () =00

Then you can multiply the inverse matrix to get the equation.
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Let M be a manifold and £ — M and F' — M be vector bundle. A homomor-
phism F — Fisa C°° map h: E — F such that for everyp € M, h: E, — F,
is linear. We will denote

Hom(E, F) = {homomorphisms E — F'}.
Proposition 10.1. Hom(E, F) is a C* wvector bundle over M.

Proof. 1T will leave this is as an exercise. O

10.1 Sections of a vector bundle
Definition 10.2. A section of F is a C* map s : M — FE such that such that

the following diagram commutes.

M —— FE

N
M

Given an open set U C M, we denote

I'(U, E) = {sections of E|y}.

I'(U, E) is linear, by the natural pointwise addition (s; + s2)(p) = s1(p) +
s2(p). In fact, if f : U — R is a smooth function, then (fz)(p) = f(p)s(p)
defines fs € T'(U, E). This gives I'(U, E) a C*°(U)-module structure.

There is a local description of the sections. Let U, C M be an open set such
that there is a local trivialization ¢4 : E|y, — U,y X R. For any s € I'(U,, E),
we can write

Yaos:Uy— (Ua X Rn); T = (x,sa(x))

for a € map s, : Uy, = R". If we have another local trivialization Ug C M
with g, then on U, NUg we have sg = pg o5 and sq = ¢q © 5. Then

Sa = Pa O(PEI 0 YR OS=gasSsSp,
where gop : Uo N Ug — GL(n, R) is the transition map.
Lemma 10.3. For every open set U C M, dimg I'(U, E) = 0.

Proof. Take V' C U an open set such that ¢y : E|‘L_> V x R" is a local
trivialization. Choose an open V with V compact and V. C V. Let S : V — R™
be any smooth map. There is a C'*° function p : X — R such that p=1on V
and p=0on X \ V. Then ps € T'(M, E). Because s can be any smooth map,
it is infinite-dimensional. U
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Definition 10.4. A set of sections {sq }1<a<n define a basis (or a frame) for
Ely if for all p € U, {sa(p)} is a basis for E,,.

Notice that if there exists a frame for E|y then E|y = U x R™, because you
can map (p, V) — (p, V) where V =3 V%s,(p). There is something going on
with the existence of non-vanishing global sections.

Sections of TM|)U are just smooth vector fields.

Definition 10.5. A section of T*M is called a 1-form.

Recall that if f: M — R is C*°, then we get df € T'(M,T*M) defined by

df (p)(V) =V f(p).

In local coordinates, {z*,...,2™} on p € U, then V = a’ a?ci is sent to
df(V) =a'==.
f(V)=ai st

Then T*M]|y has frame dz',...,dz™. In general, a section I'(U,T*M) is a
linear combination of «o;dx"* where «; : U — R are smooth functions.

10.2 The algebra of vector bundles

The motto is “any operation which produces new vector spaces out of all vector
spaces can be applied to vector bundles”.

Definition 10.6. A vector bundle S — M is a subbundle of E if there is an
injective bundle map S — FE.

For example, if M C R™, then TM C TR"|j; = M x R™. So E < M is
always a subbundle of M x RY for N sufficiently large, if M is compact.

Similarly we can take the quotient bundle. If V' is a vector bundle and
M CV is a subspace, then

V/IM ={[v]:v€V,vy ~va if v1 —vp € W}

Then V/W is a vector space is dim(V/W) = dimV —dimW. If E — M is a
vector bundle, we can define @ = M/E locally as Q, = M,/ E,.

IEinstein Summation: Sum over repeated upper and lower indices.
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If we have a vector bundle £ — M, then a subbundle is a vector bundle S
with an injective bundle map S — FE. We want to define the quotient bundle
Q = E/M. Fiberwise this has to be Q, = E, /S, for each p € M. To show that
it is a bundle we need to give a local description.

Let U C M be an open set with a local trivialization ¢y : E|y — U xR™ and
also a local trivialization ¢y |s : S|y — U x RF for k < n. Let {, ) denote the
usual inner product on R” and let g : R™ xR¥ be the orthogonal projection onto
S. Over U let {s1,..., s} be alocal frame for S|y. Choose {r1,...,Tn—k} such
that {s1,..., 8k, T1,..., Tn—k | is a frame for E. These 11, ..., 7} can be computed
using (, ) by Gram-Schmidt. Then a section of Q over U is Z:Zf a;(z)T; for
a; € COO<U, R)

11.1 Duals and Homs

Let E — M be a vector bundle. Its dual E* — M should have fibers (E*), =
(Ep)*. Suppose ¢y : Ely = U x R™ is a trivialization. Define

oy Bl = Ux R ot e Ey) = (p,4)

where / is defined by

for every e € E,,.
This can be described in another way. If eq, ..., e, is a local frame for E|y
we can define maps

ej:U— U By pei(p)”.
peU

We then declare e} to be a smooth local frame for E*. If o € I'(Uy, E) then
we can write 01 = of'e, for o : Uy — R. This gives a map

eu, : Elu, = UxR" a(p) = (p, 07 (p)).
If ¥ = 91 gej is a smooth section of E*[y,, (i.e. 11,5 : U — R are C>) then
V(o) = Y1007 = (Y1, 01).
So the induced map on E* is

oy, E*u, = U xR™ (p,¥(p)) = (p,11,8)-

This is exactly what we said before.
What happens when we change frame? If {fi,..., f} is a frame for E|y,
then on U; N Uy we can write f; = gFer. Then gio = (g¥) is the transition
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matrix. If 55 are the coordinates of o in the {f} frame so that o = agf/g. Then
the vectors are related by

51 = g1252 where gi12 : U1 n U2 — GL(?’L,R)
Byy definition, ¢/(c) = (¢, @) = (¥1,1), s0
(1,31) = (1, g1252) = (2, 52)

for all &5. In matrix multiplication, this is ¢ g1a09 = 14 2. So 11 = (915 ) e,
where (g157)7 : Uy N Uy — GL(n,R). So if gio are the transition functions for
E then (g5))7 are the transitions for E*.

Corollary 11.1. E** = F.

Let us now look at bundles of Homs. Let £ — M and F — M be vector
bundles. Fiberwise, we must have Hom(E, F') = (J, Hom(E,, F},). Let U € M
such that we have frames {ej,...,e.} for E|y and {f1,..., fx} for F|y. Let

tij :E|U—>F‘U; tij(ej):fi.

For every p € U, t;;(p) forms a basis for Hom(E,, F},). Declare that ¢;; is a
C™ local frame. This gives an isomorphism Hom(E, F)|y = U x R™*. Then a
section o € I'(U, Hom(FE, F')) corresponds to a matrix m in {e} and {f}.

Suppose {¢} = {é1,...,é.} and {f} = {f1,..., fr} are two other local frames
with o corresponding to /. There exist matrices ¢ : {f} — {f} and ¢F :
{€é} — {e}. Then the matrices m and m are related by

E ~

m = g¥m(g") .

The transition functions are C'*° linear maps.
Let R: M x R — M be the trivial bundle. Then E* = Hom(E,R).
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Last time we had a rather detailed discussion of the construction of dual bundles
and Hom bundles.

12.1 Direct sums, tensor products and powers

If V and W are vector spaces, then the tensor product is VW = Hom(W*, V).
Explicitly, if vq,..., v is a basis for V and wi,...,w, is a basis for W, then I
can consider the symbols

v; @wj W*—=V: f{— E(wj)vl
Then V @ W = span{v; ® w;}. Note that
v @wj + v Qw; = (v +vg) Qwj, vV Qw; +v; @wg = v; Q (wj + wg).

If E and F are vector bundles over M, then we can define E® F' — M, with
rank(E ® F') = rank(E) + rank(F'). If you want to define the tensor product in
the more abstract way, you have to check that this is a vector bundle.

If V and W are vector spaces we define its direct sum as VoW = (v,w) €
V x W with

(v1,w1) + (v2,w2) = (v1 + Vo, w1 +wsa), r(v,w)= (rv,rw).

In this case we can construct £ @ F in the obvious way. Change of frame
matrices will look like

ge O

0 gr|’

V* @ V* = {bilinear maps V x V — R},

If V is a vector spaces,

with the identification being (¢1 ® £3)(v1,v2) = £1(v1)l2(ve). Likewise,
RV =V *® - @ V" 2 {k-linear maps V x --- x V. — R}.

If E — M is a vector bundle, then E®* — M is a vector bundle.
A k-linear map f: x;xV — R is symmetric if

flor, ooy vi, 05,00 08) = F(U1, -, U5, 0 Uiy e, UR).
This is a subspace Sym”(V*) C @, V*. Here is an exercise:
Symk(V*) = {Homogeneous polynomials of degree k on V'}.

You can check that Sym*(E*) — M is a vector bundle.
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12.2 Antisymmetric powers and forms

A k-linear map f : X3V — R is anti-symmetric if
foi, o vise 05,00 08) = = f(U1, 00, Uy oy Uiy, V).

Denote by A¥V* C @, V* the anti-symmetric k-linear maps on x;V. If dimV =
nand k > n, then A*V* = {0}. If k < n then dim(A*V*) = (}) = n!/(n—k)!k!.

We can describe A¥V* in terms of a basis. Let v1,. .., v, be a basis for V, and
let o7, ..., vy, be the dual basis. Denote v;,, A---Avg, to be the antisymmetric
k-linear map such that

(Va, Ao AU ) (Vays 5 Vay) = 1,
(Wi, Ao AU ) (g, ev8,) =00 i {81, Bt # {aa, . )

These maps form a basis for A*V* provided we take oy < --- < ay. For example,
A?V* is spanned by v} A Vi =vf Ui — v Q.
There is a canonical homomorphism

AVE@ NV = ANV @ faes fL A fo
We call this map the wedge product.

Definition 12.1. A is called the wedge product. If E — M is a vector bundle
of rank n then A*E — M is a vector bundle for 1 < k < n.

The transition functions will be quite complicated in general. If the spe-
cial case n = rank(FE), the exterior power det(F) = A™FE is a line bundle.
If {e1,...,e,} is a local frame for F and {é1,...,€,} is another frame with

g{e} = {e}, then
1A ANdy=detgér A Aéy.

Definition 12.2. A section of A¥T*M is called a k-form. Locally A*T*M is
generated by dx®t A --- A dx® for ip < -+ < iy.
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13.1 Push-forwards and pull-backs

If we have a C*° map h: M — N and E — N is a vector bundle, then we get
a bundle h*E — M. The idea is to construct a bundle whose local sections are
pulled back from N. A special case of this is, if i : M < N for some submanifold
M of N, then i*FE is E| .

Explicitly, if U C N is open with a local trivalization ¢y : Fly — U x R™,
then h*Elj-1 () = h='U xR™. If U; and U, are open sets with go1 = @9 oapfl :
U NUy — GL(n,R), then go; o h = h=1(Uy) N h=1(Uz) — GL(n,R) is the
transition function for A*E. In this case, h*E|p = Elj(p)-

In terms of local sections, if {e1,...,e,} is a local frame for E|y, then
{eroh,...,en0h} is alocal frame for A*Elj-1 (1.

If we have a map h : M — N, with v € T, M, then v — h,v € Tj,(,) N is the
push-forward, defined as h.v(f) = v(f o h) as a derivation. If a € T} ) N then
we can define the pull-back h*a € Ty M defined by h*a(v) = a(h.v). The
pull-back extends to (T*N)®¥ and A¥T*N. This is defined as

K a(vy,...,vg) = alhwwr, ..., hoop).

There are some properties:

(1) For any f € T(U,R) =T(U,A°T*N), h*f = f o h by definition.
(2) h*df = d(h*f) because

(hV)(f) =V (f o h) =V(h*[f) = d(h" [)(V).
(3) For a k-form w € T'(U, A*T*N) and a function f € I'(U,R),
h*(fw) = (h* f)(h*w).

Here is a local description. Suppose w € I'(U,A*T*N) and (z1,...,2™)
are local coordinates on N. Then the elements dz* A --- A dz®* with
iy < iy < --- < i) form a local frame for A*T*N|;. Then

R*(dx™ A--- Ada™) = (R*dz) A--- A (h*da™) = d(z™ o h) A--- Ad(z™ o h).

Lemma 13.1. Ifh: M — N and g : N — Z are smooth, then (goh)* = h*og*.

Proof. This is because we have defined everything in terms of smooth functions,
and it is true for smooth functions. O

What we're really saying is that there’s a canonical map h*(AFT*N) —
AFT* M.
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13.2 Forms and vector fields on a Lie group
Recall that if G is a Lie group, then we have diffcomorphisms L, : G — G

defined by a — ga and R, : G — G defined by a — ag. For each g € G, there

is also the conj, : G — G given by a — gag™?.

Definition 13.2. A 1-form w on G is left-invariant if for all g € G, Ljw = w.
(Note that if w € T,,G then Ljw € T;G.) Similarly w is right-invariant if
Riw=wforallg € G.

A vector field V is left-invariant if (L,).V = V, and right invariant if
(Ry)V =V.

The space of left-invariant 1-forms is isomorphic to T;G.
Lemma 13.3. There exists a global frame of left/right invariant 1-forms.

Proof. Let @1,...,w, be a basis of TG. Define w;(g) = L;_.&1. Note that
w1(g) are C'*° since the multiplication map G x G — G is smooth. O

This shows that 7*G = TG x G is trivial.

Example 13.4. Take M(n,R) and fix ¢ € M(n,R) for ¢ # 0. Define for
m € GL(n,R),

Wylm = Tr(quldm),

ie., if A € T, GL(n,R) then wy(A4) = Tr(gm~'A). Then I claim that w, is
left-invariant. To show this we have to compute

(Lgwq)lm(A) = wqlgm((Lg)«A).

Let v(t) = m + tA so that v(0) = m and 7/(0) = A. Then

(Lg)eA=—|  g(m+tA) = gA,
t=0

and so

(szq”mA) = wWylgm((Lg)+A) = Tr(q(gm)_lgA) = Tr(qm_lA) = wy|m(A).
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We were talking about pull-backs of k-forms and push-forwards of vector fields.

For the Lie group G = GL(n,R) and m € G, the tangent space is T,,,G =
M(n,R). For ¢ € M(n,R), we defined wg|m(A) = Tr(gm~'A), which we denote
as Wy|m = Tr(gm~1dm).

Lemma 14.1. Lqu = wy.

On the other hand, it is not right invariant, because (Rwq)|m(4) = Tr(gm~'g~' Ag).

14.1 The exponential map
For a € M(n,R), define

2 n

a a
exp(a):1+a+?+...+m+,_,

Lemma 14.2. (i) exp(a) converges if a € B.(0) for 0 < e < 1.
(ii) exp : B(0) = U C GL(n,R) is a diffeomorphism.
(iii) exp(—a) = exp(a)~*.

Proof. (i) Let us first assume a = P~!DP for some diagonal matrix

A1 0
D= ,
0 An
Then exp(a) = P~ (exp(D))P and
exp(A1) 0
exp(D) =
0 exp(An)

In general, put a = P~1JP for a Jordan normal form J. Then exp(a) =
P~lexp(J)P and by direct computation exp(J) converges if A1, ..., \, are suf-
ficiently small.

(ii) Since (exp)«|oa = a, the map exp is locally a diffecomorphism by the
inverse function theorem.

(iii) You can formally check this as

exp(a)exp(—a) =14+a—a+a*—a®+ - =1
O

So there is a map exp that goes from a neighborhood of 0 € T.G = M (n,R)
to a neighborhood of 1 € G. It makes sense to pull-back to get (expy)*w, to get
a 1-form on Ty GL(n,R) at least on B(0).
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Lemma 14.3. For any a € B.(0) and V € T,(T1 GL(n,R)) = T,M(n,R), we
have

1
(expo)*wq|a(v):/ Tr(ge *“ve’*)ds.
0

Proof. Consider a € B.(0) C M(n,R). Let v(t) = a + t¥ so that v(0) = a and
~'(0) = ¥. We need to compute

d _.
wa , <%‘ exp(a + tv)).
This is hard to compute because a and v don’t commute. So we are going to
consider a family of curves and see how the one form varies along the way.
Consdier 7v,(t) = expy(s(a+tv)) with vo(¢) = 1 and 71 (t) = exp(a+tv). We
want to compute (expg)*wg|esa (sv) for s = 1. This is

(@

4
dt

exp(s(a + tv))) —Tr <qe—5a(

(eXpo)*wq|esa (SU) = Wy tzoes(a-i—tv))).

t=0
So

d .
——(expyg) “wg|esa (sv)

ds

d
=-—"Tr (qae_sa—

d
yr es(a+tv)) +Tr (qe—sai

dt
d
es(“H”)) + Tr(ge **Ve®) + Tr (qe—saa$ ‘t_oes(‘”'t”))

(a + tv)es(a+tv))

t=0 t=0

d
-
B 72

= Tr(ge™**Ve®?).
Then we get the lemma by integration. O

Lemma 14.4. The maps exp, : T1 SO(n) — SO(n) and exp, : T4 SL(n,R) —
SL(n,R) are defined and has the same formulas.

Proof. Exercise. O

14.2 Complex vector bundles

Definition 14.5. A complex vector bundle E with rank rk¢ F = n is a real
vector bundle of rank 2n together with endomorphism J : E — E such that
J?=-1.

If V is a vector space over R with an endomorphism J : V' — V such htat
J? = —1, then V defines a vector space over C.

Definition 14.6 (Alternative definition). A complex vector bundle over M
is a manifold F with a C° map « : E — M such that for any p € M there
exists an open neighborhood U € M and a map ¢y : 7 (U) — U x C" such
that g, = ¢ opy' : UNV — GL(n,C).
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To show that the definitions are equivalent, consider an open set U C M
such that there exists a frame {e1,...,en,€nt1,...,€2,} such that Je;, = entt
and Je,1; = —e;. Then we can identify E|y = C™ x U by this frame, in the
same way we identified R?" =2 C". If we have another frame {1, ...,¢&2,}, and
g{e} = {&} then gJ{e} = J{é&} = Jg{e}. This implies that g : U — GL(n,C).

That the alternative definition implies the first definition is just the restric-
tion of scalars.
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Let us look at examples of complex vector bundles. Consider a vector bundle
E — M, and look at the trivial C bundle C — M. Then

EerC—> M

is a complex vector bundle with rke(E ®r C) = rkg(F). This is not really an
interesting example.

Let ¥ C R3 be a surface. Let 7 be the unit normal vector field on o. Then
T, = {v € R3: v-7i(p) = 0}. Define a complex structure

J € End(T%); J(p)v=n(p) X v.

Then J2 =n x (n x v) = —v and so T'Y has the structure of a complex vector
bundle. Thus the tangent bundle 7' has the structure of a complex vector
bundle with rke(7%) = 1.

We can think of algebraic operations, and the moral is the everything that
works for C-vector spaces also works for complex vector bundles. But we need
to be careful when comparing R and C structures. For instance, if E and
F' are C-vector bundles, and Fr and Fgr are the underlying R-bundles, then
Hom(E, F) # Hom(Eg, Fr). Think about when a linear map L : R?" — R?"
descend to a map C" — C". Likewise, rke(F ®c¢ F') = rke(F) rke(F). On the
other hand, rkg(Er ®r Fr) = 41k (F) rke(F).

If Fg has the complex structure J, then (—J) is also a complex structure.
So we can define E to be the C vector bundle defined by (—J). As an exercise,
prove that if go : U NUg — GL(n, C) are transition functions for E, then gap
are transition functions for £.

15.1 Metrics on vector bundles

Definition 15.1. A metric on R"” is a bilinear map g : R” x R™ — R"™ such
that g(u,u) > 0 for u # 0 and g(u,w) = g(w, u).

Definition 15.2. A metric on E is a section g € I'(M, Sym?(E*)) such that
for all p € M, g, is a metric on E, = R".

Said another way, g is an assignment to each p of a metric on £, such that
if ep, fp € T'(M, E) then the map p — gp(ep, fp) is C™.

Lemma 15.3. Metrics always exist.

Proof 1. If M is compact, there is a map E < RY where RY — M is the
trivial bundle. We can put a metric on M via restriction by choosing a metric
on RV, O

Proof 2. Take an locally finite open cover {U,} such that E|y, . Let g, be
a metric on R", viewed as a metric on E|y,. Take a partition of unity x,
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subordinate to the U,, then take

g:ZXaga- O

Definition 15.4. A hermitian metric on C" is a bilinear form C"* x C* — C
such that

L g(u7v) = g(v,u)7
o g(u,u) >0 for u #0,
e g(u,cv) = cg(u,v) and g(cu,v) = eg(u,v).

Definition 15.5. A hermitian metric on E — M is a section of E* @ E*
that restricts to each fiber as a hermitian metric.

Check how it must transform undr change of frame. For (v, w) = v Aw and
a transformation T': F, — F,, we have v = Tv and @ = Tw. So

vl Aw = (v, w) = (B, @) = 0T Aw
so A= (TTH=TAT-1.
Lemma 15.6. Hermitian metrics always exist.

Proof. 1t is the same. O

Let us look at the relation between g on Ex and on E¢. Let Fr be a vector
bundle with J a complex structure, and gr a metric.

Lemma 15.7. A hermitian metric on E is defined by gr on Er provided that
gr(u, Jv) = —gr(Ju,v) for all u,v.

Proof. Linear algebra. O
Conversly, if g is hermitian, how do we find gg?

Lemma 15.8. E C Er ®r C in the following way: let e be a local section of
ER, then E is generated in Ex Qg C as e — v/ —1Je.

Note that J(e —v/—1Je) = v/—1(e —+/—1Je). So E, is naturally identified
with the ++/—1 eigenspace of

J: (E]R Xr (C)p — (ER QR (C)p
Likewise E is the —/—1 eigenspace of .J. Given gr we define
u=e—+v—1lje, v=e—+v—1Je.
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16.1 Structure group and orientable bundles

A vector bundle E — M has structure group (or gauge group) G C
GL(n,R) if there exists a covering of M by open sets U, such that E|y, =
Uy x R" and @' o g : Uy NUs — G C GL(n,R). In other words, there exist
local frames {e,} on U, such that if go5 : {eg} = {eq} then go5 € G.

For example, if G = {1} then E is trivial. If F has a metric, then we can
reduce to structure group to O(n) (or U(n) in the C-case). This because we
can take orthonormal frames. A more subtle question is, when can we reduce
to SO(n) (or SU(n))?

Definition 16.1. Say that a bundle E — M is orientable if there exist triv-
ializations {ey} on U, with |J, Us = M such that g.5 : {eg} — {es} have
det gog > 0.

Note that F is orientable if and only if the structure group reduces to SO(n)
(or SU(n)).

Lemma 16.2. F is orientable if and only if \"E = det(E) =2 M x R.

Proof. Let g be a metric on E. Cover M by open sets U, with frames {e,} such
that deg gog > 0 and {e,} are orthonormal. Then g,g in O(n), and so gop = 1.
If e;1 A -+ Ae, are the induced local trivializations of A™FE, then since

e?/\---/\eg:detgagef/\~--/\e,€:ef/\-~-/\e§,

A™E has a global non-vanishing section.

If A"E = M x R, then there exists a n € I'(M, A"E) such that n(p) # 0
for any p € M. If {ef,...,e2} is an orthonormal frame for E|y,, 1y, =
fa€S A Ne. Then fo : Uy — R\ {0}. Then define

é?z}ze?, ef =ejfor2<j<n.
This gives me a bunch of new frames. Let gos : {€g} — {€a}. Then
; —1y _ el fa
det gap = det(Taga T 1) = ———det gngs-
’ PO s 1l

On the other hand,
Nv.nvs = fael Ao Nep :fﬁef/\.../\eg

and so fq det gop = fg. This implies det §op = |f5|/|fal- Since gag € O(n), we
further have det go5 = 1. O

Similarly, a complex vector bundle & — M is orientable if A"E = M x C.
Definition 16.3. A manifold M is orientable if and only if T'M is orientable.
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16.2 Induced metrics on bundles

Suppose E is a C*°(R) vector bundle with a metric h. If {e1,...,e,} is a local
frame, then we define h;; = (e;, ;). In the C-case, we write hag = (eq,eg). If
o1(p),o2(p) € E, then we can write

o1(p) = ot (p)ei(p),  2(p) = o4 (p)e; (p)-
Then we can simply write
(01,02)(p) = o} hijod.
Likewise in the C-case we have
B

(01,02) = 0T hapoy .

If e; is a local section of E, then o = (e;, ®) is a local section of E*. Then

Since h is positive definite, this gives an isomorphism E, = E;. We define the
metric on E* such that this map is an isometry. In other words, if A* is the
metric on £, then

<O'i,0'j>h* = <ei, €j>.
Proposition 16.4. In the frame e}, (h*)y = (h=1); = hi.
Proof. We have

hi = (0,0 ) =Y hijhip(e, ey = highip(h*)jp = (hh*hT ).
J>p Jp

So h* = h~! because hT = h. O
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Last time we were discussing metrics on vector bundles. If h is a metric on F,
then h~! is a metric on E*. If h is a metric on E and g is a metric on F, then
we get a metric on E ® F as follows: if {e1,...,e,} is a local frame for E and
{f1,.-., fr} is a local frame for F', then define

(i ® fare; @ fp) = (i ej)n{fafp)g:

i.e., if {e;} is orthonormal and { f,} is also orthonormal then we declare {e;® f, }
is orthonormal. In terms of local fames,

(h®g) = hijgap.
Since other bundles like A”E or Sym” F sits inside E®", this induces metric on
A"E or Sym" E.
17.1 Metrics on the tangent bundle

Let’s assume we have (M, g) a connected Riemannian manifold, i.e., a man-
ifold M with a choice of g.

Definition 17.1. A curve 7 : [a,b] - M is piecewise C™ if there exist
a=tg <ty <--- <ty =>bsuch that v is continuous and 7|, s,.,) is C*.

Definition 17.2. Define
k=1 otips
d(p,q) = ing/ V(' (1), (t))dt
i=0 Y ti

where inf is over all piecewise C* curves v : [0,1] < M with (0) = p and
V(1) =q.
Proposition 17.3. d is a metric on M.

Proof. Clearly it is symmetric. The triangle inequality is also clear since if 4
is a curve from p to g and 7, is a curve from ¢ to r then

(12 0 m)() = {“(2” O<t<l/2

P(2t-1) 1/2<t<1
has length the length of v; plus the length of 5. Finally we need to show that
p # ¢ implies d(p,q) > 0. Choose a coordinate patch (U, ¢) such that ¢ € U,
p ¢ Uand ¢ : U — B1(0) with ¢ — 0. If y(¢) connects p to g there exists a
last time 7" such that (T) € OU. In local coordinates (z!,...,2™), there exist
a ¢ > 0 such that g;; > cd;;. Then the length of (t)|ir,1) is at least c. O

Lemma 17.4. The metric topology on (M,d) is identical to the topology of M.
Proof. Locally §;;C~* < g;; < C;; for some C < +o0. O
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17.2 Geodesics

A natural question is, is there a C* curve « such that the length of v is d(p, ¢)?
If such a v exists, then any variation will increase the length of the curve.
Suppose we have a curve 7 : [0,1] — R™ such that v(0) = p and (1) =
Consider a variation v.(t) = v(¢) + ec(t) for some ¢ : [0,1] — R"™ with ¢(0) =
¢(1) = 0. We can assume that ¢(t) is orthogonal to v/(t), i.e., (c(t),7'(t))g =0
with |¢/| = 0.
Let g = g;;. We need to compute

Gy () (Fe(), e () = Govo 0y (15 9) + 2694 1) (5, €) + O(€%).

The derivative with respect to € at e = 0 is

d

T g0 (e Fe) = nglvfc’“ + 2955y

So by the chain rule,

9ii V' + 20kgi vy *
0/ \/ 9 (t) (Fes Fe)dt = / J 7; dt = 0.

Since g;;4'c¢’ = 0 because % and ¢ are orthogonal, we can take d/dt of both sides
and get

81@91 7 Cj + gzj'y C +glj'7 C] = 0.
So we have
1
-j ik 1 cjak|
0= | |=(gi¥ + OugiV’7") + 501956y 7" | c'dt.
0
This implies that for all 4,
95V’ + 09577 V" — iaigkﬂ 7" =0.
Multiplying by ¢*, we get
N ik
T 59 (Okgij + 0jgir — 0igjr)¥’ 4" = 0.
We now define the Christoffel symbols
rio— Lgig ) )
ki = 59" (Okgij + 9gik — Digjn)-

A curve (t) solving 4! + chjﬁkf'yj =0 is called a geodesic.
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For a Riemannian manifold (M, g), a curve v : [a,b] — M is a geodesic if
. iej 1
’)/k + Ffj’yz'yj =0, where F?j = igkl(&gzj + 6'3‘97;[ — algij).

Geodesics are critical points for the length function v — f: V', v')dt.

Theorem 18.1. For every p € M, there exists and open neighborhood U C
T,M, 0 €U, and a number e > 0 with a map v : (—e€,€) x U — M such that for
allv e U, v(t,v) is the geodesic with v(0) = p and v/ (0) = v.

A geodesic need not be defined on R. For example, take an open subset
of R? with ggue. This is a Riemannian manifold but it does not always have
geodesics defined on R.

Example 18.2. Take (R", gguc). In standard coordinates (z*, ..., 2"), we have
Gij = 0i5. So Ffj = 0 and so the geodesic equation is 4% = 0. That is, the
geodesics are y(t) = p + tv.

As an homework, you will need to compute the geodesics of (5™, ground). You
can use the symmetries of S™ instead of computing all the Christoffel symbols
and then solving the differential equaitons.

18.1 Geodesics on SO(n)

Let us compute the geodesics of SO(n). We have SO(n) C GL(n) C M(n), and
then

T180(n) = {a € M(n) : a* = —a}.
Now fix a basis a; € M(n,R) for 1 < j < n? such that

(n—1)

-1
aj:—aijorlgjgn M j 2

<7< n°.
9 J =
Define an inner product on M (n) by (a,b) = Tr(a”b), which is the Euclidean
inner product. Then (a;,ar) = 0 if a; is antisymmetric and aj is symmetric.
By Gram-Schmidt, we can assume that a; are orthonormal.

_ T
, a;=aj for

Lemma 18.3. g = (, )|, som) s both left and right invariant.
Proof. Given m € SO(n), it suffices to show

(Li)gla (A, B) = Te(ATB), (R;,)gh(4, B) = Tr(ATB).
We have
(L),9)(A, B) = g|lm(mA,mB) = Tr((mA)TmB) = Tr(ATmeB) = Tr(ATB).
Likewise,

(T,9)(A,B) = g, (Am™ ", Bm™") = Tr((m™")" A" Bm™") = Te(A"B). O
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Definition 18.4. Such metrics are called bi-invariant.

Recall we have defined 1-forms w'|,, = Tr(a‘m~1dm). Define § = >  w'®@w'.
Proposition 18.5. jlsom) = 9.
Proof. Check at 1 and then use left-invariance. O

Theorem 18.6. For a € T1 SO(n), the curve t — me® = ~(t) is a geodesic in
SO(n) for the bi-invariant metric with v(0) = m € SO(n) and v'(0) = ma €
T, SO(n).
Proof. It suffices to prove for m = 1 because g is left-invariant. Also, it suffices
to show that at € T SO(n) is a geodesic for exp* g = g.

First of all 4 = 0. So we need to show Ffjﬁi"yj = Ffjvivj = 0, where
a =Y v'a;. Recall that

1, . . .
Iy = lek(aigzj + 0;G1i — 019ij).
We have

aoi Ao
0913y :%(Qzﬂ])

1ol
:/ / Tr(e™* vTe™ e™we™"")dsdr
o Jo

by repeating the calculation from before. So

and also

1 1
30, A) 50 = G0, 0)ar = Te(e > o et e ae ™" drds

11
= / / Tr(e_smTvTesmTa)drds
0o Jo

1l
:/ / Tr(vTeSt“Te_StaTa)drds:Tr(vTa).
o Jo
So

dt( )y =0

for all v, and this implies that 4 i (91;7 ) 0.
Now we would like to prove 0;g;;%* 47 = 0. This is equivalent to V,§(a, a)q; =
0 for any v € T1 SO(n). We have

//Tr eCale Ve ™q e ")drds
:/ / Tr(eC " e~V a)drds.
o Jo

We will continue next time. O
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Let us finish the computation of the geodesics of SO(n).

Theorem 19.1. The geodesics (with respect to the bi-invariant metric) through
1 with tangent vector a is .

Last time we reduced the theorem to proving V,g(a,a)lss = 0 for all v,
where § = exp; g. For any v € T7 SO(n),

11
g(a,a)l, = / / Tr(e®Uale Ve ™ ae™")dsdr
o Jo

1
= / / Tr(e®* e e drds.
0o Jo

Take v. = at + ew and let us evaluate (d/de)|c=0g(a,a),.. Then
d

(s—r)(attew) _
de ¢ (

e=0

S = T)d(eXpl)(s—r)atM
where d(expy)s—ryat : T(s—ryatT1 SO(n) — T1 SO(n). Let

M™*(r,s) = d(exp) (s—ryatw, M~ (r,5) = d(exp)(r—gs)aw = M™(s,7).
Then

d

11
o 6:Og(a,a)ve :/0 /0 Tr((s — r)M*aTe" %) drds

1,1
+/ / Tr(e* T (r — s)M~a)drds.
o Jo
Here
Tr(MtaT et g) = Tr(e" =9 M7 a).

Because M ¥ = dexp(,_g)1q W € T(s—ryta SO(n), we have e(r=sta )+ € Ty SO(n).
This shows that e" =% M+ is antisymmetric, but a”a is symmetric. So the
trace is just zero. Likewise, the second terms is zero.

19.1 Gaussian coordinates

Theorem 19.2. For every p € M there exist a €,6 > 0 such that, for every
v € B.(0) C T,M, the unique geodesic v(t) with v(0) = p and ~'(0) = v exists
for all t = (—46,9).

Lemma 19.3. If v(t) is a geodiesic with v'(t) = v, then for ¢ € R the curve
A(t) = v(ct) is a geodesic with 4'(0) = cv.
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Corollary 19.4. For every p € M there exists an € > 0 such that v(t,v) for
any v € By(e) C T,M the geodesic with v(0) = p and ~'(0) € v exists with
te(-1,1).

Definition 19.5. The exponential map exp, : B.(0) — M is the map v —
7(1,v) = exp,(v) where exp,,(tv) is the geodesic exp,,(0) = p and (d/dt) exp,,(vt)|i=0 =
v.

For SO(n), the map exp, : B.(0) — M is C> (by homework). Because
d(exp,)o : ToTp, M — T, M given by v — v is invertible, by the inverse function
theroem, there is a neighborhood Bs(0) C T),M such that exp, : B5(0) — U C
M is a diffeomorphism.

Fix an orthonormal basis {v',...,v"} on T, M. Then we haveid : (T,M, g,) =
(R™, (e, ®)). Since exp,, : Bo(0) — U is a diffeomorphism, we get coordinates on
U by

—1 id 1
q —exp, (¢g) — (a’,...,a").
These coordinates are called Gaussian coordinates or normal coordinates.

Theorem 19.6. Let (z',...,2") be Gaussian coordinates at p = (0,...,0).
Then

9i(p) = 0ij,  Okgij(p) = 0.

Proof. First 8/0x'|, = v' so gi;(p) = di5. Now g(a',...,2") = exp} g.

Let f‘;k be the Christoffel symbols of exp* g. We claim that f;k(p) =0 if
and only if g = 0. By definition of the exp map, the curve t — vt is a geodesic
in T, M with respect to the metric exp* g. Then

d2

@(vt) =0, i(vt) = .

dt

Then by the geodesic equation, ff'jvivj = 0 for all k. Since this holds for all
v € TyT,M, we conclude ffj (0) =0 for all ¢, 7, k. Then

- 1
I7(0) = i(az‘gjk + 0jgik — Orgi;) = 0.
Then (%gjk = O. D

Corollary 19.7. There is no geometric invariants of g involving 0;g;.
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20.1 Gauss’s lemma

Lemma 20.1 (Gauss). For a point p € M and a vector v € T,M such that
exp,(v) is defined. Let w € T,(T,M) = T,M. Then
<d(expp)vvad(expp)vw>g(expp(v)) = <U7w>P'

Proof. First assume w = Av. It suffices to prove that

(d(expy,)vv, d(exp,,),v) = (v, v).
If we let y(t) = exp,,(vt) then d(exp,),v = 7'(1). Because vy has constant speed,

(1,7 (1) = (4'(0),7(0)) = (v, v).

Now assume that (v,w) = 0. Take a curve v(s) in T,M with v(0) = v
and v'(0) = w with |v(s)| = const. Consider f(t,s) = exp,(tv(s)) defined for
(t,s) =A={0<t <1, —e<s<e}. Notethat f(t,s0) is a geodesic for a fixed
sg. Also

of 6f>

(d(exp,)vv, d(exp,,)yw) = <E’ 5

We claim that this quantity is independent of ¢. Fix (tg,so) and choose
normal coordinates near po = f(to, so). Then

of of oftof
(5557 ) = 9ulF () S-S

Take d/dt and evaluate at (to, sg). Then because 0;¢;; = 0 since we are working
in normal coordinates,

of of _ O frof’ oft *f
<as 8t>(t0’80) = 93(P0) Fr g T 900 5 B
Because f(t,s0) is a geodesic, f is linear in ¢. Thus (02 f/0t?)(to, so) = 0.
Now we have one term left, and by the same argument, we further have
of of afto%fi  1d ,0f Of
<as ot >(t°’50) 955 (P0) 51 Gt §£<§’ E>'
Now since f(t, sp) is a geodesic,
of of _/0f of
(Gt e 50 = (G 5
This shows that

>(O,50) = |v(so)| = const.

(50 50009 = (50 5)0.0)
So

(529000 = (L 200 0,0) = (v, Ji dlep i) =0. O
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Corollary 20.2. Let (z!,...,2™) be normal coordinates. Let r = /> |z
and let 01, ...,0" 1 be coordinates on S"~1. Then the metric (epr)*g can be
written as

(exp,)*g = dr® + r? Kq,d9*de".

Proof. The only nontrivial thing is that the radical vector 9/9r is orthogonal
to {r = const} with respect to (exp,)*g, but that is what Gauss proves. O
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If 0 € V.C T,M is open such that exp, : V — expp(V) is a diffeomorphism,
then we say that U = exp, V' is a normal neighborhood. (This just saying
that U has normal coordinates.) If B.(0) C V, then Bc(p) = exp,(Bc(0)) is
called the normal ball and S.(p) = 9Bc(p) is called the normal sphere. By
Gauss’s lemma, S.(p) is orthogonal to the radial geodesics.

21.1 Geodesics are locally length minimizing

Theorem 21.1. If B.(p) is a normal ball, and v : [0,1] — B.(p) is any geodesic,
~¥(0) = p, and if ¢ : [0,1] = M with ¢(0) = p and c¢(1) = (1), then length(c) >
length(vy) with equality if and only if ¢([0,1]) = ([0, 1]).

Proof. Assume ¢([0,1]) C B = B.(p). Then since exp,, is a diffeomorphism, we
can write

c(t) = exp, (r(t)v(t)),

where 7(t) > 0 and |v(t)| = 1. It might be that c¢(t1) = p for t; > 0 so v(t)
is not well-defined, but then we can consider c|;, 1) instead. So we can assume
c(t) # p for t > 0. Write f(s,t) = exp,(sv(t)) so that c(t) = f(r(t),t). Then

de _ 0for  Of

dt  orot ot
and so by Gauss’s lemma, (9f/0r,0f/0t) = 0. So
de |2
dt
So for any § > 0,

1 1 1
/|c’|dt2/ r’|dt2‘/ r’dt‘:r(l)—r(é).
§ ) §

Taking the limit as 6 — 0, we get that length(c) > (1) = length(y). If equality

fholds, then df/0t = 0 so v(t) = v(0). That is, ¢ is a reparametrization of ~.
If ¢([0,1]) € B, then the distance from p to the first point getting outside B

is at least € > length(vy). O

P |2 = o epy ), L espy )+ [ 2L 2 e

21.2 Globally length minimizing curves are geodesics
The question I want to ask is:
When can we find long legnth minimizing geodesics?

Theorem 21.2. Fore very point p € M, there exists a neighborhoodp € W C M
and 6 > 0 such that, for each ¢ € M there exists a diffeomorphism exp, :
B;s(0) — M onto its image, and exp,(Bs(0)) 2 W, i.e., W is a normal neigh-
borhood of every q € W.
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If this condition is satisfied, we call W a totally normal neighborhood.

Proof. By the existence theorem for geodesics, there exists an V C M, p e V
and € > 0 such that for every ¢ € V' the map exp, is defined on B.(0) C T, M.
Consider

U={(qw) eTM:qeV,|w|<e}, F:(qw)— (qexp,w) € M x M.

Then

1 x
dFp,0) = (0 1) )

and so F' is a local diffeomorphism near (p,0). Then there exists a U C U, in
particular,

U={qeV,weT,M,wl <3}

for an open neighborhood V C M of p, such that F : l:] — M x M is a

diffeomorphism. Take W C M such that W x W C F(U). Then F({q} x
Bs(0)) 2 ¢ x W and so exp, Bs(0) 2 W. O

Corollary 21.3. If v : [a,b] = M is piecewise differetiable and || =1 (where
this makes sense) and for any other curve ¢ connecting y(a) to v(b) we have
length(c) > length(y) the 7 is a geodesic and so C™.

Proof. Take t € [a,b]. Let W be a totally normal neighborhood of ~(t). There
exists an open interval ¢t € I C [a,b] such that v|; : T — W. If 47 connects
points p,q € W, then Bs(p) 5 ¢ so there is a radial geodesic 4 joining p to g.
Now length(7) = length(~y), because ~ is length minimizing. Then v(I) = 5(I)
but |y/| =1 so 7 is a geodesic locally. Thus it is a geodesic and so v is C*°. O
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22.1 Completeness

Definition 22.1. A Riemannian manifold (M,g) is geodesically complete
if for every p € M and v € T, M, exp,(v) is defined, i.e., geodesics exist for all
time.

Theorem 22.2 (Hopf-Rinnow). Let (M, g) be a Riemannian manifold and p €
M. Then the following are equivalent:

(a) exp,, is defined on all of T,M.

(b) The closed and bounded sets in (M, g) are compact.
(¢) M is complete as a metric space.

(d) M is geodesically complete.

(e) There exist a sequence of compact sets K, C M with K,, C K,11 such
that if g, € M \ K,, then d(p,qn) — 00 as n — oo.

Moreover, any of (a)-(e) imply:

(f) For any q € M there exist a geodesic v joining p to q with length v =
d(p, q).

Proof. The hardest thing is (a) = (f). Let Bs(p) be a normal ball, and let
xo € 0Bs(p) be the point where d(q, 95(p)) = d(q, xo) is achieved. We can write
xo = exp,(0v) where v € T, M with |v| = 1. This gives our candidate geodesic
7y(t) = exp,,(vt) which exists for all time.

Let r = d(p, ¢) and let

A={tel0,r] : d(y(t),q) =r —t}.

Clearly 0 € A and A is closed by continuity. Now we show that A is open. Then
it follows that A = [0,7]. Let t; € A and z; = exp,,(t;v) so that d(z1,q) = r—t1.
Then d(p,z1) <1 but r = d(p,q) < d(p,z1) + d(z1,q). So d(p,z1) = t1.

Let Bs, (x1) be a normal ball around z1, and let y; € dBs, (x1) be such that
d(g,y1) = d(q,0Bs, (x1)). We claim that d(q,y1) =r —t; — ;. Fix an e > 0
and let C' be a curve from ¢ to x1; with r — t; < length(c) <r —1t; + €. Let ¢
be the portion of ¢ occurring after the first time that ¢ intersect Bs, (1), and
let 4 be the geodesic connecting ¢(T') € Bs, (1) and z1, where T' is the first
time of intersection. Let ¢ = ¢ U4 that is piecewise C*°. Then by the triangle
inequality,

r —t1 < length(¢) = length(¥) + length(¢é) = §; + length(¢)
<length(c) =r —t; +e.

This shows that length(¢) < r —t¢; — 1 +¢€, and so d(q,y1) <7 —t; — 1. Since
d(g,y1) > 1 —t1 — 91, we get

d(q,y1) =r —t1 — 01.
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We finally have to show that y; is actually on the geodesic exp,(tv). By the
triangle inequality, d(p,y1) < t1 + 01 and so from d(p,q) = r it follows that
d(p,y1) = t1+3d1. Since d(p, y1) is achieved by the curve “expp(tv) for0<t<t
and the radial geodesic from x; to y;”, this curve is a smooth geodesic. So
Y1 = expp((tl + 01)v) and therefore ¢t; + §; € A.

The rest is easy. We prove (a) = (b). Let A be closed and bounded. Then

A C{exp,(tv) v € T,M,|v]=1,0 <t < R}

for some large R by (f). Then A is the image of a compact set under a continuous
map exp,,. This implies that A is compact.

Proving (b) = (c) is just point-set topology.

For (c¢) = (d), let ¢ € M, v € T,M, |v] = 1. Suppose the geodesic
v(t) = exp,(vt) is defined only for ¢ € [0,T'). Since d(y(t1),7(t2)) < [t1 — L2l
completeness implies that y(t) — ¢; as t — T. We will finish this next time. O
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Last time we were proving (¢) = (d). Let M be a complete manifold and ¢ € M,
v € TyM, |v| = 1. Suppose that exp,(vt) exists on [0, T'). Then by completeness,
~(t) = qr as t — T. Take a totally normal neighborhood of gr. Then for every
p € W, exp,(b) is defined. Choose t. € [0,T) so that |t. —T| < §/2. Then
consider C(s) = exp.,)(s7'(t+)). This C(s) exists for [s| < J and this extends
the geodesic v(t) past T

Finally, (d) = (a) is obvious and (b) is equivalent to (c).

Corollary 23.1. If (M, g) is compact, then it is complete. More interestingly,
if N C (M, g) with the induced metric, N is closed, and (M,g) is complete,
then (N, g|n) is complete. In particular, closed submanifolds of (R™, gguc) are
complete.

23.1 Connections

How do we do calculus on sections of vector bundles? Suppose you have an
electric field on earth or something and you want to differentiate. It is not
obvious how to differentiate. Let us first make a naive attempt. Let 7 : E — M
be a C* vector bundle and let o € T'(U, E) be a section on an open set U C M.
U has coordinates (z',...,z"), and let {ey, ..., e, } be alocal frame for E. Then
we can write

o=ocleg+---+0"e,

1

for C*° functions o*,...,0" : U — R. Can we now define

1 r
G- Ok

Suppose we choose instead {éi,...,€é.}. Then we have a map g : U — GL(r)
such that {e} = g{¢}, i.e., e; = g}¢;. Then & = go and so

&l ol ol
o [ .| _ 9y
xt | - | oa

+9g

ox?

To fix this defect, consider

0
T Qat

Vi + A4

where A; is a linear operator in the {e} frame. For the differentiation to be
well-defined, we need gV,;0 = V,;6. After some computation, this reduces to
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Definition 23.2. A covariant derivative or a connection on E is a map
V:C*M,E) - C*(E®T*M)
such that
(1) V(s+ ') =Vs+ Vs,
(2) V(fs)=fVs+s®df for any f € C*(M,R).
Lemma 23.3. IfV and V' are two connections, then V—V' € End(E)QT*M.

Proof. Note that (V—V')(s1+s2) = (V—=V')s1 4+ (V —V')sy by linearity. Also
if f e C>®°(M,R) then

(V=V)(fs)=f(V-V)s+df @s—df @ s = f(V-V')s
which is what we need. Then we conclude by the next lemma. O

Lemma 23.4. Let E and E' be vector bundles and L : E — E' be such that
L(s1 + s2) = L(s1) + L(s2) and L(fs1) = fL(s1) for each f € C°(M). Then
L € Hom(E, E').

Proof. Let U C M be an open set and {ej,...,e.} be a local frame for E,
{é1,...,&.} be a local frame for E’/. Then we can write L(e;) = aFé;,. Then
for any o € T'(U, E), write 0 = o'e; with ¢¢ : U — R. By assumption, L(c) =
o'afér,. So L is determined by (a¥). So L transforms as a section of Hom(E, E’).

O

This shows that the space of connections is affine, and after choice of a
base point, is isomorphic to Hom(F, E ® T*M). Next time, we will prove that
connections exist and V = d + A for some A.
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We were discussing connections on vector bundles. A connection is a map
V :T'(F) = T'(E®T*M) such that Vs(v) = V,s is like the directional derivative
for v € TM. We saw that connections “should” be of the form V = d+ A where,
given a frame, A is matrix-valued 1-form.

24.1 Construction of connections

Proposition 24.1. Let E — M be a vector bundle and let M be compact. Then
there exists a connection.

We remark that compactness is not necessary—it can be dropped.

Proof. We first assume that £ = M x R" is the trivial bundle. A section of E
is an r-tuple of C* functions o = (f1,..., fr) : M — R". Define

Vo = (z,df1(z),...,df-(z)) e R" @ T*M,

where x € M. This defines a connection.

Now consider the general case E — M. Then there is map ¢ : EF — M xR".
Fix a (hermitian) metric H on R", and let 7; ) = 7 be the orthogonal projection
onto E C M x R". Given o € I'(M, E), define

VEs =i (xV¥i(0)).
We claim that V is a connection. To show this we need to check the axioms.
Clearly VE(oy + 02) = VFoy + VFoy. Also
VE(fo)=i'n(i(o) @df + [V¥i(o)) = o @ df + [VF0.
This shows that V¥ is a connection. O

Let’s see what this looks like locally. Let {ej, ..., ex} be a frame for F such
htat i(e1),...,i(eg) is orthonormal in M x R". Choose Sky1,...,S, be such
that {i(e1),...,i(ek), Sk+1,--., S} is an orthonormal frame for M x R". Next,
we have another frame {fi,...,f.} adapted to V® so that f; is the section
corresponding to the (0,...,0,1,0,...,0).

Let g be the map

g:{fi} = {iler),...,i(ex), Skt1s---,Sr},

and let o be a section of E. We can write ¢ = ole; + --- + o¥e;, and then
i(0) = oli(e1) + -+ + o%i(ex). Then
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whre v are the coordinates of i(c) in the frame {f;}. Then

J J J
V¥i(o) =d <(" ))> =d ((" >) - d<(0 )>.
D=4 0)) =9 0) T o)
In order to calculuate i ~'7, we need to write it back in {i(e1),...,s,}. In this
frame,

- J .
wV*i(0) = mg~tdg (((CI)))> +d((c7)).
Note that this has this form of Vo = do + Ao where A is a matrix-valued
1-form mg~tdg = A.

Corollary 24.2. Any connection is written in a frame a V = d + A, where A
is a matriz valued 1-form.

Proof. If V is any connection of E, then V = VZ+T where T' € End(E)QT* M.

Clearly T is given as a matrix. O

24.2 Parallel transport

One reason V is called a connection is that it allows us to “connect” different
fibers of E — M. Given p,q € M, let v(t) be a curve y(0) = p and y(1) = ¢. Let
op € Ep. Amap o(t) : [0,1] = E with o(t) € E,(t) is the parallel transport
of oy, if

0(0) =0, and Vo =0.

In a frame, the equation can be written as
— + Ai“ﬁf'yiaﬁ(t) =0 and o0%(0)=0c%Dp).

By existence and uniqueness of ordinary differential equations, the parallel trans-
port exists and is unique.
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25.1 The Levi-Civita connection

Theorem 25.1 (Levi-Civita). Let (M, g) be a Riemannian manifold. There is
a unique connection on TM such that

(1) VxY — Vy X = [X,Y] (torsion-free),

(2) XY, Z)y =(VxY,Z)y + (Y,VxZ), (metric compatible).
In local coordinates (z*, ..., z™), the connections coefficients are Ffj the Christof-
fel symbols.

Proof. Tt suffices to determine (Vx, Z), for all X,Y,Z. We have

X(Y,Z) = (VxY, Z) + (Y, Vx Z),
Z(X,Y)=(VzX,Y)+ (X, VzY)=(VxZY)+([Z,X],Y)+(X,VzY),
Y(X,Z)=(VyX,Z)+(X,VyvZ)
=(VxY,2) +([V, X], Z) + (X, VxY) + (X, [Y, Z]).
So we have

(VxY, Z) = %{X(Y, 2)+Y(X,Z) — Z(X,Y)
+{[Z, X, Y)Y+ ([Z, Y], X))+ ([X,Y],2)}.

This shows uniqueness.
In local coordinates,

. X 1
(Voj00:0/0a7,0/0a*) = 5{31‘91‘1@ +0jgik — Okgis} =T
In other words, Vy9,:0/0x7 =T%;0/0z". O

25.2 De Rham differential

Recall that for f € C°(M,R), then df € T*M. Then we can define the de
Rham differential d as

d:T(M,\NPT*M) — T'(M, AP T* M),

as in the homework. Recall that d?> = 0. So we have the cohomology groups
defined as

kerd : APT*M — NPTIT* M

imd : NP~1T*M — NPT*M

Given a connection V on F — M, we can define

HgR(M) =

dy : N°'T*M @ E — NPT T*M @ E

in the following way.
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Definition 25.2. The exterior covariant derivative dy (or ds for V =
d+ A) is defined as

(1) if 0 €T (M, E) and w € APT*M then

dv(c @w)=VoAw+ 0o ® dw,

(2) dv(s1+ s2) =dv(s1) +dv(s2) for s1,s0 € (M, ANPT*M ® E).

So if E is the trivial bundle, then this is just the de Rham derivative. In a
trivialization,

ocQw=0c%z" A--- Adz maps to

0 , ,
dv(oc®w) = (axla"‘ + Afﬂoﬂ) da' Adx™ Ao Adar

Also
d% (odx’) = dy(0j0 + Ajo)dz? A dx!

= (Ok0j0 + (OxAj)o + A;jOko + Agdjo + ArAjo)da® A da? A da'
—

3J
= (akAj - ajAk + AkAJ — AjAk)Jd{Ek Adxd Adal.
k<j

This is not necessarily zero! Viewing A as a matrix valued 1-form, dys =
ds+ AAsandsodi = (dA+ANA)As.

Definition 25.3. The curvature 2-form is defined as

Fg=dA+ANAE€ NT*M @ End(E).
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Last time, for a vector bundle E — M and a connection V : T'(E) — T'(E ®
T*M), we defined dy : T(EQAPT*M) — T(E@ APTIT*M). In general, d% # 0
if V=d+ A. We defined

Fg =dA+ ANA=d% € End(E) @ N°T*M.

26.1 Induced connections

Given a connection (E,V) — M, how do we induce a connection on E*? The
idea is that we require VE~ to be compatible with VZ and the map E ® E* —
C>(M). We can demand

d(r(0)) = (VE 1) (o) + 7(VFo).

Let’s see how this looks. Fix a frame {ej,...,e,} for E and let {e},... e}
be the dual frame for E*. We can write VF = d + A in this frame. Write
T=> . Tats and o =) 0%,. Then
0 o 0Ta\ o Oc®
o = () = ()oY (),

0
(r(@) = 5.

T(Vg/axia) = Ta (Vg/azi")a = Ta% + TaA?ﬁJﬂ'
So
. 0Ta o
(Va/axﬂ)aoa = %U — TaAZﬂO' ,

(Va;axiT)a = 8x2 — T,@A?og'

In matrices, if 7 = (11,...,7,) then
« 0
vtg/amﬂ' = %T — TAZ‘.

Now let us look at connections on tensor products. If (E, VF) and (F, VT
are connections, then define VF®¥ on £ ® F by

Viewt)= (Vo) or+o (V7).

As an example, suppose we have (E,VF) and T € End(F) = E® E*. If
VE = d+ A then we have

VT =dI'+ AT —TA.
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Corollary 26.1 (Second Bianchi identity). If V is the connection on E and
Fg is the curvature, then dy Fy = 0.

Proof. Because Fy = dA + A A A, we have

dvFy =d(dA+ANA) +AN(dA+ANA) —(dA+ANA)NA
=0+dANA—-—ANdA+ANJA+ANANA—dANA—ANANA=0.0

26.2 Characteristic class

Recall that we have the trace map Tr : End(E) ® APT*M — APT*M, defined
by extending the map Tr : End(E) — C°°(M) linearly.

Proposition 26.2. dTr(B) = Tr(dvB).
Proof. If V=d+ A on F then dyB =dB + AB — BA. Then
Tr(dyB) = Tr(dB) + Tr([A, B]) = Tr(dB) = d Tr(B). O

Corollary 26.3. For any connection V on E, we have Tr(Fy) defines an ele-
ment of H3g(M).

This is an example of a characteristic class.

Proposition 26.4. The cohomology [Tr(Fy)]ar depends only on E and not on
V.

Proof. Let V,V be connections on E, and write V = d + A. Write V=V + B
where B € End(E) ® T*M. Then

Fﬁsz—FdB—FA/\A—FA/\B—i-B/\A—FB/\B
—Fy+dB+AANB+BAA+BAB.

Write A;dz® = A and B;dz? = B. Then the dz® A dz; component of A A B +
B ANA+ BA B component is

(AiBj — A;jBi) + (BiA; — BjAi) + (BiBj — B; Bi) = [Ai, Bj] — [A;, Bi] + [Bi, Bj]

that has trace 0. Also Tr(dB) = d Tr(B). This shows that Tr(Fy) and Tr(Fg)
lies in the same cohomology class. O
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If you have a vector bundle E — M with a connection V, then Tr(Fy) defines
a class inside H3g (M) that is independent of V.

27.1 Ad-invariant functions

More generally, let f : M(n,C) — C be a C* function such that f(gmg1)
f(m) for all ¢ € GL(n,C), i.e., f is Ad-invariant. For example, fip(m) =
Tr(mF). If f is Ad invariant and f is real analytic, then we can write

f(tm) = fo+ tfi(m) + 2 fo(m) + - -

Then fx : M(n,C) — C are Ad-invariant and homogeneous of degree k. Impor-
tant examples include
i

. tm), Ch(tm) = Tr(exp(%m)).

c(tm) = det (1 + 5
7r

Theorem 27.1 (Ad-invariant function theorem). The vector space of Ad-invariant
real analytic functions, homogeneous of degree p, is the C-linear span of

{Tr(m*™) - Tr(mb) : ky + -+ k, = p}.

Proof. We first claim that any C*° Ad-invariant function on M (n,C) is deter-
mined by a symmetric, C* function on C™. Note that there is a dense open
subset U C M (n,C) of diagonalizable matrices U C M (n,C) of diagonalizable
matrices on U. Then any Ad-invariant function is induces by a C'*° function on
C™, and vice versa. Moreover, this function is symmetric because

A O [0 1]|A2 O[]0 -1
0 Xo| |=1 0|0 X1 o0}
So it suffices to understand functions on C". Let us write

1+ Nu) =1+ o (Nu+oe(MNu? + - + o, (Nu™.
=1

J

Theorem 27.2 (Fundamental theorem of symmetric polynomials). The ring of
symmetric polynomilas is generated by oy, ...,o, as an algebra, i.e., if T(\) is
any symmetric polynomial, then 7(\) = p(og,01,...,04,) for some polynomial p
with C-coefficients.

Observe
k

A2 A
IOg(H]—(lJr)\ju)) = Z()\ju— ?ju2+"'+(—1)k+1kfj!uk+~-~),

J

Thus Z?Zl )\g-’ for 1 < p < n generate o1,...,0, as an algebra. So we can
change bases. O
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27.2 More characteristic classes

Going back to our two examples of Ad-invariant functions, we have
) 1

— Tr(m)t —

27 (m) (8m)2

Ch(tm) =1+ %(i)k’ﬁmk
k>1

c(tm) =1+ ((Trm)? — (Trm?))t* 4 - -

Theorem 27.3. Every Ad-invariant real analytic function f defines a coho-
mology class Cy(E) € Hip (M), by setting

[Cr(B)] = [f(Fv)]-
In particular, this is independent of the choice of V.

Let’s say exactly what we mean. If f = Tr(m"), then
fru(Fy) =Te(Fg A -+ A Fy) € NFT* M,
and
filFo) fe(Fy) = Te(Fy A -+ AFg) ATe(Fy A - A Fy) € N0,

Note that there is no ambiguity in multiplication because €, N?RT*M is a
commutative algebra.
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Last time, for a bundle ¥ — M and a connection V on E, for every Ad-
invariant polynomial, we got a characteristic class C¢(F) = f(Fyv) € Hir(M).
Also we showed that Ad-invariant polynomials are generated as an algebra by
m + Tr(mF).

28.1 Ad-invariance functions give well-defined cohomol-
ogy

Proposition 28.1. Tr(Fy A --- A Fy) is a closed 2k-form and its cohomology
class is independent of the choice of V on E.

Combining this statement with what we proved last time, we get the same
statement for every Ad-invariant f.

Proof. Because Fy A -+ A Fy € End(E) @ A*»T*M,
dy(Fy AN NFy)=({dyFy)N-- ANFg+ -+ FyAN---ANFy A(dvFy) =0
by Bianchi. Now for every B € End(E) @ APT*M,
dTr(B) = Tr(dB) = Tr(dv B)

because d and dy differ by a commutator. This shows that Tr(Fy A -+ A Fy)
is closed.

Let V=d+Aad V = V+B with B € End(E)®T*M. Define V! = V+tB
and consider Tr(Fg: A - -+ A Fgt). Then

d .
%TI‘(th A NFgt) =kTe(Fyge A Fge A -+« Fge).

Because Fyt = dA+tdB+ (A+tB) A (A+tB), we get
Fg: =dB+ AANB+ BAA+ 2tBA B.

Now we claim that dB + AA B+ BA A= dyB. If B= B;dx?, we have by
definition

dyB = V()/amiBjdl‘i Adz? = (8iBj + AiBj - BJAl)dJZl Ada?.
On the other hand,

dB = d(Bjdx?) = 0;Bjdx" A da?
AN B = A;Bjdz' A da’,
BA A= BjAda’ Adx'.

SodyB=dB+AANB+BAA.
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Thus
d
dt TI"(th VANEEIAY th) = ijI‘(de A\ th VANCIEEAN th)
+2tkTe(BABA Fyge A--- A Fyge).
Note also that dy B + 2tB A B = dy¢ B. Finally,
Tr(dvtB N th A A th) = dTI‘(B N th VANRERIVAN th).
So
1
Tr(FE) — Tr(Fg) = d/ Te(BA Fye A--- A Fy)dt
0

is a boundary. O

Lemma 28.2. If E and E’' are vector bundles over M and E = E’ then

Cy(E) = Cf(E') for any real analytic Ad-invariant f : M(n,C) — C.

Proof. Tt suffices to show for f;, = Tr(m”). Let us unravel the definitions. There
is a 0 € Hom(E', E) with an inverse 0~! € Hom(E’, E). In order to compute
Ct.(E'), fix a connection V' on E’. Define V on E by Vs = ¢~ 'V'o(s). If

V' =d+ A, then

V=0tdlos+ Aos)=ds+ (0" do+ o 1A'0)s = (d+ A)s.

Then
dA =d(oc™'do + 07 A'o)
=dle Y Ado+ (do YANAo+o 'dA o — o 1A Ndo.
Here, do=! = —07*doo™! because d(co~!) = 0. So

dA = —c"Ydono ' Ao+ o7 dA o — o7 A A do.
Now let us compute Fy = dA + AN A. We have
ANA=0c'ANAoc+o YdoNo * Ao+ 07 A0 Ao do.
Therefore
Fg=dA+ANA=c"'dA + A NA)o =0 'Fyio.

So we are done by Ad-invariance.
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Last time we showed that if F' and E’" are isomorphic then C¢(E) = Cf(E’) for
every Ad-invariant f.

29.1 The Chern class and the Chern character

Let E — M be a complex vector bundle with a (C-linear connection) V. The
k-th Chern class is the characteristic class defined by oy : M (n,C) — C, i.e.,
cx(E) is the coefficient of ¢* in det(1 + (i/27)Fyt). For instance,

G(E)=1, (E)= %Tr(Fv),

1
c(B) = —Q(TT(FV) ANTr(Fy) — Tr(Fy A FY)),
The k-th Chern character class c;(F) is the expansion Tr(exp((i/27)tFy)).
So for instance,
1

2w
1 i Nk
chy(B) = = Tr(Fy AFy), -, chy(E) = (2—) Te(Fy A - A Fy).

2 T

Cho(E) = I‘k(E‘)7 Chl(E) = T‘I‘(Fv) == Cl(E),

Using them, we can define the total Chern class and total Chern char-
acter as

C(E) = det(l + (’L/27T)Fv) = Co(E) + Cl(E) + -+ CL”/QJ (E),
ch(E) = cho(E) + chy (E) + - - -

Proposition 29.1. Let E, E be vector bundles. Then
(1) ch(E ® E) = ch(E) A ch(E),
(2) ch(E @ E) = ch(E) + ch(E).
Proof. Let V¥ and VZ be connections on E and E respectively. Define VZ ®F
by
VE®E(U®T) =(VPo)®@74+0® (VE(X)T)

and extend by linearity.
We now claim that Forgs = Fye ® 15+ 1 ® Fgz. We can just compute

dopes(0 ®T) = dgres(dyeo @ T+ 0 ® (dgsT))
= (d30) @7 —dgo NdgT +dpo ANdpT +0 ® (dQET)
=Fpo®@T+0® FpT.
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Let mgp = FE ® 15 and mg = 1g ® F. Then mgmg = mgzmpg and so

exp(i(mE + mE)> = exp(im;;) exp(im,;).
Now note that
m%:FE/\---/\FE®1E.

So we get ch(E ® E) = ch(E) A ch(E). ) )
The direct sum is easier. Because (V@ VE)(c@7) = VEo+VET, we have
Fpep=Frg ® Fg. So ch(E® E) = ch(E) + ch(E). O

For example,

cho(E @ E) = cho(E) cho(E) = rk(E) tk(E) = rk(F @ E),

)
chy(E ® E) = cho(E) chi(E) + cho(E) chy (E) = rk(E)cy (E) + rk(E)c, (E),
chy(E ® E) = rk(E) chy(E) 4 rk(E) chy(E) 4+ 2¢hy (E) A chy (E).

Lemma 29.2. All characteristic classes of Ad-invariant analytic functions are
generated by chy, ..., ch|, /2|, or equivalently by co, ..., c|n/2) as an algebra.

Proof. Ad-invariant function theorem. O

In the real vector bundle cases, things are not very interesting. For instance,
it is a nice exercise to show that if & — M is a real vector bundle, then
[Tr(Fy)] = 0. This is not the case for a complex vector bundle. So how do we
get interesting invariants? Given E — M, we may consider the complexification
E®C — M. A connection V on E can be extended (by C-linearity) to V< on
E ® C. In other words, we define VC so that if ¢ = o1 + ioy with o € T(E)
then V€0 = VFo; +iVF0,. Then define characteristic classes for E, by taking
Chern classes of E ® C. These are called the Pontryagin classes.
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Last time, for a complex vector bundle £ — M we defined the Chern classes as
1
det(l + EFW) — co(E) + 1 (Bt + -+ cn(E)EF +--- .

If F is real, then consider the complexification £ ® C. If V is a connection onf
E, then it extends to £ ® C, which we denote by V€. Then we define the k-th
Pontryagin class as

pk(E) = (—1)k02k(E & (C)
Note that px(E) € Hik (M). Why do we only consider 2k and not k?

Proposition 30.1. If k is odd, then ¢ (E ® C) = 0.

The way we are going to prove this is using metric compatible connections.

30.1 Metric compatible connections
Definition 30.2. A connection on £ — M is compatible with a metric H
if
X<O',T>H = <VXO',T> + <0'7VXT>
for all vector fields X and o,7 € I'(E).

Theorem 30.3. Given a vector bundle E — M with a smooth metric H, there
exists a connection on E compatible with H (although they are definitely not
unique).

Proof. Let V be one connection on E. Let {e1,...,e,} be an orthonormal frame
for E over an open set U. In this frame, V.=d + A and H = 1.

We claim that V is compatible with H if and only if VH = 0, whre V
denotes the induced connection on E* ® E*. In a local frame, (o,7) = o7 HT.
If T covariantly differentiate this,

V(eTHr) = (Vo) Hr + ¢ (VH)T + 6 TH(VT).

So if I want this to equal to the sum of the first and third terms, the VH must
be zero.
In teneral, the covariant derivative acts on H by

(Va/ale)aﬁ = 8lHa/3 - AZXH’YB - A?ﬁHav
= O Hop — (HA)ap — (HA) 3 = (00H — HA; — Al H) .

In an orthonormal frame H = 1, we have VH = —(A+ A"). In other words,
V is metric compatible if and only if A = —A” in an orthonormal frame.
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So our gaol is to find T' € End(E) ® T*M such that —(T +7T7) = A+ AT in
{e1,...,e,} since then V = d+ A+ T has VH = 0. Note that if we are defining
T locally in one frame, and so we need to check that our local definitions glue to
give a section of End(E) ® T*M. For example, T = —A doesn’t work because
A doesn’t transform like a endomorphism.

Let’s guess and take T = —(A + AT)/2. Then V = d + (A — AT)/2 in

the orthonormal frame {ej,...,e.}. Does T glue to give a global section of
End(E) @ T*M? Suppose we have two open sets Uy and Us. Let {e1,... e,
and {;%, ..., €2} be the orthonormal frames on U; and Uy, and write V = d+ A4

and V = d + Ay. Also let Ty = —(A; + AT)/2 and Ty = — (A + AL)/2. On
U1 NUs, we have g : {e?} — {e1} given by g : U1 NUs — O(r) because {e'} and
{e?} are orthonormal frames. We have

Ay =g g+ 9 " Aig

because V shouldn’t depend on the coordinates. Since g € O(r), g7 = g~ '.

Then
Ay + AT = (g7 dg)" +g" AT (g )" + g 'dg+ 9 " Arg
= (g7 dg)" + g7 dg + g (AT + Ay)g.

But dg € T,O(r) and so g~'dg € Ty O(r) is anti-symmetric. So A + Al =
g Y(A; + AT)g. This shows that T € T'(M,End(E) @ T*M) and so V=V + T
is metric compatible. O

In this case, people abusively write
A+T eT(lie(O(r)) @ T*M).
Now V =d+ (A — AT)/2 = d + M is compatible with the metric. Then
Fy = Fijda' Nda? = dM + M A M = 0;M; — 0; M;
= (0;M; — 8;M; + M;M; — M;M;)da" A da’.

Then F;; is anti-symmetric. In particular, if k£ is ood, then

Tr(Fy A AFy) =Te(Fy A~ AFg)T) = (D) Te(FL A - A FL).
Thus Tr(Fg A -+ A Fg) = 0.
Proposition 30.4. Up to a factor, chy(E®C)=( )Tr(Fv A--- A Fy).
Proof. Exercise. O

We have shown that chy(Fy) = 0 for k odd. Since ¢, (Fy) are made up of
chy, we get ¢, (Fv) = 0 for m odd.

The reason this doesn’t show that odd degree Chern classes vanish is because
the reduction of the gauge group is from GL to U and then the same argument
only shows that the Chern class is only pure imaginary.
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We are going to do some Riemannian geometry.

31.1 Curvature of a Riemannian manifold

Let (M, g) be a Riemannian manifold and let V be the Levi-Civita connection
on T'M. Then for C* vector fields X,Y, Z, we can define

R(X,Y)(Z) =VxVyZ — VyVxZ — VixyZ.

Proposition 31.1. R(e,e) is endomorphism valued, i.e., is in End(TM) ®

T*M®2,
In local coordinates (z!,...,2™) near p, we can use {9/9x',...,0/0x"} as
a frame for T'M. Then we can write
(i i) 0 _pi 9
dxi’ 0xd ) dxk T gl
In other words, if v = v¥9/0x*, then
0 0 0
—_—, = Rl ! ki.
(o 507 )0 = B’

We can also define, for X, Y, Z, W € T'(T M),
R(X,Y,Z, W)= (R(X,Y)Z,W).
This defines a section of (T*M)®4. In local coordinates,
Rijpr = glpRijlk
Proposition 31.2 (The Bianchi identities).
(1) R(X,Y)Z + R(Y,Z)X + R(Z,X)Y =0
(2) VR=0

Proof. We have already proved (2). Let us do (1). Since everything is tensorical,
we can check (1) at a point p € M, in normal coordinates (z!,...,2™). We have
0

o 0 0
R( 5 55 ) 3r = ViV = ViVl g

() - e

because we are working in normal coordinates and so the evaluation of I" at p
is zero. Now

) = airé‘k - ajl—‘ﬁk

Rij'y + Ry, + Rii'y = 0Ty — 0,7 + 0,1k, — 0T, + 0kTY — 0,T; = 0

r 1 _ Tl
since ij —ij. ]
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Lemma 31.3 (Symmetries of R).

(i) R(X,Y,Z,W) = R(Z,W,X,Y).
(ii) R(X,Y,Z,W)=—R(Y,X,Z,W)=—R(X,Y,W,Z).

Proof. Homework. O

The curvature tensor has a lot of information.

31.2 Sectional curvature

Definition 31.4. Let p € M, and let ¢ C T, M a 2-dimensional subspace. Let
o = span{z, y} and define

R(X,Y,Y,X)

Ko) = Tz ave

where [|[X A Y]? = |X|?|Y]? — (X,Y)2. This K(0) is called the sectional
curvature.
Proposition 31.5.

(1) K(o) is independent of the choice of {X,Y} spanning o.
(2) K(o) for every o C T,M determines R(p).

Proof. (1) We can just check that K (o) is not changed by (X,Y) — (¥, X) and
(X,Y) - (AX,Y) and (X,Y) — (X, Y + AX). This can be checked.
(2) It suffices to prove the following lemma. O

Lemma 31.6. If V is a vector space with an inner product (e, e) and trilinear

maps R, R : V xV xV =V such that
R(X,Y,Z, W) =(R(X,Y)Z,W), R(X,Y,Z,W)=(R(X,Y)Z,W)

satisfy the symmetries of the Riemannian curvatures, then R(X,Y)Y, X) =
R(X,Y,Y,X) for all X,Y implies R=R'.

Proof. By assumption, expanding R(X+Z,Y,Y, X+7) = R(X+Z,Y,Y,X+7)
implies

R(X,Y,Y,X)+ R(Z,Y,Y,Z) + R(X,Y,Y, Z) + R(Z,Y,Y, X) = same with R’.

Becuase R(X,Y,Y,Z)=R(Y,Z,X,Y) = R(Z,Y,Y, X), we get
R(Z,Y,Y,X) = R(Z,Y,Y, X).

Now let us expand R(Z,Y + W, Y + W, X). From this, we get

R(Z,W,Y, X) - R(Z,W,Y,X) = R(Z,Y,W,X) - R(Z,Y,W,X)
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That is, R — R’ is invariant under cyclic permutations of the first three entries.
So summing over a cyclic permutation and using the first Bianchi identity, we
get

3[R(Y, Z,W,X) — R'(Y,Z,W,X)] = 0.

Therefore R = R'. O
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Last time we defined the Riemann curvature tensor as
R(Xa K Za W) = <R(X7Y)Z7 W>a R(X? Y)Z = (VXVY - vYVX - V[X,Y])Z'

Then we defined

R(X,Y,Y,X)

Klo) = =77

for o = span(X,Y) CT,M

We proved that K (o) determines K.

Definition 32.1. Let us say that (M, g) has constant sectional curvature
K (o) = K is independent of both p and o.

Lemma 32.2. If (M, g) has constant sectional curvature K, then

Proof. This is a 4-tensor that has agrees on 2-planes and has all the symmetries.
O

Definition 32.3. The Ricci curvature is given by
Ric(X,Y) =Tr(Z — R(Z,X)Y).
In local coordinates, we have
(Ric)i; = Ryi"; = g"* Ry
Note that this is not Tr(Fy).

Definition 32.4. The scalar curvature is defined as

32.1 Effect of curvature on geodesics

Fix a point p € M, a vector v € T, M and consider (t) = exp,, vt. Our goal is
to study variations of (¢). The general family of geodesics is

a(t, s) = exp, (t(v,w(s)))

where w(s) : (—¢,€) — T,M with w(0) = 0. Then for each sg, a(t,so) is a
geodesic with initial vector v + w(sg). We are going to study the infinitesimal
variations of the geodesics. We have

d

dsls=o epr(t(U +w(s))) = d(epr)tvtw/(O).

This gives us a vector field.
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Proposition 32.5. The vector field J(t) = d(expp)mtw 1s solves the following
Jacobi field equation:

V5 Vs J(t) = R(3, J)A.
Proof. By torsion-freeness of the connection,
Vi =V iy = [¥, J] = [d(exp,)witv, d(exp,,)lw] = d(exp, )to[v, w] = 0
because v and w are constant on T, M. Then
ViVsd =V Vv = R, J)¥ + ViVsy + Vi 7 = Ry, J)7- O

Definition 32.6. For a geodesic v : [0,a] — M , a vector field J(t) along ()
is a Jacobi field with initial data Jy, Jj if J(¢) solves the Jacobi field equations
with J(0) = Jo and J/(0) = J;.

Let us show that Jacobi fields exist. Let ey, ..., e, be an orthonormal basis
for T,M, and let E1(t),...,E,(t) be the parallel transport of eq,...,e, along
v(t). Then {E;(t)} is orthonormal for all ¢ € [0,a] because the Levi-Civita
connection is compatible with g. More formally, we can write

4
dt
Now write J(t) = >, a;(t)E;(t). Then

(Ei(t), E;(t)) = (V5 Ei(t), Ej(t)) + (Ei(t), V5 E;(t)) = 0+ 0 = 0.

n
V5Vsd = ai(Ei(t) =Y ai(t)R(%, Ei)¥.
i=1 i
Taking the inner product with F;, we get
gi(t) =Y _ai(R(Y, Ei, 4, Ej).

This is an ODE, so we can always solve it.

Theorem 32.7. Given (t), Jo, J§ € T,M, there exists a unique Jacobi field
J(t) along v(t) with initial conditions J(0) = Jy and J'(0) = J}.

So if Jo =0 and Jy = w then J(t) = d(exp,,)ywt.
Recall that Gauss’s lemma says

(d(expp)vw, d(expp)vv) = (v, w).
Proposition 32.8. If J(0) =0 and J'(0) L v/(0) then J(t) L ~'(t) for allt.
Proof. Note that
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because V4% = 0 since v is a geodesic. Then

2
%(J(t)ﬁ(m = (V5 V5 J(8),74(t)) = R(%, J(t),%,7) = 0.
Thus
(J(t),4(t)) = (7(0),4(0)) + £(J'(0), ¥(0)).
If J(0) =0 and J'(0) L 4(0), then we immediately get J(t) L (). O

32.2 Jacobi fields on manifolds with constant sectional
curvature

Suppose (M, g) has sectional curvature K € R. Fix (¢) a geodesic with |[§(¢)| =
1.

Proposition 32.9. The Jacobi field equation is
ViVid =—-KJ
if J(0) =0 and J'(0) L 4.
Proof. We have R(%, J)% = —KJ since we have an explicit formula. O
For example, if w(t) is parallel along 4(t) with |w(t)| = 1 and w(t) L 4 then

J(t) = Sin(t\/?w(t)

is a Jacobi field K > 0.
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Let (M, g) be a Riemannian manifold and + : [0,1] — M be a geodesic. Then
J(t) is a Jacobi vector field along ~(t) if it satisfies the equation V5V J(t) =
R(Y, J)7-

Let us now look at the special example where (M, g) has constant sectional
curvature K. Then V;VsJ + KJ = 0. If w(t) is parallel along v(t) with
w(t) L 4(t), then J(t) is a Jacobi field with J(0) = f(0)w(0) and J'(0) =
1(0)w(0) + f(0)w’(0) if and only if

d*f
a2t Kf(t)=0

if we set J(0) = 0. The solution to this differential equation is

Mw(t) K >0

VE
J(t) = < tw(t) K=0
SV Bw(t) K <O0.

Let us think what this is saying. If K < 0, then a small variation of a geodesic
oscillates around the original geodesic. This already hints that the manifold M
looks somewhat like the sphere. If K = 0, then a small variation of a geodesic
linearly drifts away from the original one. The Euclidean space (R”, geug) is
an example of this. If K < 0, then the variational geodesic goes away from
the original one exponentially. The upper-half plane (H2, (dx? + dy?)/y?) is an
example.

33.1 Conjugate points

Definition 33.1. ¢ is conjugate to p (along v € T,,M) if ¢ is a singular value of
exp, : T,M — M, ie., ¢ = exp,v and d(exp,), : TpM — T, M has non-trivial
kernel.

Proposition 33.2. q is conjugate to p along v if there exists a non-zero Jacobi
field J(t) along ~(t) = exp,(vt) such that J(0) = 0 = J(1). Moreover q is
conjugate to p if and only if p is conjugate to q.

Proof. Take any w € T, M. Then J(t) = d(exp,,),¢tw is a Jacobi field with J(0)
and J'(0) = w. Then J(1) = 0 if and only if w € kerd(exp,),. The symmetry
of the statement is obvious. O

Recall that the first variation of the arc length functional gave rise to the
geodesic equation. Now let us look at the second variation of the arc length.
Since geodesics may not be length minimizing, the second variation may not be
positive definite.
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Theorem 33.3. Let v(t) : [a,b] = M be a geodesic with unit speed. Let Q =
[a,b] x [—€,€] X [=0,8] = M be a smooth map such that Q(t,0,0) = ~(t). Then

82 b
G| = [ (0w - (ROVDITY)
— (T(V.T)(T(W,T)))dt + (T V. T)]
where
L(v,w) = ’19Q —(t,v w)‘ dt,
g
8@ aQ oQ
W= 2£(t0,0), V=25(t00), T=—5(t0,0).

Proof. We have L(v,w) = f | T||dt. Then

oL / / (VyT,T)
VT, Tydt = | V2 g
o, o 7

But V{(T,T) = 2(VyT,T) and VyT = VrV + [V,T] and [V,T] = 0. So

oL /b (VrV.T) o

ov =),
Note that this is the same thing we got when we were talking about the geodesic
equationﬂ

Now the second derivative is
PL _ /”(W<vTv,T> ~ <vTv,T>WT||)dt
owov — J, Al Al

B /b(<vwvm T) + (VoV,VeW)  (VoV, T)(VwT, T))dt
- Ja 17| 1® '

We can do the swapping using the same arguments, and evaluate at ©u = v = 0.
Then V7T = 0 and |T|| = 1 and so (V7 V,T) = T(V,T) and (Vo W,T) =
T(W,T). Thus

0?L b
= T v, T
Ovow ‘(0,0) /a (<VTVWV7 ) +H(R(W, T)V.T)

V2V VW) = (T D) (T (VW) )i
Now (VrVwV,T) = (d/d)(VwV,T) and so finally

0?L
ovow

—(vwv.nl+ | (rv.ww)

— ROW,T,T,V) = (T{V, T))(T(W,T)))dt. O

2If we require V(a) = V(b) = 0 and ||¥|| = 1, then (V7 V,T) = (d/dt)(V,T) — (V,VT)
and so we get that VT = 0. This gives another (really the same) proof of the fact that
geodesics are the critical points of L.
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Note that this makes sense even when V and W are piecewise C'°°. Assume
that V and W are C™ on [t;, ;1] where a =ty < -+ < t, = b, and assume
also that (V,T) = (W, T) = 0. Then

0L
ovow

tit1
t; -

n—1 t;
= Z/ ((V2V. VW) = ROV, T, T, V) )dt + (Vw V. T)
i=0 Y ti-1

The second term telescopes. For the first term, we can integrate by parts and
get

tit1
/ ((V2V, V2W) = ROW, 7,7, V) ) dt
t

i

tit1
= 809V W) - [ ((@292viw) - REV.TW))
t

7

I will discuss the applications next week.
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Recall that p,q € M are conjugate (along v € T,M) if ¢ = exp, v and d(exp,,),
has non-trivial kernel. We have proved that ¢ € M is conjugate to p if and only if
there exists a non-zero Jacobi field J(t) along exp,, vt such that J(0) = J(1) = 0.

Corollary 34.1. If q is not conjugate to p then for any w € T,M there exists a
Jacobi field along the geodesic g(t) connecting p and ¢ = v(1) such that J(0) =0
and J(1) = w.

Proof. Let © € T,M. Let Jy(t) be the Jacobi field with J;(0) = 0 and J;(0) = .
Consider the map T,M — T,M given by ¢ + J;(1). This map is linear and
has no kernel. Thus it is an isomorphism. O

34.1 Second variation of arc length

If v : [0,a] = M is a geodesic with ||§]| = 1, we want to compute the second
variation or arc-length. Given piecewise C*° vector fields V, W along ~(t) such
that V(0) =0,W(0) =0 and V(a) =0,W(a) =0and V L 4, W L 4.

The second variation, we have shown last time, can be computed as

n

n—1 tit1
VW) = (8951 W) = Y [ V95V - RV,
i=0 i=0 v ti

where V, W are C* on [t;, t;11] and A, V4V =lim, .+ V4V —lim,_,- V4 V.
We can consider I(V,W) as a symmetric bilinear form on piecewise C'*°

vector fields along ~(t). (Here, we don’t necessarily have to put assumptions at
end points or being perpendicular to 4.)

Proposition 34.2. The null space of I is exactly the set of Jacobi fields along
~(t) which vanish at the end points.

Proof. 1f V(t) is a Jacobi field along ~(¢), then

n

n—l at;
I(V,W) =Y (A, V3V, W) — Z/t (V4V5V = R(3, V)5, W) =0

=0

because V is C'*° and solves the Jacobi equation.
Conversely, Take 0 =ty < --- < t, = a such that V|y, 4,1 is C%. Let
f():[0,a] = R be C* with f >0 and f(¢;) = 0. As a test vector field, take

W = [()[-V5V5V + R(3, V)3l

Then we get

n—1

tit1
VW) =3 [ 101V VsV - RGL VP =
i=0 Yt
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So ViVsiV — R(%,V)y = 0 on [t;, tip1]. So I(V,W) = 37" (A, VLV, W).
Let W be any C* vector field so that W(t;) = V;,V4V. Then I(V,WW) =
S oA,V V|2 and so Ay, V5V = 0. So V4V is continuous.

Now we claim that V' is C'*° and solves the Jacobi equation. This is because
the Jacobi equation is determined by V (t), V(t) and since V4V is continuous,
the two solutions around a singular point actually have to agree. This is basically
appealing to the existence and uniqueness of ODEs. O

Corollary 34.3. I has non-trivial null space if and only if v(0) is conjugate to
~(a). The dimension of the null space is equal to the order of the conjugacy.

34.2 First index lemma

Lemma 34.4 (First index lemma). Suppose « is a unit speed geodesic between
p = ~(0) and g = y(a). Suppose there are no points on vy conjugate to p. Let
W be a piecewise C*® wvector field along v such that W(p) = 0. Then

(i) there exists a unique Jacobi field V' along v such that V(p) = 0 = W (p)
and V(q) = W(q).

(i) I(V,V) < I(W, W) with equality if and only if V =W.

Theorem 34.5 (Bonnet-Myers). Let (M™,g) be a compact Riemannian man-
ifold. If there exists a H € R~ such that

(i) Ric(z,z) > (n— 1)H for all unit vectors x, or
(i) K > H,

then every geodesic ~ of length (v) > n/v/H has conjugate pints, and dim(M) =
sup{d(p,q) : p,q € M} < w/vH. In particular, M is compact.

I’ll prove both of these next time.
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Lemma 35.1 (First index lemma). Suppose we have v : [0,a] = M be a unit
speed geodesic connecting the points p = ¥(0) and ¢ = v(a). Suppose there are
no points on vy conjugate to p. If W is any piecewise C* wvector field along ~y
with W (p) = 0, then

(1) there is a unique Jacobi field V' along v such that V(p) = W(p) = 0 and
Vig) =Wlq), and
(2) I(V,V) < I(W,W) with equality if and only if V =W.
Proof. (1) Since ¢ is not conjugate to p, we can find a unique V.

(2) Let {V;}, be a basis of T,M. Extend V; to Jacobi fields .J;(t) along
~(t) such that J;(0) = 0. For each t € (0, a), the J;(¢) are linearly independent.
This is because if ZZ\; a;J;(t) vanishes at t = ¢y and ¢t = 0, then p is conjugate
to y(to). This contradicts our assumption.

We now claim that W = > fi(t)J;(t) for f; piecewise C*°. Because J;(0) =
0, we can write J;(t) = tA;(¢) for A; smooth vector fields linearly independent on
[0, a]. Here, A;(0) are linearly independent because A4;(0) = J/(0). Then W (¢t) =
> 4i(t)Ai(t) where ¢;(t) are piecewise C*°. But now, W(0) = ", ¢;(0)A;(0) =
0 and so ¢;(0) = 0 for all i. Then we can write g;(t) = tf;(t) with f;(t) piecewise
C°°. This implies that W(t) = > fi(¢)Ji(t).

Because V' is a Jacobi field that agrees with W at a, we get V=", f;(a)J;(t).
Then

= Y Fia) (o) L), Ty (@)

Likewise we have V5 W = 3, fi(t)Ji(t) + 3, fi(t)Ji(t) = A + B and so
1) = [ W Wi+ [ (RGWW
0 0
= [T A) A B) (B A+ (B.B)+ RGWAW).
0

The term (B, B) looks like

/BB Z/ Fif; (i, Jy) Z/ 1.5 % Jl,J — (i, J)]
=3 L@ f(a)(Ji(a) Z/ Gty + o) (T ) /Ry,w% w).
ij

Also

/O(A,B)dt:/o %:fifj<Ji,Jj>
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cancels one of the terms. )
We note that (J;, J;) = (J;, J;) because
d
dt
and (J;, J;) — (Ji, J;) =0 at t = 0. So

;/0 fz'fj(Ji,Jﬁdt:%:/o fifj<Ji,Jj>dt:/(; (B, A)dt.

Therefore we get

(Jiy Jj) = (Ji, J3)) = (Ji, Jj) = (Ji, Jj) = R(3, T3, 4, J;) = R(3, Ji, %, J;) = 0

W, W) =I(V,V)+ /a<A, A)dt
0

and A = 0 if and only if f;(t) = 0, which means W = V. O

35.1 Bonnet—Myers theorem

Theorem 35.2 (Bonnet—Myers). Let M™ be a complete Riemannian manifold
with H € Ryg such that

(i) (Myers) Ric(x,z) > (n — 1)H for all unit vectors x.

(i) (Bonnet) K > H.
Then diam(M) < 7/vH and in particular, M is compact.

Note that (i) is a stronger result than (ii) because if K > H then Ric(z, x)
is a sum of n — 1 sectional curvatures.

Proof. Take p,q € M and let d(p,q) = . Take v : [0,{]] — M a unit speed
geodesic connecting p and ¢. Let F;(t) be an orthonormal frame of parallel
vectors along «(t). Let W;(t) = sin(nt/l)E;(t). (This will serve as the model
Jacobi field from space of constant curvature K = [2.) We have

! T \2[m2

I(W,;,Wi):/ sin(7t> [l—ng("y,Ei,ﬂ’y,Ei)}dt.

0

So if K > H then
2

L 2
™ ™
; N < in( = Z )
I(W“Wl)f/o Sln(lt) [12 H]
If | > w/vVH, then I(W;,W;) < 0. This contradicts the fact that v is length

minimizing.
For Myers, we sum over i. Then

2

nil(wi, W) = /sin(%) [(n - 1)7%2 - Ric(q'/,ﬂ'y)}dt <0
=1

if | > 7/vH where Ric(¥,%) > (n — 1)H. Then I(W;,W;) < 0 for some i and
S0 7 is not length minimizing. O
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36.1 Covering spaces

Definition 36.1. Let B be a topological space. Bis a covering space with
covering map 7 : B — B if it is continuous and surjective and for each p € B
there exists a neighborhood U C B such that 7~ (U) = |J, V. with V,, C B
open and 7|y, : Vo — U, a homeomorphism.

For example, the map R — R/Z =2 S! is a covering map. The map R? —
R2/7Z ® 7 = S* x St is also a covering map.

Proposition 36.2 (Curve lifting). If o : [0,1] — B is curve and 7 : B — B is
a covering map, then for any po € B with m(po) = a(0), there is a unique lift
& :[0,1] = B such that (&) = « and &(0) = py.

Definition 36.3. ag,a; : [0,I]] — B with ap(0) = a1(0) = p and ap(l) =
a1 (1) = q are homotopic if there exists a continuous map H : [0,1] % [0,1] — B
such that H(e,0) = o, H(e,1) = ay, and H(0,e) =p, H(l,e) = q.

Proposition 36.4 (Homotopy lifting). If 7 : B — B are local homeomorphisms
with path lifting, then we can lift homotopies. So if ag and ay are homotopic,
then they lift to homotopic curves provided &p(0) = @1(0) = po.

Corollary 36.5. The cardinality #7~"(p) is independent of p if 7 : B — B is
a covering map and B is connected.

Definition 36.6. B if simply connected if all curves connecting any p,q € B
are homotopic.

The sphere S™ is simply connected if n > 2 and S* is not.

Proposition 36.7. Ifx: B — B is local homeomorphism with path lifting, then
if B is simply connected and B is path connected, then w is a homeomorphism.

Proof. We need to show that 7 is one-to-one. If w(p;) = m(p2), then consider
a path connecting p; and ps. The image of this curve is homotopic to the
constant map. This implies that the path is homotopic to the constant map.
So p1 = pa. O

Corollary 36.8. If 7 : B — B is a covering map and B is path connected, B
is simply connected, then 7 is a homeomorphism.

Proposition 36.9. Let 7 : B — B be a local homeomorphism with path lifting
and let B be locally path connected. If B is locally simply connected, then 7 is
a covering map.

Proof. For p € B, let V 3 p be a simply connected neighborhood. Let 7=1(V) =
U,, Va where the Vs are the path components. We claim that 7(V,,) = V. If
qgeVv\ 77(‘7&, then a path connecting q and a point in W(Va) can be connected
by a path in V. The lift has to be in 7-1(V) and so we get a contradiction.

This shows that 7r|‘~/a : Voo — V is a covering map. Then By the proposition, it

is a homeomorphism. Since V,, are disjoint, we see that 7 is a covering map. [
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36.2 Hadamard’s theorem

Theorem 36.10 (Hadamard). Let (M, g) be a complete metric with K < 0.
Then for every p € M, exp, : T,M — M is a covering map.

Corollary 36.11. If (M,g) is complete, simply connected, and K < 0, then
M = R".

For example, T™ = R"/Z"™ has a flat metric, and R® — T™ is a covering
map. For S™ this cannot be true for n > 2.

Lemma 36.12. The map exp,, : T,M — M is a local diffeomorphism.

Proof. We just need to show that ker d(exp,,), = () for v € T,M. In other words,
we need to show that if y(t) = exp, vt and J(t) is a nonzero Jacobi field along
~(t) with J(0) = 0, then J(t) # 0 for ¢t > 0. We have

d 2 .
S OF =2(.J),

and then

d? . ) )

IO =200, J) = 2K(3, 1), > 0.

Because d|J(t)|?/dt|;—o = 0, we get |J(t)| > 0 for t > 0. This implies that there
are no conjugate points. So exp,, is a local diffeomorphism. O

Thus (R",expy g) — (M, g) is a local isometry.

Lemma 36.13. If (N,h) — (M, g) is a local isometry between complete mani-
folds, then 7 is a covering map.

Proof. We need to verify the path lifting property. Given « : [0,]] — M, we
need to lift o uniquely on [0, tg) for tg > 0. If t, — to, then I5(@(0), a(ty))n =
lo(a(0), a(ty))sr < C. Because M is complete, bounded sets are compact. Sow

a(ty) — ato) € M. Now use local path lifting. O
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