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1 August 31, 2016

Differential geometry is mostly about taking the derivative on spaces that are
not affine. When we are on a line, then we can define the derivative as

∇ef(x) = lim
t→0

f(x+ te)− f(x)

t
.

But if we are on a circle, we already run into trouble because we can’t add
points. For instance if you are doing physics, these problems arise.

The basic objects we are going to study are smooth manifolds. The model
smooth manifold of dimension n is Rn, which comes equipped with the coordi-
nates (x1, . . . , xn). Any manifold is going to look locally like Rn.

In order to tell you what a smooth manifold is, I need to tell you what a
topological manifold is.

1.1 Topological spaces and manifolds

Definition 1.1. Let X be a set, and let τ be a collection of subsets of X. The
pair (X, τ) is a topological space if

(i) X ∈ τ and ∅ ∈ τ .

(ii) If Uα ∈ τ and α ∈ A then
⋃
α∈A Uα ∈ τ .

(iii) If U1, . . . , UN ∈ τ then U1 ∩ · · · ∩ UN ∈ τ .

We say that U ∈ τ is an open set.

A topology can be bizarre, and so we give some conditions.

Definition 1.2. A topological space (X, τ) is Hausdorff if, for any x, y ∈ X
with x 6= y, there exist open sets U, V ∈ τ such that x ∈ U , y ∈ V , and
U ∩ V = ∅.

Example 1.3. A stupid example is τ = {∅, X}. If X = Rn, then it is not
Hausdorff.

Metric spaces are always Hausdorff topological spaces with τ generated by
{Bε(p)}ε>0,p∈X .

Definition 1.4. Let {Wα}α∈A be an open cover of X. A refinement of this
cover is a cover {Vβ}β∈B such that for all β ∈ B there exists an α ∈ A with
Vβ ⊆Wα.

A cover {Wα}α∈A is called locally finite if for any x ∈ X there exists an
open Ux 3 x such that

#{α ∈ A : Wα ∩ Ux 6= ∅} < +∞.

A topological space (X, τ) is called paracompact if every open cover has a
locally finite refinement.
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Definition 1.5. A topological manifold of dimension n is a Hausdorff, para-
compact topological space such that for any p ∈ X there exists an open set
U ⊆ X containing p and a homeomorphism ϕU : U → Rn.

The pair (U,ϕ) is called a local coordinate chart or a local coordinate
patch. The set

A = {(U,ϕ) : U ⊂ X is open, ϕ : U → Rn is a homeomorphism}

is an atlas if X =
⋃

(U,ϕ)∈A U .

Definition 1.6. M is a smooth manifold of dimension n if it has an atlas such
that the transition functions

ϕ ◦ ψ−1 : ψ(U ∩ V )→ ϕ(U ∩ V )

are C∞ homeomorphisms for all (U,ϕ), (V, ψ) ∈ A.

Example 1.7. The circle S1 cannot be covered by a single chart because it is
not homeomorphic to R1. But if you remove one point, say the South pole, then
S1 \{s} ∼= R1. Doing the same thing on the North pole, you get two charts that
cover S1. You can check that the transition maps are C∞ maps and this gives
S1 a smooth structure.

Definition 1.8. A local patch (U,ϕ) is compatible with the atlas A if for any
(V, ψ) ∈ A, the maps ϕ ◦ ψ−1 and ψ ◦ ϕ−1 are C∞.

In this case, we get a new atlas A′ = A∪ (U,ϕ) which is strictly larger than
A unless it was already in A. A smooth manifold is equipped with a maximal
atlas. This allows us to choose our favorite cover by local coordinate charts.

1.2 Maps between manifolds

Definition 1.9. A function f : X → Rk is smooth if f ◦ ϕ−1 : ϕ(U) → Rk is
C∞ for every patch (U,ϕ) ∈ A.

Why is this definition independent of a choice of a coordinate system? If I
choose (V, ψ) then

f ◦ ψ−1 = (f ◦ ϕ−1) ◦ (ϕ ◦ ψ−1)

and thus is also in C∞. Hence it is independent of the choice of (U,ϕ)!

Definition 1.10. Let M and N be smooth manifolds. A map h : M → N is
C∞ if the map ψ◦h◦ϕ−1 is C∞ for any local coordinates (U,ϕ) of M and (V, ψ)
of N . M and N are diffeomorphic if there exists a smooth map h : M → N
with h−1 : N →M smooth.

It me give two key tools to construct examples of smooth manifolds.
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Theorem 1.11 (1.1, Taubes, Inverse Function Theorem). Let U ⊆ Rn be an
open set and let ψ : U → Rm be C∞. Let p ∈ U and suppose that the differential
ψ∗(p) of ψ at p is invertible. Then there exists an open V ⊆ Rm with ψ(p) ∈ V
and a C∞ map σ : V → U such that σ ◦ ψ(x) = x on a small neighborhood of p
and ψ ◦ σ(x) = x.

The next one is the Implicit Function Theorem, but I don’t have enough
time.
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2 September 2, 2016

Last time we introduced the notion of a manifold. So a manifold M is a Haus-
dorff paracompact topological space such that for each p ∈M there is a neigh-
borhood U and a homeomorphism ϕ : U → Rn. From now on, I am going to
assume that all manifolds are connected.

Lemma 2.1. If M is Hausdorff topological space which is locally Euclidean,
i.e., can be covered in coordinate charts, then M is paracompact if and only if
it is second countable.

We call that (M, τ) is second countable if there exist open sets {Ui}i∈N
such that if V ∈ τ then there exists G ⊆ N such that

V =
⋃
i∈G

Ui.

A standard example is M = Rn. The balls centered at rational points with
rational radii form a countable base. This lemma makes it easier to prove
something like that the product of two manifolds is a manifold.

2.1 Constructing new manifolds

Theorem 2.2 (Implicit function theorem). Fix m ≥ n, and open set U ⊆ Rn,
and a C∞ map ψ : U → Rm−n. Suppose a ∈ Rm−n is a regular value. Then
ψ−1(a) ⊆ U is a smooth manifold with C∞ structure given by “slice charts”,
i.e., for every p ∈ ψ−1(a) there exists a ball B ⊆ Rm centered at p such that
the projection π : B → ker(dψp) restricts to ψ−1(a) ∩ B as a coordinate chart.
In addition, there exists a C∞ map ϕ : B → Rn such that ϕ(B ∩ ψ−1(a)) is a
neighborhood in the n-dimensional space (X1, . . . , Xn, 0, . . . , 0).

For example, if ψ : Rm → R and a is a regular value, then ψ−1(a) is a smooth
manifold covered by charts such that ψ−1(a) looks locally like a hyperplane.

Definition 2.3. A value a is a regular value of ψ if dψ is surjective at all
p ∈ ψ−1(a).

Theorem 2.4 (Sard’s theorem). If ψ : U → Rn is a C∞ map, then the regular
values have full measure.

Example 2.5. Consider the map f : Rn → R with x 7→ |x|2. The regular
values are R\{0} and f−1({r2}) is the sphere of radius r centered at the origin.
In fact, for instance S1 is indeed a smooth manifold, as I told you last time.

2.2 Submanifolds

Definition 2.6. A submanifold of Rm with dimension n is a subset Σ such
that for all p ∈ Σ, there is an open neighborhood Up ⊆ Rm and a C∞ map
ψp : Up → Rn−m with 0 as a regular value and Σ ∩ Up = ψ−1(0).
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In other words, for every p ∈ Σ there exists an open neighborhood Up ⊆ Rm
and coordinates (x1, . . . , xm) such that

Σ ∩ Up = {(x1, . . . , xn, 0, . . . , 0)}.

Later we will have more abstract/intrinsic defintion of what it means to be a
submanifold of Rm. But this is not useless because it tells us what a submanifold
should locally look like.

Lemma 2.7. Suppose n ≤ m, and consider a ball B ⊆ Rn and an injective C∞

map ϕ : B → Rm such that dϕ is also injective everywhere. Then there exists
an open W ⊆ B with W ⊆ B such that ϕ(W ) is a smooth submanifold of Rm
and ϕ : W → ϕ(W ) is a diffeomorphism.

Proof. Fix p ∈ ϕ(W ) and let z = ϕ−1(p). We need to find ψp as in the definition.
Since dϕz is injective, the linear subspace

K = im dϕz ∼= ker((dϕz)
T : Rm → Rn)

is a space of dimension m− n. Define the map λ : W ×K → Rm given by

(x, v) 7→ (ϕ(x) + v).

The map dλ is injective and surjective at (z, 0) and so by the inverse function
theorem there exists a smooth map η : Up →W ×K with Up open, p ∈ Up such
that η · λ = 1 and λ · η = 1.

Let π : W ×K → K be the natural projection map. Then π · η satisfies

(π · η)−1(0) = η−1(x, 0) = λ(x, 0) = ϕ(x)

and 0 is a regular value since both dη and dπ are surjective. Therefore ψp = π ·η
works.

Consider for example the map

(ϕ,ψ) 7→ ((1 + ρ cosϕ) cosψ, (1 + ρ cosϕ) sinψ, ρ sinϕ)

which parametrizes the torus for ρ < 1. So a torus is a submanifold of R2.

Definition 2.8. For manifold M , a subset Y ⊆ M is a submanifold if for any
p ∈ Y , there exist a neighborhood U ⊆ M and coordinates ϕ : U → Rm such
that ϕ(U ∩ Y ) is a submanifold of Rm.

If f : M → N is a C∞ map and Y ⊆ M is a submanifold then f |Y is also
smooth.
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3 September 7, 2016

So last time we had some strategies for constructing manifolds, and the definition
of a submanifold. Today I want to tell you what the tangent space to the
manifold is. I am going to give three definitions and prove that they are all
equivalent if there is time.

3.1 The tangent space

Suppose M is a manifold of dimension n, and let p ∈M .

Definition 3.1. A curve in M through p is a C∞ map q : (−ε, ε) → M such
that q(0) = p.

Our goal is to define the tangent vector to q at p. If M = Rn, then we can
just define it as

dq

dt
(0) = lim

t→0

q(t)− q(0)

t
.

Here q(t)− q(0) makes sense because M = Rn is a vector space. So this is very
special. In general we can’t do this, so we need to instead use the fact that M
is locally Euclidean.

Definition T1 (Index Shuffling Definition). Choose a coordinate patch (U,ϕ)
with p ∈ U . Suppose we have a path ϕ(q(t)) : (−ε, ε) → Rn with ϕ(q(t)) =
(x1(t), . . . , xn(t)). Define

q′(0) =
d

dt
|t=0ϕ(q(t)).

This is not intrinsic because it requires a choice of ϕ. If ψ = (y1, . . . , yn) is
another patch near p, then ψ(q(t)) = ψ ◦ ϕ−1 ◦ ϕ(q(t)) and so

dψ(q(t))

dt
=

n∑
i=1

dxi

dxj
(ψ(q(t))

dxj

dt
,

dxj

dt
=

d

dt
[ϕ(q(t))j ].

A tangent vector at p is an equivalence class [(V, (U,ϕ)], where V is a vector
in Rn and (U,ϕ) is patch, and

(V, (U,ϕ)) ∼ (W, (Ũ , ψ)) if W j =
∂yj

∂xi
(p)V i.

The advantage of this definition is that it is explicit and so good for compu-
tations. But it is not great conceptually.

Definition T2 (Equivalence class of curves). The idea is that if q(t) and r(t)
are curves thorugh p, then either q′(0) = r′(0) is either true in all coordinate
systems or false in all coordinate systems. Define q(t) ∼ t(t) if there exists a
patch (U,ϕ) such that ϕ′(r(0)) = ϕ′(q(0)). Then a tangent vector at p is an
equivalence class [q(t)].
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This definition is better conceptually because we have hidden all differentia-
tions, but we don’t know how to add tangent vectors. We would certainly want
the tangent vector to be an vector space.

Before getting into the third definition, let me give some motivational speech.
In Rn, let V ∈ Rn be a vector and p ∈ Rn be a point. Moreover let f : U → R
with p ∈ U be a C1 function. The directional derivative is

~V f(p) = ∇~V f(p) = ∇f(p) · ~V .

We can further recover this vector from the operation by pluggin in the coordi-
nate functions.

We are now going to extract the properties of the derivation. D~V satisfies

(1) D~v : {C1 functions defined near p} → R.

(2) D~v(αf + βg) = αD~vf + βD~vg for all α, β ∈ R (Linear).

(3) D~v(fg) = gD~vf + fD~vg (Leibniz).

The first condition is not rigorous, so we make this rigorous.

Definition 3.2. Define

C∞p = {(f, U) : p ∈ U open , f : U → R is C∞}/ ∼

where the equivalence relation is (f, U) ∼ (g, V ) if there exists an open W ⊆
U ∩V with p ∈W such that f |W = g|W . The elements of C∞p are called germs.

One can check that [(f, U)] + [(g, V )] = [(f + g, U + V )] and α[(f, U)] =
[(αf, U)] for α ∈ R and [(f, U)] · [(g, V )] = [(fg, U ∩ V )]. This makes C∞p into
an associate commutative algebra.

Definition T3 (Derivations). A tangent vector V at p is an operator V :
C∞p → R such that

(1) V (αf + βg) = αV f + βV g.

(2) V (fg) = fV g + gV f .

This V is called a derivation.

The third definition is the most useful. The tangent space at p is

TpM = vector space of tanget vectors at p.

Example 3.3. If there is a local coordinates (x1, . . . , xn), then ∂/∂xi|p for
1 ≤ i ≤ n are derivations defined by( ∂

∂xi

∣∣∣
p

)
f =

∂f

∂xi
(p).

For this reason, we always denote ∂/∂xi the basis for the tangent space.
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3.2 Equivalences

Let p ∈M and q : (−ε, ε)→M be a curve through p. Define a derivation

q∗(0)f =
d

dt

∣∣∣
t=0

f(q(t)).

Theorem 3.4. (a) q∗(0) is a derivation.
(b) If q and r are equivalent curves then q∗(0) = r∗(0).
(c) If D is a derivation then there exists a curve q such that q∗(0) = D.

Proof. (a) Choose coordinates ϕ = (x1, . . . , xn). Then

q∗(0)f =
d

dt

∣∣∣
t=0

f ◦ ϕ−1(ϕ(q(t)))
∂(f ◦ ϕ−1)

∂xi
dxi

dt
(ϕ(q(0))).

So q∗(0) is a derivation by the property of the derivative.
(b) If q ∼ r then

d

dt

∣∣∣
t=0

ϕ(q(t)) =
d

dt

∣∣∣
t=0

ϕ(r(t)).

Next time I will prove (c).
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4 September 9, 2016

There were three different ways of looking at tangent vectors. There was the
index suffling, equivalence classes of curves, and derivations.

Theorem 4.1. Let q : (−ε, ε)→M be a curve through p ∈M .

(a) q∗(0) is a derivation.

(b) If r is an equivalent curve then r∗(0) = q∗(0).

(c) If D is a derivation at p then there exists a curve q through p such that
q∗(0) = D.

Last time we proved (a) and (b).

Proof of (c). Fix a coordinate patch (U,ϕ) near p. This is going to induce
coordinates ϕ = (x1, . . . , xn) with ϕ(p) = 0. Then xi is a C∞ function near p
and then can define ai = D(xi) ∈ Rn. We are then going to define

D̃ =

n∑
i=1

ai
∂

∂xi

and guess that D̃ = D.
We need to show that D̃f = Df for all C∞ map f defined near p. First of

all D(α) = D̃(α) = 0 for all α ∈ R. By linearity, D(
∑
βjx

j) = D̃(
∑
βjx

j) for
every βj ∈ R. Note that

D(xkxl) = xk(p) +D(xl) + xl(p)D(xk) = 0 = D̃(xkxl).

Given a f ∈ C∞ defined near p, we can write

f = f(0) +

n∑
j=1

βjx
j +

n∑
k,l=1

xkxlHk,l(x)

where Hk,l are smooth functions. This is possible by Hadarard’s lemma. Since
we can write

f = f(0)

n∑
j=1

βjx
j +

n∑
l=1

xlH̃l(x)

where H̃l(0) + βl = (∂f/∂xl)(0). If βl = (∂f/∂xl)(0) then H̃l(0) = 0. Apply
Hadamard’s lemma again we get the equation.

So then because the quadratic terms go to zero,

D(f) = D(
∑

βjx
j) = D̃(

∑
βjx

j) = D̃(f)

for every f ∈ C∞ defined near p. Now D̃ =
∑
aj∂/∂x

j so D̃ = q∗(0) where
q(t) = ϕ−1(a1t, . . . , ant).
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4.1 The differential

Suppose we have a map h : M → N . Then we can push-forward tangent
vectors from M to N .

One way is to do it using local coordinates. Suppose we have coordinates
(x1, . . . , xm) near p and (y1, . . . , yn) near h(p). Then ψ ◦ h ◦ ϕ−1 is a map that
looks like

ψ ◦ h ◦ ϕ−1(x1, . . . , xm) = (h1(x1, . . . , xm), . . . , hn(x1, . . . , xm)).

Then we can use are usual definition of the derivative as

dh(V ) =


∂h1

∂x1 (p) · · · ∂h1

∂xm (p)
... . . .

...
∂hn

∂x1 (p) · · · ∂hn

∂xm (p)


 v1

...
vm


where V =

∑m
i=1 V

i∂/∂xi. We can check that dhpV ∈ Th(p)N , i.e., that this
is independent of the choice of coordinates. This is a consequence of the chain
rule.

We can use the equivalence of curves definition. If q(t) is a curve through p,
then h(q(t)) is a curve through h(p). Then we can define

dhp : [q(t)] 7→ [h(q(t))].

To use the derivations definition of the tangent vector, we can pull back
functions. If f is a C∞ is a function defined near h(p), then f ◦ h is a C∞

function defined near p. So we set

dhpD(f) = D(f ◦ h).

4.2 Immersions and submersions

Definition 4.2. A C∞ map h : M → N is

(1) an immersion if dhp : TpM → Th(p)N is injective at every p ∈M . If h is
also a homeomorphism onto h(M) with the subspace topology, then h is
an embedding.

(2) a submersion if dhp : TpM → Th(p)N is surjective for every p ∈M .

Both of these definitions make sense locally, e.g., we can have local embed-
dings etc.

N ⊆ M is a submanifold if and only if the inclusion map i : N ↪→ M is
an embedding. This gives you a useful way to check whether something is a
submanifold.
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4.3 Vector fields

Definition 4.3. A C∞ vector field on an open set U ⊆ M is a map U 3
p 7→ V (p) ∈ TpM such that for all p ∈ U , there exists local coordinates

(Ũ , (x1, . . . , xn)) near p such that

V =

n∑
i=1

ai(x)
∂

∂xi

with ai in C∞.

We note that this makes TM =
⋃
p∈M TpM into a smooth manifold, because

we have described what the smooth functions are.
Suppose we are given two C∞ vector fields X and Y over U , and a C∞

function f : U → R. Then Y f : U → R is another smooth function, and then
we can define (XY )(f) = X(Y (f)). Is XY a vector field? The problem is that
the Leibniz rule fails. But the observation is that the error term is symmetric
with respect to X and Y . So XY − Y X is a vector field.
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A C∞ vector field on U ⊆ M is a map U 7→ TM with p 7→ V (p) ∈ TpM such
that for every p ∈ U there exist local coordinates (V, ψ = (x1, . . . , xn)) with
p ∈ V such that

V (p) = a1(x)
∂

∂x1
+ · · ·+ an(x)

∂

∂xn

with all ai smooth.
Given X,Y smooth fector fields on U with p ∈ U and f ∈ C∞p (M), we could

try to define (XY )f = X(Y (f)) as a new vector field. But this doesn’t work
because it doesn’t satisfy the Leibniz rule. We have

(XY )(fg) = X(fY (g) + gY (f)) = fX(Y (g)) +X(f)Y (g) +X(g)Y (f) + gX(Y (f)).

There are these junk X(f)Y (g) that is not what we want. So we modify the
definition.

Definition 5.1. The Lie bracket of C∞ vector fields X and Y is

[X,Y ] = XY − Y X.

It is easy to see that this satisfies the Leibniz rule.

5.1 Flow of a vecor field

Let V be a smooth vector field on M . For each point p ∈ M , we can consider
the flow of p (or trajectory) under V . Intuitively it is the trajectory when you
drop a particle at p. So its velocity at a point is the vector field at that point.
This is a map δ(t, p) : (−δ, δ)→M such that γ(0, p) = p and

∂ϕ

∂t
(s, p) = V (ϕ(s, p)).

Theorem 5.2. Let V be a C∞ vector field on M . For every p ∈ M there
exists an open set U ⊆ M with p ∈ U and δ > 0 along with a C∞ map
ϕ(t, x) : (−δ)×U →M such that for every x ∈ U the curve ϕ(t, x) : (−δ, δ)→M
is the flow from p along V .

Note that ϕt is one-to-one by local existence and uniqueness of ODEs. That
is, for a fixed t, ϕt(p) = ϕ(t, p) is a diffeomorphism onto its image. This is
because you can flow by −t to get to where you started. This is called the local
flow.

Theorem 5.3. If X and Y are local C∞ vector fields on M with p ∈ M . Let
ϕt be the local flow of X near p. Then

[X,Y ](p) = − lim
t→0

ϕt∗Y − Y
t

(ϕt(p)).
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Proof. Given f defined near p that is C∞, consider f(ϕt(q)) − f(q) = th(t, q)
with h(0, q) = Xf(q) by Hadamard’s lemma.

Then

ϕt∗Y (f(ϕt(p))) = Y (f(p)) = tY (h(t, p)) + Y f(p),

and

lim
t→0

[ϕt∗Y − Y
t

]
f(ϕt(p)) =

tY (h(t, p)) + Y f(p)− Y f(ϕt(p))

t

= −
[Y (f(ϕt(p)))− Y (f(p))

t

]
Y h(t, p)

= −XY (f)(p) + Y Xf(p) = −[X,Y ]f.

5.2 Partitions of unity

Let M be a manifold. A partition of unity is a collection of C∞ functions
fα : M → [0, 1] such that

(1) {supp fα} is locally finite,

(2)
∑
α∈A fα ≡ 1 on M .

We call that a partition of unity {fα}α∈A is subordinate to a cover {Uj}j∈J
if for each α ∈ A there is some j ∈ J such that supp fα ⊆ Uj .

Theorem 5.4 (Existence). For any open cover {Uj}j∈J ,

(a) there is a countable partition of unity {fi}i∈N subordinate to {Uj} such
that each supp fi is compact.

(b) there is a partition of unity {f̃j}j∈J such that supp f̃j ⊆ Uj and at most

countably many f̃j are not identically 0.

This is going to be a homework.

5.3 Lie groups

Definition 5.5. A Lie group is a manifold G which is a group such that the
multiplication and inverse are both C∞ maps.

Definition 5.6. Let Mn(R) be the set of n × n matrices with entries in R.

This is just Rn2

. The general linear group is defined as

GLn(R) = {A ∈Mn(R) : A is invertible with detA 6= 0}.

First of all GLn(R) is a group with the usual multiplication A · B = AB.
These are smooth, because everything is dividing a polynomial by a polynomial.
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We also define

SLn(R) = {A ∈ GLn(R) : detA = 1}.

To show that this is a manifold, it suffices to shosw that 1 is a regular value of
the det function. We claim that

ddet |M = det(M) Tr(M−1dM).

Lastly, we define

O(n) = {A ∈ GLn(R) : ATA = I}.
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Definition 6.1. A Lie group G is C∞ manifold equipped with C∞ maps m :
G×G→ G and ·−1 : G→ G satisfying the group axioms.

Why would you want to look at Lie groups? The symmetry of objects like
the sphere has a structure of a group, and also has a smooth structure. So
these objects occur in nature, especially if you are a physicist. Also, if a group
has a smooth structure, you can differentiate a map φ : G → H to get a map
Dφ : TidG→ TidH. If there is a group action G×M →M that is smooth, then
any tangent vector of G naturally gives a vector field on M .

Consider

O(n) = {A ∈ GLn(R) : ATA = 1}.

Is this a manifold? We would need the submersion theorem, which is a version
of the implicit function theorem.

Theorem 6.2. If f : M → N is a C∞ submersion, then for every n ∈ N,
f−1(n) ⊆M is a C∞ manifold.

Let’s show O(n) = ψ−1(a) for some a and ψ. We set

ψ : GL(n)→ Symn(R), A 7→ ATA.

This is a submersion, because

dψm = (dm)Tm+mT dm

and if you plug in a = mh/2 then dψm(a) = h.

Definition 6.3. Define SO(n) ⊆ O(n) as the set of A such that detA = 1.

You can show that SO(n) is a connected component of O(n). So SO(n) is a
Lie group.

6.1 Complex Lie groups

We define

M(n;C) = {n× n matrices over C} ∼= R2n2

.

Note that multiplication M(n;C)×M(n;C)→M(n;C) is C∞.
Like in the real case, we define

GL(n,C) = {M ∈M(n;C) : detM 6= 0}.

Then GL(n;C) is a open subset and thus a Lie group.
There is an equivalent definition for the general linear group.
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Definition 6.4. An almost complex structure is an element J ∈M(2n;R)
such that J2 = −1.

For example,

J =

(
0 −1
1 0

)
, J =


0 −1
1 0

0

0
0 −1
1 0


are almost complex structures. More generally, given any basis e1, . . . , e2n of
R2n, the map J : e2k−1 7→ e2k, e2k 7→ −e2k−1 is an almost complex structure.

Definition 6.5. We define

MJ = {m ∈M(2n;R) : mJ − Jm = 0}

and call it matrices that intertwine J . Then we define

GJ = {m ∈MJ : det
R
m 6= 0}.

This GJ is Lie group, and in fact, GJ ∼= GL(n,C) as Lie groups.

Theorem 6.6. There is an isomorphism GJ ∼= GL(n;C).

Proof. Fix a R-linear isomorphism f : R2n → C such that if = fJ . This
induces a map

M(n;C)→MJ , A 7→ f−1Af.

which is a bijection.
Now to prove the theorem, it suffices to show detCA 6= 0 if and only

if detR fAf
−1. Inside GL(n;C) there exists an open and dense set of di-

agonalizable matrices. Such a matrix A has eigenvalues λ1, . . . , λnand then
detCA = λ1 · · ·λn. Moreover, f−1Af is now diaganolizable over R and the
eigenvalues are λ1, . . . , λn, λ̄1, . . . , λ̄n. So detRf−1Af = |detCA|2 on a open
dense set, so the identity holds on all of M(n;C).



Math 230a Notes 21

7 September 16, 2016

We are trying to learn about Lie groups, basically by realizing as the inverse
image of a regular value.

7.1 More examples of Lie groups

The special linear group over C is defined as

SL(n,C) = {A ∈M(n,C) : det
C
A = 1}.

We claim that this is a manifold. Consider the map detC : M(n,C) → C.
Clearly SL(n,C) is the preimage of 1. The derivative is det is given by

ddet
M

: A 7→ det(M) Tr(M−1A).

To show surjectivity, for any c take A = c/(ndetM)M−1.
Let’s do another example. The unitary group is defined as

U(n) = {A ∈M(n,C) : AA† = I}

where A† = A
T

. Like in the case of O(n), we use the space of Hermitian matrices
as the image of ψ : M(n,C) → Herm(n) given by A 7→ AA†. The derivative is
given by

dψ = (dA)A† +A(dA)†.

We need to show that this is surjective. Given any Hermitian matrix M , we
take G = M(A†)−1/2. Then

dψ(G) =
1

2
(M(A†)−1A† +A(A−1M†)) = M.

We define special unitary group as

SU(n) = {A ∈ U(n) : det
C
A = 1}.

How would we prove this? We could try to show that 1 is the regural value of
detC : U(n)→ S1, but this is hard because we don’t know the tangent space of
U(n). Instead we look at the map

ψ : M(n,C)→ Herm(n)× R, A 7→ (AA†, (i/2)(detA− detA)).

Then SU(n) is some union of connected components, because the preimage is
the matrices that have determinant ±1. The derivative is given as

dψA = ((dA)A† +A(dA)†,=(Tr(A−1dA) detA)).
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If we try b̃ = M(A†)−1/2, we get

dψA(b̃) = (M,=(Tr(M) detA/2)) = (M, 0).

This is not quite good, so we add something in the kernel of M̃ 7→ M̃AT +AM̃ .
Particularly, we will take b = b̃+ ic̃A/n. Then

dψA(b) = (M,=(c̃detA))

and so we can choose and appropriate c̃ to finish.

7.2 Vector bundles

Let M be a C∞ manifold with real dimension n. Then a vector bundle of
rank m over M is another manifold E with dimension n+m together with

(1) a C∞ map π : E →M , called the projection map,

(2) a C∞ map 0̂ : M → E, called the zero section,

(3) a multiplication map µ : R×E → E satisfying π(µ(r, v)) = π(v), µ(r, µ(r′, v)) =
µ(rr′, v), µ(1, v) = v, and µ(r, v) = v implies r 6= 1 or v ∈ im(0̂), and

(4) for any point p ∈ M , an open set U ⊆ M with p ∈ U and a map λU :
π−1(U) → Rm × U such that λU : π−1(x) → Rn is a diffeomorphism for
every x ∈ U and λU (µ(r, v)) = rλU (v) for every x ∈ U .
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Last time we started learning about vector bundles π : E →M . There are maps
λn : π−1(U)→ Rn where U ⊆M are open sets. For a subset W ⊆M , we write
E|W = π−1(W ). In the case where W is a point x, the set E|x = π−1x is called
the fiber of E over x. If U ⊆M is an open subset such that a diffeomorphism
E|U ∼= U × Rn exists, this ρU = (π, λU ) is called a local trivialization.

8.1 Local charts on a vector bundle

Let φ : U → Rm be local coordinates on U ⊆ M and admits a local trivi-
alization λU . Then I get a diffeomorphism E|U → Rm × Rn given by v 7→
(ψ(π(v)), λU (v)). This gives a coordinate chart on E.

Proposition 8.1. The fiber of E over p has a canonical vector spaces structure.

Proof. Let p ∈ M be an arbitrary point and let ϕU : E|U × Rn be a local
trivialization around p. Now define for v, v′ ∈ π−1(p),

v + v′ = ϕ−1
n (p, λU (v) + λU (v′)).

We need to verify that this is independent of the choice of λU , i.e., λ and λ′ are
two such maps then

λ′(λ−1(e+ e′)) = λ′(λ−1(e)) + λ(λ−1(e′)).

This is saying that the map ϕ′U ◦ ϕ
−1
U over p is in a linear map Rn → Rn.

Note that for any r ∈ R and e ∈ Rn,

λ′λ−1(r, e) = λ′(µ(r, λ−1(e))) = rλ′λ−1(e).

Then by the following lemma, λ′λ−1 is a linear map.

Lemma 8.2. If a smooth map ψ : Rn → Rn satisfies ψ(rv) = rψ(v) for all
r ∈ R and v ∈ Rn, then ψ is linear.

Proof. The derivative of ψ is

ψ∗|tv(v) =
d

dr

∣∣∣
r=t

ψ(rv) =
d

dr

∣∣∣
r=t

rψ(v) = ψ(v).

So ψ is equal to its derivative, and it implies that ψ is linear.

8.2 Cocycle definition

A vector bundle of rank n is also given by the following data:

(1) a locally finite open cover {Uα} of M ,
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(2) for any α, β, a C∞ map gαβ : Uα ∩ Uβ → GL(n,R) called “transition
functions” that satisfy

(i) gαβ ◦ gβα = 1,

(ii) gαβ ◦ gβγ = gαγ on Uα ∩ Uβ ∩ Uγ . (The cocyle condition.)

Given this data, we can define

E =
⋃
α∈A

Uα × Rn/ ∼,

where (p, vα) ∼ (p′, vβ) if and only if p = p′ and vα = gαβ(p)vβ .

Example 8.3. The trivial bundle of rank n is simply M × Rn.

Example 8.4. Let 1 = {(cos θ, sin θ)}, and consider E ⊆ S1 × R2 given by

E =

{
(ρ, (v1, v2)T ) :

[
cos θ sin θ
− sin θ cos θ

] [
v1

v2

]
=

[
v1

−v2

]}
.

This vector bundle is called the Möbius band. This vector bundle is not trivial.
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Let M be a manifold of dimension m and let Λ = {p1, . . . , pk} be points in M .
For each pl, let Ûl be a coordinate patch with ϕl : Ûl → Rm. We are going to
assume that Ûl ∩ Ûj = ∅ for l 6= j and ϕl(pl) = 0. Let Ul = ϕ−1

l (B1(0)). So
these are just small open balls around p1, . . . , pk.

For each l choose a C∞ map gl : Sm−1 → GL(n,R), and let U0 = M − Λ.
Then U0, U1, . . . , Uk cover M and the only overlaps are U0 ∩ Ul with 1 ≤ l ≤ k.
Also no three overlap, so the cocycle condition is trivially met. Specify

g0,l : U0 ∩ Ul → GL(n,R); x 7→ gl

( ϕp(x)

|ϕp(x)|

)
.

This specifies a vector bundle of rank n.

9.1 The tangent bundle

Let M be a manifold of dimension m, and consider a local coordinate patch
(U,ϕ = (x1, . . . , xm)). Then { ∂

∂xi

∣∣∣
p

: 1 ≤ i ≤ m
}

span TpM for all p ∈ U . So over U , we have a trivial bundle of rank m spanned
by ∂/∂xi.

If (V, ψ = (y1, . . . , ym)) is another coordinate patch, then (∂/∂yj)|p =
(∂xi/∂yj)(∂/∂xi)|p by the chain rule. This gives us a map{∂xi

∂yj

}
i,j

: U ∩ V → GL(mR).

So the tangent bundle TM =
⋃
p∈M TpM is a vector bundle, with the obvious

projection map π : (v, p) 7→ p for v ∈ TpM .

Example 9.1. The tangent bundle of Rn is TRn = Rn × Rn. Likewise, for an
open set U ⊆ Rn, its tangent bundle is TU = U × Rn.

Example 9.2. Consider a function f : R2 ⊇ U → R and let M be given by
Φ : U →M with (x, y) 7→ (x, y, f(x, y)). The tangent vectors are

∂Φ

∂x
=
(

1, 0,
∂f

∂x

)
,

∂Φ

∂y
=
(

0, 1,
∂f

∂y

)
.

So the tangent bundle is TM ∼= M × R2.

Example 9.3. What is the tangent bundle of SL(n,R)? The special linear
group is defined as

SL(n,R) = {A ∈ GL(n,R) : detA = 1},
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and so the tangent bundle can be described as

T SL(n,R) = {(A,B) : A ∈ SL(n,R), B ∈ ker dψA}.

The derivative dψ is given by dψA(B) = Tr(A−1B), and thus we can write the
whole thing as

T SL(n,R) = {(A,AC) : A ∈ SL(n,R),Tr(C) = 0} ⊂M(n,R)×M(n,R).

If V/R is a finite dimensional vector space, we can define the dual V ∗ =
Hom(V,R). Let e1, . . . , en be a basis of V , where n = dimV . Then we can
define e∗1, . . . , e

∗
n as e∗i (ej) = δij . These e∗1, . . . , e

∗
n is a basis for V ∗.

Let p ∈M and with local coordinates (x1, . . . , xm) near p. We have a basis
{∂/∂x1, . . . , ∂/∂xm} for TpM .

Given a smooth function f defined near p, we define a linear functional

df : TpM → R; v 7→ v(f).

Then dfp ∈ T ∗pM . If f = xj , then dxj(∂/∂xi) = δij . So {dx1, . . . , dxm} is a
basis T ∗rM for all r near p.

If {y1, . . . , ym} is another set of coordinates, then by the chain rule,

dyi =
∂yi

∂xk
dxk.

Then we see that

T ∗M = {(α, p) : α ∈ T ∗pM}

is a vector bundle because ∂yi/∂xk : U ∩ V → GL(n,R).
That equation about dyi is true because

dyi
(∑

l

∂xl

∂yk
∂

∂xl

)
= dyi

( ∂

∂yk

)
= δik.

Then you can multiply the inverse matrix to get the equation.
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Let M be a manifold and E →M and F →M be vector bundle. A homomor-
phism E → F is a C∞ map h : E → F such that for every p ∈M , h : Ep → Fp
is linear. We will denote

Hom(E,F ) = {homomorphisms E → F}.

Proposition 10.1. Hom(E,F ) is a C∞ vector bundle over M .

Proof. I will leave this is as an exercise.

10.1 Sections of a vector bundle

Definition 10.2. A section of E is a C∞ map s : M → E such that such that
the following diagram commutes.

M E

M

s

id
π

Given an open set U ⊆M , we denote

Γ(U,E) = {sections of E|U}.

Γ(U,E) is linear, by the natural pointwise addition (s1 + s2)(p) = s1(p) +
s2(p). In fact, if f : U → R is a smooth function, then (fx)(p) = f(p)s(p)
defines fs ∈ Γ(U,E). This gives Γ(U,E) a C∞(U)-module structure.

There is a local description of the sections. Let Uα ⊂M be an open set such
that there is a local trivialization ϕα : E|Uα → Uα × R. For any s ∈ Γ(Uα, E),
we can write

ϕα ◦ s : Uα → (Uα × Rn); x 7→ (x, sα(x))

for a C∞ map sα : Uα → Rn. If we have another local trivialization Uβ ⊆ M
with ϕβ , then on Uα ∩ Uβ we have sβ = ϕβ ◦ s and sα = ϕα ◦ s. Then

sα = ϕα ◦ ϕ−1
β ◦ ϕβ ◦ s = gαβsβ ,

where gαβ : Uα ∩ Uβ → GL(n,R) is the transition map.

Lemma 10.3. For every open set U ⊆M , dimR Γ(U,E) =∞.

Proof. Take V ⊂ U an open set such that ϕV : E|V → V × Rn is a local

trivialization. Choose an open Ṽ with Ṽ compact and Ṽ ⊆ V . Let S : V → Rn
be any smooth map. There is a C∞ function ρ : X → R such that ρ ≡ 1 on Ṽ
and ρ ≡ 0 on X \ V . Then ρs ∈ Γ(M,E). Because s can be any smooth map,
it is infinite-dimensional.
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Definition 10.4. A set of sections {sα}1≤α≤n define a basis (or a frame) for
E|U if for all p ∈ U , {sα(p)} is a basis for Ep.

Notice that if there exists a frame for E|U then E|U ∼= U ×Rn, because you
can map (p, V ) 7→ (p, V α) where V =

∑
V αsα(p). There is something going on

with the existence of non-vanishing global sections.
Sections of TM |)U are just smooth vector fields.

Definition 10.5. A section of T ∗M is called a 1-form.

Recall that if f : M → R is C∞, then we get df ∈ Γ(M,T ∗M) defined by

df(p)(V ) = V f(p).

In local coordinates, {x1, . . . , xm} on p ∈ U , then V = ai ∂
∂xi

1 is sent to

df(V ) = ai
∂f

∂xi
.

Then T ∗M |U has frame dx1, . . . , dxm. In general, a section Γ(U, T ∗M) is a
linear combination of αidx

i where αi : U → R are smooth functions.

10.2 The algebra of vector bundles

The motto is “any operation which produces new vector spaces out of all vector
spaces can be applied to vector bundles”.

Definition 10.6. A vector bundle S → M is a subbundle of E if there is an
injective bundle map S ↪→ E.

For example, if M ⊆ Rn, then TM ⊆ TRn|M = M × Rn. So E ↪→ M is
always a subbundle of M × RN for N sufficiently large, if M is compact.

Similarly we can take the quotient bundle. If V is a vector bundle and
M ⊆ V is a subspace, then

V/M = {[v] : v ∈ V, v1 ∼ v2 if v1 − v2 ∈W}.

Then V/W is a vector space is dim(V/W ) = dimV − dimW . If E → M is a
vector bundle, we can define Q = M/E locally as Qp = Mp/Ep.

1Einstein Summation: Sum over repeated upper and lower indices.
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If we have a vector bundle E → M , then a subbundle is a vector bundle S
with an injective bundle map S ↪→ E. We want to define the quotient bundle
Q = E/M . Fiberwise this has to be Qp = Ep/Sp for each p ∈M . To show that
it is a bundle we need to give a local description.

Let U ⊆M be an open set with a local trivialization ϕU : E|U → U×Rn and
also a local trivialization ϕU |S : S|U → U × Rk for k < n. Let 〈 , 〉 denote the
usual inner product on Rn and let πS : Rn×Rk be the orthogonal projection onto
S. Over U let {s1, . . . , sk} be a local frame for S|U . Choose {τ1, . . . , τn−k} such
that {s1, . . . , sk, τ1, . . . , τn−k} is a frame for E. These τ1, . . . , τk can be computed

using 〈 , 〉 by Gram-Schmidt. Then a section of Q over U is
∑n−k
i=1 ai(x)τi for

ai ∈ C∞(U,R).

11.1 Duals and Homs

Let E →M be a vector bundle. Its dual E∗ →M should have fibers (E∗)p =
(Ep)

∗. Suppose ϕU : E|U → U × Rn is a trivialization. Define

ϕ∗U : E∗|U → U × (Rn)∗; ϕ∗U (` ∈ E∗p) = (p, ˆ̀)

where ˆ̀ is defined by

〈ˆ̀, ϕU (e)〉 = `(e)

for every e ∈ Ep.
This can be described in another way. If e1, . . . , en is a local frame for E|U

we can define maps

e∗i : U →
⋃
p∈U

E∗p ; p 7→ ei(p)
∗.

We then declare e∗1 to be a smooth local frame for E∗. If σ1 ∈ Γ(U1, E) then
we can write σ1 = σα1 eα for σα1 : U1 → R. This gives a map

ϕU1 : E|U1 → U × Rn; σ(p) 7→ (p, σα1 (p)).

If ψ = ψ1,βe
∗
β is a smooth section of E∗|U1

, (i.e. ψ1,β : U1 → R are C∞) then

ψ(σ) = ψ1,ασ
α
1 = 〈ψ1, σ1〉.

So the induced map on E∗ is

φ∗U1
: E∗|U1 → U1 × Rn; (p, ψ(p)) 7→ (p, ψ1,β).

This is exactly what we said before.
What happens when we change frame? If {f1, . . . , fm} is a frame for E|U2

then on U1 ∩ U2 we can write fi = gki ek. Then g12 = (gki ) is the transition



Math 230a Notes 30

matrix. If ~σ2 are the coordinates of σ in the {f} frame so that σ = σβ2 fβ . Then
the vectors are related by

~σ1 = g12~σ2 where g12 : U1 ∩ U2 → GL(n,R).

Byy definition, ψ(σ) = 〈~ψ2, ~σ2〉 = 〈~ψ1, ~σ1〉, so

〈~ψ1, ~σ1〉 = 〈~ψ1, g12~σ2〉 = 〈~ψ2, ~σ2〉

for all ~σ2. In matrix multiplication, this is ψT1 g12σ2 = ψT2 σ2. So ψ1 = (g−1
12 )Tψ2,

where (g−1
12 )T : U1 ∩ U2 → GL(n,R). So if g12 are the transition functions for

E then (g−1
12 )T are the transitions for E∗.

Corollary 11.1. E∗∗ = E.

Let us now look at bundles of Homs. Let E → M and F → M be vector
bundles. Fiberwise, we must have Hom(E,F ) =

⋃
p Hom(Ep, Fp). Let U ⊆ M

such that we have frames {e1, . . . , er} for E|U and {f1, . . . , fk} for F |U . Let

tij : E|U → F |U ; tij(ej) = fi.

For every p ∈ U , tij(p) forms a basis for Hom(Ep, Fp). Declare that tij is a
C∞ local frame. This gives an isomorphism Hom(E,F )|U ∼= U × Rrk. Then a
section σ ∈ Γ(U,Hom(E,F )) corresponds to a matrix m in {e} and {f}.

Suppose {ẽ} = {ẽ1, . . . , ẽr} and {f̃} = {f̃1, . . . , f̃k} are two other local frames
with σ corresponding to m̃. There exist matrices gF : {f̃} → {f} and gE :
{ẽ} → {e}. Then the matrices m and m̃ are related by

m = gEm̃(gF )−1.

The transition functions are C∞ linear maps.
Let R : M × R→M be the trivial bundle. Then E∗ = Hom(E,R).
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Last time we had a rather detailed discussion of the construction of dual bundles
and Hom bundles.

12.1 Direct sums, tensor products and powers

If V andW are vector spaces, then the tensor product is V⊗W = Hom(W ∗, V ).
Explicitly, if v1, . . . , vk is a basis for V and w1, . . . , wr is a basis for W , then I
can consider the symbols

vi ⊗ wj : W ∗ → V ; ` 7→ `(wj)vi.

Then V ⊗W = span{vi ⊗ wj}. Note that

vi ⊗ wj + vk ⊗ wj = (vi + vk)⊗ wj , vi ⊗ wj + vi ⊗ wk = vi ⊗ (wj + wk).

If E and F are vector bundles over M , then we can define E⊗F →M , with
rank(E ⊗ F ) = rank(E) + rank(F ). If you want to define the tensor product in
the more abstract way, you have to check that this is a vector bundle.

If V and W are vector spaces we define its direct sum as V ⊕W ≈ (v, w) ∈
V ×W with

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2), r(v, w) = (rv, rw).

In this case we can construct E ⊕ F in the obvious way. Change of frame
matrices will look like [

gE 0
0 gF

]
.

If V is a vector spaces,

V ∗ ⊗ V ∗ ∼= {bilinear maps V × V → R},

with the identification being (`1 ⊗ `2)(v1, v2) = `1(v1)`2(v2). Likewise,

⊗kV ∗ = V ∗ ⊗ · · · ⊗ V ∗ ∼= {k-linear maps V × · · · × V → R}.

If E →M is a vector bundle, then E⊗k →M is a vector bundle.
A k-linear map f : ×kV → R is symmetric if

f(v1, . . . , vi, . . . , vj , . . . , vk) = f(v1, . . . , vj , . . . , vi, . . . , vk).

This is a subspace Symk(V ∗) ⊆ ⊗kV ∗. Here is an exercise:

Symk(V ∗) ∼= {Homogeneous polynomials of degree k on V }.

You can check that Symk(E∗)→M is a vector bundle.
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12.2 Antisymmetric powers and forms

A k-linear map f : ×kV → R is anti-symmetric if

f(v1, . . . , vi, . . . , vj , . . . , vk) = −f(v1, . . . , vj , . . . , vi, . . . , vk).

Denote by
∧
kV ∗ ⊆ ⊗kV ∗ the anti-symmetric k-linear maps on ×kV . If dimV =

n and k > n, then
∧
kV ∗ = {0}. If k ≤ n then dim(

∧
kV ∗) =

(
n
k

)
= n!/(n−k)!k!.

We can describe
∧
kV ∗ in terms of a basis. Let v1, . . . , vn be a basis for V , and

let v∗1 , . . . , v
∗
n be the dual basis. Denote v∗α1

∧ · · · ∧ v∗αk to be the antisymmetric
k-linear map such that{

(v∗α1
∧ · · · ∧ v∗αk)(vα1 , . . . , vαk) = 1,

(v∗α1
∧ · · · ∧ v∗αk)(vβ1 , . . . , vβk) = 0 if {β1, . . . , βk} 6= {α1, . . . , αk}.

These maps form a basis for
∧
kV ∗ provided we take α1 < · · · < αk. For example,∧

2V ∗ is spanned by v∗i ∧ v∗j = v∗i ⊗ v∗j − v∗j ⊗ v∗i .
There is a canonical homomorphism∧

kV ∗ ⊗
∧
rV ∗ →

∧
k+rV ∗; f1 ⊗ f2 7→ f1 ∧ f2.

We call this map the wedge product.

Definition 12.1.
∧

is called the wedge product. If E →M is a vector bundle
of rank n then

∧
kE →M is a vector bundle for 1 ≤ k ≤ n.

The transition functions will be quite complicated in general. If the spe-
cial case n = rank(E), the exterior power det(E) =

∧
nE is a line bundle.

If {e1, . . . , en} is a local frame for E and {ẽ1, . . . , ẽn} is another frame with
g{ẽ} = {e}, then

e1 ∧ · · · ∧ dn = det gẽ1 ∧ · · · ∧ ẽn.

Definition 12.2. A section of
∧
kT ∗M is called a k-form. Locally

∧
kT ∗M is

generated by dxi1 ∧ · · · ∧ dxik for i1 < · · · < ik.
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13.1 Push-forwards and pull-backs

If we have a C∞ map h : M → N and E → N is a vector bundle, then we get
a bundle h∗E →M . The idea is to construct a bundle whose local sections are
pulled back from N . A special case of this is, if i : M ↪→ N for some submanifold
M of N , then i∗E is E|M .

Explicitly, if U ⊆ N is open with a local trivalization ϕU : E|U → U × Rn,
then h∗E|h−1(U) = h−1U ×Rn. If U1 and U2 are open sets with g21 = ϕ2 ◦ϕ−1

1 :
U1 ∩ U2 → GL(n,R), then g21 ◦ h = h−1(U1) ∩ h−1(U2) → GL(n,R) is the
transition function for h∗E. In this case, h∗E|P = E|h(p).

In terms of local sections, if {e1, . . . , en} is a local frame for E|U , then
{e1 ◦ h, . . . , en ◦ h} is a local frame for h∗E|h−1(U).

If we have a map h : M → N , with v ∈ TpM , then v 7→ h∗v ∈ Th(p)N is the
push-forward, defined as h∗v(f) = v(f ◦ h) as a derivation. If α ∈ T ∗h(p)N then

we can define the pull-back h∗α ∈ T ∗pM defined by h∗α(v) = α(h∗v). The

pull-back extends to (T ∗N)⊕k and
∧
kT ∗N . This is defined as

h∗α(v1, . . . , vk) = α(h∗v1, . . . , h∗vn).

There are some properties:

(1) For any f ∈ Γ(U,R) = Γ(U,
∧

0T ∗N), h∗f = f ◦ h by definition.

(2) h∗df = d(h∗f) because

(h∗V )(f) = V (f ◦ h) = V (h∗f) = d(h∗f)(V ).

(3) For a k-form ω ∈ Γ(U,
∧
kT ∗N) and a function f ∈ Γ(U,R),

h∗(fω) = (h∗f)(h∗ω).

Here is a local description. Suppose ω ∈ Γ(U,
∧
kT ∗N) and (x1, . . . , xm)

are local coordinates on N . Then the elements dxi1 ∧ · · · ∧ dxik with
i1 < i2 < · · · < ik form a local frame for

∧
kT ∗N |U . Then

h∗(dxi1 ∧ · · · ∧ dxik) = (h∗dxi1) ∧ · · · ∧ (h∗dxik) = d(xi1 ◦ h) ∧ · · · ∧ d(xik ◦ h).

Lemma 13.1. If h : M → N and g : N → Z are smooth, then (g◦h)∗ = h∗◦g∗.

Proof. This is because we have defined everything in terms of smooth functions,
and it is true for smooth functions.

What we’re really saying is that there’s a canonical map h∗(
∧
kT ∗N) ↪→∧

kT ∗M .
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13.2 Forms and vector fields on a Lie group

Recall that if G is a Lie group, then we have diffeomorphisms Lg : G → G
defined by a 7→ ga and Rg : G → G defined by a 7→ ag. For each g ∈ G, there
is also the conjg : G→ G given by a 7→ gag−1.

Definition 13.2. A 1-form ω on G is left-invariant if for all g ∈ G, L∗gω = ω.
(Note that if ω ∈ T ∗gaG then L∗gω ∈ T ∗aG.) Similarly ω is right-invariant if
R∗gω = ω for all g ∈ G.

A vector field V is left-invariant if (Lg)∗V = V , and right invariant if
(Rg)∗V = V .

The space of left-invariant 1-forms is isomorphic to T ∗eG.

Lemma 13.3. There exists a global frame of left/right invariant 1-forms.

Proof. Let ω̃1, . . . , ω̃n be a basis of T ∗eG. Define ωi(g) = L∗g−1 ω̃1. Note that

ω1(g) are C∞ since the multiplication map G×G→ G is smooth.

This shows that T ∗G ∼= T ∗eG×G is trivial.

Example 13.4. Take M(n,R) and fix q ∈ M(n,R) for q 6= 0. Define for
m ∈ GL(n,R),

ωq|m = Tr(qm−1dm),

i.e., if A ∈ Tm GL(n,R) then ωq(A) = Tr(qm−1A). Then I claim that ωq is
left-invariant. To show this we have to compute

(L∗gωq)|m(A) = ωq|gm((Lg)∗A).

Let γ(t) = m+ tA so that γ(0) = m and γ′(0) = A. Then

(Lg)∗A =
d

dt

∣∣∣∣
t=0

g(m+ tA) = gA,

and so

(L∗gωq)|mA) = ωq|gm((Lg)∗A) = Tr(q(gm)−1gA) = Tr(qm−1A) = ωq|m(A).
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We were talking about pull-backs of k-forms and push-forwards of vector fields.
For the Lie group G = GL(n,R) and m ∈ G, the tangent space is TmG =

M(n,R). For q ∈M(n,R), we defined ωq|m(A) = Tr(qm−1A), which we denote
as ωq|m = Tr(qm−1dm).

Lemma 14.1. L∗gωq = ωq.

On the other hand, it is not right invariant, because (R∗gωq)|m(A) = Tr(qm−1g−1Ag).

14.1 The exponential map

For a ∈M(n,R), define

exp(a) = 1 + a+
a2

2
+ · · ·+ an

n!
+ · · · .

Lemma 14.2. (i) exp(a) converges if a ∈ Bε(0) for 0 < ε� 1.

(ii) exp : Bε(0)→ U ⊆ GL(n,R) is a diffeomorphism.

(iii) exp(−a) = exp(a)−1.

Proof. (i) Let us first assume a = P−1DP for some diagonal matrix

D =

λ1 0
. . .

0 λn

 .

Then exp(a) = P−1(exp(D))P and

exp(D) =

exp(λ1) 0
. . .

0 exp(λn)

 .

In general, put a = P−1JP for a Jordan normal form J . Then exp(a) =
P−1 exp(J)P and by direct computation exp(J) converges if λ1, . . . , λn are suf-
ficiently small.

(ii) Since (exp)∗|0a = a, the map exp is locally a diffeomorphism by the
inverse function theorem.

(iii) You can formally check this as

exp(a) exp(−a) = 1 + a− a+ a2 − a2 + · · · = 1.

So there is a map exp that goes from a neighborhood of 0 ∈ TeG = M(n,R)
to a neighborhood of 1 ∈ G. It makes sense to pull-back to get (exp0)∗ωq to get
a 1-form on T1 GL(n,R) at least on Bε(0).
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Lemma 14.3. For any a ∈ Bε(0) and V ∈ Ta(T1 GL(n,R)) = TaM(n,R), we
have

(exp0)∗ωq|a(v) =

∫ 1

0

Tr(qe−savesa)ds.

Proof. Consider a ∈ Bε(0) ⊆ M(n,R). Let γ(t) = a + t~v so that γ(0) = a and
γ′(0) = ~v. We need to compute

ωq

∣∣∣
ea

( d
dt

∣∣∣ exp(a+ t~v)
)
.

This is hard to compute because a and v don’t commute. So we are going to
consider a family of curves and see how the one form varies along the way.

Consdier γs(t) = exp0(s(a+ tv)) with γ0(t) = 1 and γ1(t) = exp(a+ tv). We
want to compute (exp0)∗ωq|esa(sv) for s = 1. This is

(exp0)∗ωq|esa(sv) = ωq

∣∣∣
esa

( d
dt

∣∣∣
t=0

exp(s(a+ tv))
)

= Tr
(
qe−sa

( d
dt

∣∣∣
t=0

es(a+tv)
))
.

So

d

ds
(exp0)∗ωq|esa(sv)

= −Tr
(
qae−sa

d

dt

∣∣∣
t=0

es(a+tv)
)

+ Tr
(
qe−sa

d

dt

∣∣∣
t=0

(a+ tv)es(a+tv)
)

= −Tr
(
qae−sa

d

dt

∣∣∣
t=0

es(a+tv)
)

+ Tr(qe−saV esa) + Tr
(
qe−saa d

dt

∣∣∣
t=0

es(a+tv)
)

= Tr(qe−saV esa).

Then we get the lemma by integration.

Lemma 14.4. The maps exp0 : T1 SO(n) → SO(n) and exp0 : T1 SL(n,R) →
SL(n,R) are defined and has the same formulas.

Proof. Exercise.

14.2 Complex vector bundles

Definition 14.5. A complex vector bundle E with rank rkCE = n is a real
vector bundle of rank 2n together with endomorphism J : E → E such that
J2 = −1.

If V is a vector space over R with an endomorphism J : V → V such htat
J2 = −1, then V defines a vector space over C.

Definition 14.6 (Alternative definition). A complex vector bundle over M
is a manifold E with a C∞ map π : E → M such that for any p ∈ M there
exists an open neighborhood U ⊆ M and a map ϕU : π−1(U) → U × Cn such
that guv = ϕU ◦ ϕ−1

V : U ∩ V → GL(n,C).
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To show that the definitions are equivalent, consider an open set U ⊆ M
such that there exists a frame {e1, . . . , en, en+1, . . . , e2n} such that Jei = en+i

and Jen+i = −ei. Then we can identify E|U ∼= Cn × U by this frame, in the
same way we identified R2n ∼= Cn. If we have another frame {ẽ1, . . . , ẽ2n}, and
g{e} = {ẽ} then gJ{e} = J̃{ẽ} = J̃g{e}. This implies that g : U → GL(n,C).

That the alternative definition implies the first definition is just the restric-
tion of scalars.
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Let us look at examples of complex vector bundles. Consider a vector bundle
E →M , and look at the trivial C bundle C→M . Then

E ⊗R C→M

is a complex vector bundle with rkC(E ⊗R C) = rkR(E). This is not really an
interesting example.

Let Σ ⊆ R3 be a surface. Let ~n be the unit normal vector field on σ. Then
TpΣ = {v ∈ R3 : v · ~n(p) = 0}. Define a complex structure

J ∈ End(TΣ); J(p)v = n(p)× v.

Then J2 = n× (n× v) = −v and so TΣ has the structure of a complex vector
bundle. Thus the tangent bundle TΣ has the structure of a complex vector
bundle with rkC(TΣ) = 1.

We can think of algebraic operations, and the moral is the everything that
works for C-vector spaces also works for complex vector bundles. But we need
to be careful when comparing R and C structures. For instance, if E and
F are C-vector bundles, and ER and FR are the underlying R-bundles, then
Hom(E,F ) 6= Hom(ER, FR). Think about when a linear map L : R2n → R2n

descend to a map Cn → Cn. Likewise, rkC(E ⊗C F ) = rkC(E) rkC(F ). On the
other hand, rkR(ER ⊗R FR) = 4 rkC(E) rkC(F ).

If ER has the complex structure J , then (−J) is also a complex structure.
So we can define Ē to be the C vector bundle defined by (−J). As an exercise,
prove that if gαβ : Uα ∩Uβ → GL(n,C) are transition functions for E, then ḡαβ
are transition functions for Ē.

15.1 Metrics on vector bundles

Definition 15.1. A metric on Rn is a bilinear map g : Rn × Rn → Rn such
that g(u, u) > 0 for u 6= 0 and g(u,w) = g(w, u).

Definition 15.2. A metric on E is a section g ∈ Γ(M,Sym2(E∗)) such that
for all p ∈M , gp is a metric on Ep ∼= Rn.

Said another way, g is an assignment to each p of a metric on Ep such that
if ep, fp ∈ Γ(M,E) then the map p 7→ gp(ep, fp) is C∞.

Lemma 15.3. Metrics always exist.

Proof 1. If M is compact, there is a map E ↪→ RN where RN → M is the
trivial bundle. We can put a metric on M via restriction by choosing a metric
on RN .

Proof 2. Take an locally finite open cover {Uα} such that E|Uα . Let gα be
a metric on Rn, viewed as a metric on E|Uα . Take a partition of unity χα
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subordinate to the Uα, then take

g =
∑
α

χαgα.

Definition 15.4. A hermitian metric on Cn is a bilinear form Cn×Cn → C
such that

• g(u, v) = g(v, u),

• g(u, u) > 0 for u 6= 0,

• g(u, cv) = cg(u, v) and g(cu, v) = c̄g(u, v).

Definition 15.5. A hermitian metric on E → M is a section of Ē∗ ⊗ E∗
that restricts to each fiber as a hermitian metric.

Check how it must transform undr change of frame. For 〈v, w〉 = v†Aw and
a transformation T : Ep → Ep, we have ṽ = Tv and w̃ = Tw. So

v†Aw = 〈v, w〉 = 〈ṽ, w̃〉 = ṽ†Ãw̃

so Ã = (T †)−1AT−1.

Lemma 15.6. Hermitian metrics always exist.

Proof. It is the same.

Let us look at the relation between g on ER and on EC. Let ER be a vector
bundle with J a complex structure, and gR a metric.

Lemma 15.7. A hermitian metric on E is defined by gR on ER provided that
gR(u, Jv) = −gR(Ju, v) for all u, v.

Proof. Linear algebra.

Conversly, if g is hermitian, how do we find gR?

Lemma 15.8. E ⊂ ER ⊗R C in the following way: let e be a local section of
ER, then E is generated in ER ⊗R C as e−

√
−1Je.

Note that J(e−
√
−1Je) =

√
−1(e−

√
−1Je). So Ep is naturally identified

with the +
√
−1 eigenspace of

J : (ER ⊗R C)p → (ER ⊗R C)p.

Likewise E is the −
√
−1 eigenspace of J . Given gR we define

u = e−
√
−1je, v = ẽ−

√
−1Jẽ.
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16.1 Structure group and orientable bundles

A vector bundle E → M has structure group (or gauge group) G ⊆
GL(n,R) if there exists a covering of M by open sets Uα such that E|Uα ∼=
Uα × Rn and ϕ−1

α ◦ ϕβ : Uα ∩ Uβ → G ⊆ GL(n,R). In other words, there exist
local frames {eα} on Uα such that if gαβ : {eβ} → {eα} then gαβ ∈ G.

For example, if G = {1} then E is trivial. If E has a metric, then we can
reduce to structure group to O(n) (or U(n) in the C-case). This because we
can take orthonormal frames. A more subtle question is, when can we reduce
to SO(n) (or SU(n))?

Definition 16.1. Say that a bundle E → M is orientable if there exist triv-
ializations {ek} on Uα with

⋃
α Uα = M such that gαβ : {eβ} → {eα} have

det gαβ > 0.

Note that E is orientable if and only if the structure group reduces to SO(n)
(or SU(n)).

Lemma 16.2. E is orientable if and only if
∧
nE = det(E) ∼= M × R.

Proof. Let g be a metric on E. Cover M by open sets Uα with frames {eα} such
that deg gαβ > 0 and {eα} are orthonormal. Then gαβ inO(n), and so gαβ = 1.
If e1 ∧ · · · ∧ en are the induced local trivializations of

∧
nE, then since

eα1 ∧ · · · ∧ eαn = det gαβe
β
1 ∧ · · · ∧ eβn = eβ1 ∧ · · · ∧ eβn,∧

nE has a global non-vanishing section.
If
∧
nE ∼= M × R, then there exists a η ∈ Γ(M,

∧
nE) such that η(p) 6= 0

for any p ∈ M . If {eα1 , . . . , eαn} is an orthonormal frame for E|Uα , η|Uα =
fαe

α
1 ∧ · · · ∧ eαn. Then fα : Uα → R \ {0}. Then define

ẽα1 =
fα
|fα|

eα1 , ẽαj = ej for 2 ≤ j ≤ n.

This gives me a bunch of new frames. Let g̃αβ : {ẽβ} → {ẽα}. Then

det g̃αβ = det(TαgαβT
−1
β ) =

|fβ |
fβ

fα
|fα|

det gαβ .

On the other hand,

η|Uα∩Uβ = fαe
α
1 ∧ · · · ∧ eαn = fβe

β
1 ∧ · · · ∧ eβn

and so fα det gαβ = fβ . This implies det g̃αβ = |fβ |/|fα|. Since gαβ ∈ O(n), we
further have det g̃αβ = 1.

Similarly, a complex vector bundle E →M is orientable if
∧
nE ∼= M × C.

Definition 16.3. A manifold M is orientable if and only if TM is orientable.
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16.2 Induced metrics on bundles

Suppose E is a C∞(R) vector bundle with a metric h. If {e1, . . . , en} is a local
frame, then we define hij = 〈ei, ej〉. In the C-case, we write hᾱβ = 〈eα, eβ〉. If
σ1(p), σ2(p) ∈ Ep then we can write

σ1(p) = σi1(p)ei(p), σ2(p) = σj2(p)ej(p).

Then we can simply write

〈σ1, σ2〉(p) = σi1hijσ
j
2.

Likewise in the C-case we have

〈σ1, σ2〉 = σα1 hᾱβσ
β
2 .

If ei is a local section of E, then σi = 〈ei, •〉 is a local section of E∗. Then

σi =
∑
j

hije
∗
j .

Since h is positive definite, this gives an isomorphism Ep ∼= E∗p . We define the
metric on E∗ such that this map is an isometry. In other words, if h∗ is the
metric on E∗, then

〈σi, σj〉h∗ = 〈ei, ej〉.

Proposition 16.4. In the frame e∗i , (h∗)il = (h−1)il = hil.

Proof. We have

hil = 〈σi, σl〉h∗ =
∑
j,p

hijhlp〈e∗j , e∗p〉 =
∑
j,p

hijhlp(h
∗)jp = (hh∗hT )il.

So h∗ = h−1 because hT = h.
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Last time we were discussing metrics on vector bundles. If h is a metric on E,
then h−1 is a metric on E∗. If h is a metric on E and g is a metric on F , then
we get a metric on E ⊗ F as follows: if {e1, . . . , en} is a local frame for E and
{f1, . . . , fr} is a local frame for F , then define

〈ei ⊗ fα, ej ⊗ fβ〉 = 〈ei, ej〉h〈fαfβ〉g,

i.e., if {ei} is orthonormal and {fα} is also orthonormal then we declare {ei⊗fα}
is orthonormal. In terms of local fames,

(h⊗ g) = hijgαβ .

Since other bundles like
∧
rE or Symr E sits inside E⊗r, this induces metric on∧

rE or Symr E.

17.1 Metrics on the tangent bundle

Let’s assume we have (M, g) a connected Riemannian manifold, i.e., a man-
ifold M with a choice of g.

Definition 17.1. A curve γ : [a, b] → M is piecewise C∞ if there exist
a = t0 < t1 < · · · < tk = b such that γ is continuous and γ|(ti,ti+1) is C∞.

Definition 17.2. Define

d(p, q) = inf
γ

k−1∑
i=0

∫ ti+1

ti

√
g(γ′(t), γ′(t))dt

where inf is over all piecewise C∞ curves γ : [0, 1] ↪→ M with γ(0) = p and
γ(1) = q.

Proposition 17.3. d is a metric on M .

Proof. Clearly it is symmetric. The triangle inequality is also clear since if γ1

is a curve from p to q and γ2 is a curve from q to r then

(γ2 ◦ γ1)(t) =

{
γ1(2t) 0 ≤ t < 1/2

γ2(2t− 1) 1/2 ≤ t ≤ 1

has length the length of γ1 plus the length of γ2. Finally we need to show that
p 6= q implies d(p, q) > 0. Choose a coordinate patch (U,ϕ) such that q ∈ U ,
p /∈ U and ϕ : U → B1(0) with q 7→ 0. If γ(t) connects p to q there exists a
last time T such that γ(T ) ∈ ∂U . In local coordinates (x1, . . . , xn), there exist
a c > 0 such that gij > cδij . Then the length of γ(t)|[T,1] is at least c.

Lemma 17.4. The metric topology on (M,d) is identical to the topology of M .

Proof. Locally δijC
−1 < gij < Cδij for some C < +∞.
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17.2 Geodesics

A natural question is, is there a C∞ curve γ such that the length of γ is d(p, q)?
If such a γ exists, then any variation will increase the length of the curve.

Suppose we have a curve γ : [0, 1] → Rn such that γ(0) = p and γ(1) = q.
Consider a variation γε(t) = γ(t) + εc(t) for some c : [0, 1] → Rn with c(0) =
c(1) = 0. We can assume that c(t) is orthogonal to γ′(t), i.e., 〈c(t), γ′(t)〉g = 0
with |γ′| = 0.

Let g = gij . We need to compute

gγε(t)(γ̇ε(t), γ̇ε(t)) = gγε(t)(γ̇, γ̇) + 2εgγε(t)(γ̇, ċ) +O(ε2).

The derivative with respect to ε at ε = 0 is

d

dε

∣∣∣
ε=0

gγε(t)(γ̇ε, γ̇ε) =
∂

∂xk
gij γ̇

iγ̇jck + 2gij γ̇
iċj .

So by the chain rule,

d

dε

∣∣∣
ε=0

∫ 1

0

√
gγε(t)(γ̇ε, γ̇ε)dt =

∫ 1

0

gij γ̇
iċj + 1

2∂kgij γ̇
iγ̇jck√

g(γ̇, γ̇)
dt = 0.

Since gij γ̇
icj = 0 because γ̇ and c are orthogonal, we can take d/dt of both sides

and get

∂kgij γ̇
iγ̇kcj + gij γ̈

icj + gij γ̇
iċj = 0.

So we have

0 =

∫ 1

0

[
−(gij γ̈

j + ∂kgij γ̇
j γ̇k) +

1

2
∂igjkγ̇

j γ̇k
]
cidt.

This implies that for all i,

gij γ̈
j + ∂gij γ̇

j γ̇k − 1

2
∂igkj γ̇

j γ̇k = 0.

Multiplying by gil, we get

γ̈l +
1

2
gil(∂kgij + ∂jgik − ∂igjk)γ̇j γ̇k = 0.

We now define the Christoffel symbols

Γlkj =
1

2
gil(∂kgij + ∂jgik − ∂igjk).

A curve γ(t) solving γ̈l + Γlkj γ̇
kγ̇j = 0 is called a geodesic.
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For a Riemannian manifold (M, g), a curve γ : [a, b]→M is a geodesic if

γ̈k + Γkij γ̇
iγ̇j = 0, where Γkij =

1

2
gkl(∂iglj + ∂jgil − ∂lgij).

Geodesics are critical points for the length function γ 7→
∫ b
a

√
g(γ′, γ′)dt.

Theorem 18.1. For every p ∈ M , there exists and open neighborhood U ⊆
TpM , 0 ∈ U , and a number ε > 0 with a map γ : (−ε, ε)×U →M such that for
all v ∈ U , γ(t, v) is the geodesic with γ(0) = p and γ′(0) = v.

A geodesic need not be defined on R. For example, take an open subset
of R2 with gEuc. This is a Riemannian manifold but it does not always have
geodesics defined on R.

Example 18.2. Take (Rn, gEuc). In standard coordinates (x1, . . . , xn), we have
gij = δij . So Γkij = 0 and so the geodesic equation is γ̈k = 0. That is, the
geodesics are γ(t) = p+ t~v.

As an homework, you will need to compute the geodesics of (Sn, ground). You
can use the symmetries of Sn instead of computing all the Christoffel symbols
and then solving the differential equaitons.

18.1 Geodesics on SO(n)

Let us compute the geodesics of SO(n). We have SO(n) ⊆ GL(n) ⊆M(n), and
then

T1 SO(n) = {a ∈M(n) : aT = −a}.

Now fix a basis aj ∈M(n,R) for 1 ≤ j ≤ n2 such that

aj = −aTj for 1 ≤ j ≤ n(n− 1)

2
, aj = aTj for

n(n− 1)

2
< j ≤ n2.

Define an inner product on M(n) by 〈a, b〉 = Tr(aT b), which is the Euclidean
inner product. Then 〈aj , ak〉 = 0 if aj is antisymmetric and ak is symmetric.
By Gram-Schmidt, we can assume that aj are orthonormal.

Lemma 18.3. g = 〈 , 〉|Tm SO(n) is both left and right invariant.

Proof. Given m ∈ SO(n), it suffices to show

(L∗m)g|1(A,B) = Tr(ATB), (R∗m)g|1(A,B) = Tr(ATB).

We have

(L∗mg)(A,B) = g|m(mA,mB) = Tr((mA)TmB) = Tr(ATmTmB) = Tr(ATB).

Likewise,

(T ∗mg)(A,B) = g−1
m (Am−1, Bm−1) = Tr((m−1)TATBm−1) = Tr(ATB).
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Definition 18.4. Such metrics are called bi-invariant.

Recall we have defined 1-forms ωi|m = Tr(aim−1dm). Define g̃ =
∑
ωi⊗ωi.

Proposition 18.5. g̃|SO(n) = g.

Proof. Check at 1 and then use left-invariance.

Theorem 18.6. For a ∈ T1 SO(n), the curve t 7→ meat = γ(t) is a geodesic in
SO(n) for the bi-invariant metric with γ(0) = m ∈ SO(n) and γ′(0) = ma ∈
Tm SO(n).

Proof. It suffices to prove for m = 1 because g is left-invariant. Also, it suffices
to show that at ∈ T1 SO(n) is a geodesic for exp∗ g = ĝ.

First of all γ̈ = 0. So we need to show Γkij γ̇
iγ̇j = Γkijv

ivj = 0, where

a =
∑
viai. Recall that

Γkij =
1

2
ĝlk(∂iĝlj + ∂j ĝli − ∂lĝij).

We have

∂iĝlj γ̇
j γ̇i =

d

dt
(ĝlj γ̇

j)

and also

ĝ(v, w)|a =

∫ 1

0

∫ 1

0

Tr(e−sa
T

vT esa
T

erawe−ra)dsdr

by repeating the calculation from before. So

ĝ(v, γ̇)γ(t) = ĝ(v, a)at =

∫ 1

0

∫ 1

0

Tr(e−sta
T

vT esta
T

eratae−rat)drds

=

∫ 1

0

∫ 1

0

Tr(e−sta
T

vT esta
T

a)drds

=

∫ 1

0

∫ 1

0

Tr(vT esta
T

e−sta
T

a)drds = Tr(vTa).

So

d

dt
g(v, γ̇)γ(t) = 0

for all v, and this implies that d
dt (ĝlj γ̇

j) = 0.
Now we would like to prove ∂lĝij γ̇

iγ̇j = 0. This is equivalent to∇v ĝ(a, a)at =
0 for any v ∈ T1 SO(n). We have

ĝ(a, a)v =

∫ 1

0

∫ 1

0

Tr(esvaT e−svervae−rv)drds

=

∫ 1

0

∫ 1

0

Tr(e(s−r)vaT e(r−s)va)drds.

We will continue next time.
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Let us finish the computation of the geodesics of SO(n).

Theorem 19.1. The geodesics (with respect to the bi-invariant metric) through
1 with tangent vector a is eat.

Last time we reduced the theorem to proving ∇v g̃(a, a)|at = 0 for all v,
where g̃ = exp∗1 g. For any v ∈ T1 SO(n),

g̃(a, a)|v =

∫ 1

0

∫ 1

0

Tr(esvaT e−svervae−rv)dsdr

=

∫ 1

0

∫ 1

0

Tr(e(s−r)vaT e(r−s)va)drds.

Take vε = at+ εw and let us evaluate (d/dε)|ε=0g̃(a, a)vε . Then

d

dε

∣∣∣
ε=0

e(s−r)(at+εw) = (s− r)d(exp1)(s−r)atw,

where d(exp1)(s−r)at : T(s−r)atT1 SO(n)→ T1 SO(n). Let

M+(r, s) = d(exp)(s−r)atw, M−(r, s) = d(exp)(r−s)atw = M+(s, r).

Then

d

dε

∣∣∣
ε=0

g̃(a, a)vε =

∫ 1

0

∫ 1

0

Tr((s− r)M+aT e(r−s)ata)drds

+

∫ 1

0

∫ 1

0

Tr(e(s−r)ataT (r − s)M−a)drds.

Here

Tr(M+aT e(r−s)taa) = Tr(e(r−s)taMTaTa).

BecauseM+ = d exp(r−s)ta w ∈ T(s−r)ta SO(n), we have e(r−s)taM+ ∈ T1 SO(n).

This shows that e(r−s)taM+ is antisymmetric, but aTa is symmetric. So the
trace is just zero. Likewise, the second terms is zero.

19.1 Gaussian coordinates

Theorem 19.2. For every p ∈ M there exist a ε, δ > 0 such that, for every
v ∈ Bε(0) ⊆ TpM , the unique geodesic γ(t) with γ(0) = p and γ′(0) = v exists
for all t = (−δ, δ).

Lemma 19.3. If γ(t) is a geodiesic with γ′(t) = v, then for c ∈ R the curve
γ̃(t) = γ(ct) is a geodesic with γ̃′(0) = cv.
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Corollary 19.4. For every p ∈ M there exists an ε > 0 such that γ(t, v) for
any v ∈ B0(ε) ⊆ TpM the geodesic with γ(0) = p and γ′(0) ∈ v exists with
t ∈ (−1, 1).

Definition 19.5. The exponential map expp : Bε(0) → M is the map v →
γ(1, v) = expp(v) where expp(tv) is the geodesic expp(0) = p and (d/dt) expp(vt)|t=0 =
v.

For SO(n), the map expp : Bε(0) → M is C∞ (by homework). Because
d(expp)0 : T0TpM → TpM given by v 7→ v is invertible, by the inverse function
theroem, there is a neighborhood Bδ(0) ⊆ TpM such that expp : Bδ(0)→ U ⊆
M is a diffeomorphism.

Fix an orthonormal basis {v1, . . . , vn} on TpM . Then we have id : (TpM, gp) ∼=
(Rn, 〈•, •〉). Since expp : B0(0)→ U is a diffeomorphism, we get coordinates on
U by

q exp−1
p (q) (a1, . . . , an).id

These coordinates are called Gaussian coordinates or normal coordinates.

Theorem 19.6. Let (x1, . . . , xn) be Gaussian coordinates at p = (0, . . . , 0).
Then

gij(p) = δij , ∂kgij(p) = 0.

Proof. First ∂/∂xi|p = vi so gij(p) = δij . Now g(x1, . . . , xn) = exp∗p g.

Let Γ̃ijk be the Christoffel symbols of exp∗ g. We claim that Γ̃ijk(p) = 0 if
and only if ∂g = 0. By definition of the exp map, the curve t 7→ vt is a geodesic
in TpM with respect to the metric exp∗ g. Then

d2

dt2
(vt) = 0,

d

dt
(vt) = v.

Then by the geodesic equation, Γ̃kijv
ivj = 0 for all k. Since this holds for all

v ∈ T0TpM , we conclude Γ̃kij(0) = 0 for all i, j, k. Then

Γ̃kij(0) =
1

2
(∂igjk + ∂jgik − ∂kgij) = 0.

Then ∂igjk = 0.

Corollary 19.7. There is no geometric invariants of g involving ∂igjk.
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20.1 Gauss’s lemma

Lemma 20.1 (Gauss). For a point p ∈ M and a vector v ∈ TpM such that
expp(v) is defined. Let w ∈ Tv(TpM) ∼= TpM . Then

〈d(expp)vv, d(expp)vw〉g(expp(v)) = 〈v, w〉p.

Proof. First assume w = λv. It suffices to prove that

〈d(expp)vv, d(expp)vv〉 = 〈v, v〉.

If we let γ(t) = expp(vt) then d(expp)vv = γ′(1). Because γ has constant speed,

〈γ′(1), γ′(1)〉 = 〈γ′(0), γ′(0)〉 = 〈v, v〉.

Now assume that 〈v, w〉 = 0. Take a curve v(s) in TpM with v(0) = v
and v′(0) = w with |v(s)| = const. Consider f(t, s) = expp(tv(s)) defined for
(t, s) = A = {0 ≤ t ≤ 1,−ε ≤ s ≤ ε}. Note that f(t, s0) is a geodesic for a fixed
s0. Also

〈d(expp)vv, d(expp)vw〉 =
〈∂f
∂t
,
∂f

∂s

〉∣∣∣
t=1
s=0

.

We claim that this quantity is independent of t. Fix (t0, s0) and choose
normal coordinates near p0 = f(t0, s0). Then〈∂f

∂s
,
∂f

∂t

〉
= gij(f(t, s))

∂f i

∂t

∂f j

∂s
.

Take d/dt and evaluate at (t0, s0). Then because ∂lgij = 0 since we are working
in normal coordinates,

d

dt

〈∂f
∂s
,
∂f

∂t

〉
(t0, s0) = gij(p0)

∂2f i

∂t2
∂f j

∂s
+ gij(p0)

∂f i

∂t

∂2f j

∂t∂s
.

Because f(t, s0) is a geodesic, f i is linear in t. Thus (∂2f/∂t2)(t0, s0) = 0.
Now we have one term left, and by the same argument, we further have

d

dt

〈∂f
∂s
,
∂f

∂t

〉
(t0, s0) = gij(p0)

∂f i

∂t

∂2f j

∂s∂t
=

1

2

d

ds

〈∂f
∂t
,
∂f

∂t

〉
.

Now since f(t, s0) is a geodesic,〈∂f
∂t
,
∂f

∂t

〉
(t0, s0) =

〈∂f
∂t
,
∂f

∂t

〉
(0, s0) = |v(s0)| = const.

This shows that 〈∂f
∂s
,
∂f

∂t

〉
(t, s) =

〈∂f
∂s
,
∂f

∂t

〉
(0, s).

So 〈∂f
∂s
,
∂f

∂t

〉
(1, 0) = lim

t→0

〈∂f
∂s
,
∂f

∂t

〉
(t, 0) =

〈
v, lim
t→0

d(expp)tvtw
〉

= 0.
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Corollary 20.2. Let (x1, . . . , xn) be normal coordinates. Let r =
√∑

|xi|2
and let θ1, . . . , θn−1 be coordinates on Sn−1. Then the metric (expp)

∗g can be
written as

(expp)
∗g = dr2 + r2Kabdθ

adθb.

Proof. The only nontrivial thing is that the radical vector ∂/∂r is orthogonal
to {r = const} with respect to (expp)

∗g, but that is what Gauss proves.
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If 0 ∈ V ⊂ TpM is open such that expp : V → expp(V ) is a diffeomorphism,
then we say that U = expp V is a normal neighborhood. (This just saying

that U has normal coordinates.) If Bε(0) ⊆ V , then Bε(p) = expp(Bε(0)) is
called the normal ball and Sε(p) = ∂Bε(p) is called the normal sphere. By
Gauss’s lemma, Sε(p) is orthogonal to the radial geodesics.

21.1 Geodesics are locally length minimizing

Theorem 21.1. If Bε(p) is a normal ball, and γ : [0, 1]→ Bε(p) is any geodesic,
γ(0) = p, and if c : [0, 1]→M with c(0) = p and c(1) = γ(1), then length(c) ≥
length(γ) with equality if and only if c([0, 1]) = γ([0, 1]).

Proof. Assume c([0, 1]) ⊆ B = Bε(p). Then since expp is a diffeomorphism, we
can write

c(t) = expp(r(t)v(t)),

where r(t) > 0 and |v(t)| = 1. It might be that c(t1) = p for t1 > 0 so v(t)
is not well-defined, but then we can consider c|[t1,1] instead. So we can assume
c(t) 6= p for t > 0. Write f(s, t) = expp(sv(t)) so that c(t) = f(r(t), t). Then

dc

dt
=
∂f

∂r

∂r

∂t
+
∂f

∂t

and so by Gauss’s lemma, 〈∂f/∂r, ∂f/∂t〉 = 0. So∣∣∣dc
dt

∣∣∣2 = |r′|2
∣∣∣∂f
∂r

∣∣∣2 +
∣∣∣∂f
∂t

∣∣∣2 = |r′|2
〈 d
dr

expp(rv),
d

dt
expp(rv)

〉
+
∣∣∣∂f
∂t

∣∣∣2 ≥ |r′|2.
So for any δ > 0,∫ 1

δ

|c′|dt ≥
∫ 1

δ

|r′|dt ≥
∣∣∣∣∫ 1

δ

r′dt

∣∣∣∣ = r(1)− r(δ).

Taking the limit as δ → 0, we get that length(c) ≥ r(1) = length(γ). If equality
fholds, then ∂f/∂t = 0 so v(t) = v(0). That is, c is a reparametrization of γ.

If c([0, 1]) ( B, then the distance from p to the first point getting outside B
is at least ε > length(γ).

21.2 Globally length minimizing curves are geodesics

The question I want to ask is:

When can we find long legnth minimizing geodesics?

Theorem 21.2. Fore very point p ∈M , there exists a neighborhood p ∈W ⊆M
and δ > 0 such that, for each q ∈ M there exists a diffeomorphism expq :
Bδ(0) → M onto its image, and expq(Bδ(0)) ⊇ W , i.e., W is a normal neigh-
borhood of every q ∈W .
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If this condition is satisfied, we call W a totally normal neighborhood.

Proof. By the existence theorem for geodesics, there exists an V ⊆ M , p ∈ V
and ε > 0 such that for every q ∈ V the map expq is defined on Bε(0) ⊆ TqM .
Consider

U = {(q, w) ∈ TM : q ∈ V, |w| < ε}, F : (q, w) 7→ (q, expq w) ∈M ×M.

Then

dF(p,0) =

(
1 ∗
0 1

)
,

and so F is a local diffeomorphism near (p, 0). Then there exists a Ũ ⊆ U , in
particular,

Ũ = {q ∈ Ṽ , w ∈ TqM, |w| < δ}

for an open neighborhood Ṽ ⊂ M of p, such that F : Ũ ↪→ M × M is a
diffeomorphism. Take W ⊆ M such that W × W ⊆ F (Ũ). Then F ({q} ×
Bδ(0)) ⊇ q ×W and so expq Bδ(0) ⊇W .

Corollary 21.3. If γ : [a, b]→M is piecewise differetiable and |γ′| = 1 (where
this makes sense) and for any other curve c connecting γ(a) to γ(b) we have
length(c) ≥ length(γ) the γ is a geodesic and so C∞.

Proof. Take t ∈ [a, b]. Let W be a totally normal neighborhood of γ(t). There
exists an open interval t ∈ I ⊆ [a, b] such that γ|I : I → W . If γI connects
points p, q ∈ W , then Bδ(p) 3 q so there is a radial geodesic γ̃ joining p to q.
Now length(γ̃) = length(γ), because γ is length minimizing. Then γ(I) = γ̃(I)
but |γ′| = 1 so γ is a geodesic locally. Thus it is a geodesic and so γ is C∞.
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22.1 Completeness

Definition 22.1. A Riemannian manifold (M, g) is geodesically complete
if for every p ∈ M and v ∈ TpM , expp(v) is defined, i.e., geodesics exist for all
time.

Theorem 22.2 (Hopf-Rinnow). Let (M, g) be a Riemannian manifold and p ∈
M . Then the following are equivalent:

(a) expp is defined on all of TpM .

(b) The closed and bounded sets in (M, g) are compact.

(c) M is complete as a metric space.

(d) M is geodesically complete.

(e) There exist a sequence of compact sets Kn ⊆ M with Kn ⊆ Kn+1 such
that if qn ∈M \Kn then d(p, qn)→∞ as n→∞.

Moreover, any of (a)-(e) imply:

(f) For any q ∈ M there exist a geodesic γ joining p to q with length γ =
d(p, q).

Proof. The hardest thing is (a) ⇒ (f). Let Bδ(p) be a normal ball, and let
x0 ∈ ∂Bδ(p) be the point where d(q, ∂δ(p)) = d(q, x0) is achieved. We can write
x0 = expp(δv) where v ∈ TpM with |v| = 1. This gives our candidate geodesic
γ(t) = expp(vt) which exists for all time.

Let r = d(p, q) and let

A = {t ∈ [0, r] : d(γ(t), q) = r − t}.

Clearly 0 ∈ A and A is closed by continuity. Now we show that A is open. Then
it follows that A = [0, r]. Let t1 ∈ A and x1 = expp(t1v) so that d(x1, q) = r−t1.
Then d(p, x1) ≤ t1 but r = d(p, q) ≤ d(p, x1) + d(x1, q). So d(p, x1) = t1.

Let Bδ1(x1) be a normal ball around x1, and let y1 ∈ ∂Bδ1(x1) be such that
d(q, y1) = d(q, ∂Bδ1(x1)). We claim that d(q, y1) = r − t1 − δ1. Fix an ε > 0
and let C be a curve from q to x1 with r − t1 ≤ length(c) ≤ r − t1 + ε. Let ĉ
be the portion of c occurring after the first time that c intersect Bδ1(x1), and
let γ̂ be the geodesic connecting c(T ) ∈ Bδ1(x1) and x1, where T is the first
time of intersection. Let c̃ = ĉ ∪ γ̂ that is piecewise C∞. Then by the triangle
inequality,

r − t1 ≤ length(c̃) = length(γ̂) + length(ĉ) = δ1 + length(ĉ)

≤ length(c) = r − t1 + ε.

This shows that length(ĉ) ≤ r− t1 − δ1 + ε, and so d(q, y1) ≤ r− t1 − δ1. Since
d(q, y1) ≥ r − t1 − δ1, we get

d(q, y1) = r − t1 − δ1.
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We finally have to show that y1 is actually on the geodesic expp(tv). By the
triangle inequality, d(p, y1) ≤ t1 + δ1 and so from d(p, q) = r it follows that
d(p, y1) = t1 +δ1. Since d(p, y1) is achieved by the curve “expp(tv) for 0 ≤ t ≤ t1
and the radial geodesic from x1 to y1”, this curve is a smooth geodesic. So
y1 = expp((t1 + δ1)v) and therefore t1 + δ1 ∈ A.

The rest is easy. We prove (a) ⇒ (b). Let A be closed and bounded. Then

A ⊆ {expp(tv) : v ∈ TpM, |v| = 1, 0 ≤ t ≤ R}

for some large R by (f). Then A is the image of a compact set under a continuous
map expp. This implies that A is compact.

Proving (b) ⇒ (c) is just point-set topology.
For (c) ⇒ (d), let q ∈ M , v ∈ TqM , |v| = 1. Suppose the geodesic

γ(t) = expq(vt) is defined only for t ∈ [0, T ). Since d(γ(t1), γ(t2)) ≤ |t1 − t2|,
completeness implies that γ(t)→ qt as t→ T . We will finish this next time.
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Last time we were proving (c)⇒ (d). Let M be a complete manifold and q ∈M ,
v ∈ TqM , |v| = 1. Suppose that expq(vt) exists on [0, T ). Then by completeness,
γ(t)→ qT as t→ T . Take a totally normal neighborhood of qT . Then for every
p ∈ W , expp(b) is defined. Choose t∗ ∈ [0, T ) so that |t∗ − T | < δ/2. Then
consider C(s) = expγ(t∗)(sγ

′(t∗)). This C(s) exists for |s| < δ and this extends
the geodesic γ(t) past T .

Finally, (d) ⇒ (a) is obvious and (b) is equivalent to (c).

Corollary 23.1. If (M, g) is compact, then it is complete. More interestingly,
if N ⊆ (M, g) with the induced metric, N is closed, and (M, g) is complete,
then (N, g|N ) is complete. In particular, closed submanifolds of (Rn, gEuc) are
complete.

23.1 Connections

How do we do calculus on sections of vector bundles? Suppose you have an
electric field on earth or something and you want to differentiate. It is not
obvious how to differentiate. Let us first make a näıve attempt. Let π : E →M
be a C∞ vector bundle and let σ ∈ Γ(U,E) be a section on an open set U ⊆M .
U has coordinates (x1, . . . , xn), and let {e1, . . . , er} be a local frame for E. Then
we can write

σ = σ1e1 + · · ·+ σrer

for C∞ functions σ1, . . . , σr : U → R. Can we now define

∂σ

∂xi
=
(∂σ1

∂xi
, . . . ,

∂σr

∂xi

)
?

Suppose we choose instead {ẽ1, . . . , ẽr}. Then we have a map g : U → GL(r)
such that {e} = g{ẽ}, i.e., ei = gliẽl. Then σ̃ = gσ and so

∂

∂xi

σ̃
1

...
σ̃r

 =
∂g

∂xi

σ
1

...
σr

+ g
∂

∂xi

σ
1

...
σr

 .

To fix this defect, consider

∇i =
∂

∂xi
+Ai

where Ai is a linear operator in the {e} frame. For the differentiation to be
well-defined, we need g∇iσ = ∇̃iσ̃. After some computation, this reduces to

Ai = g−1 ∂g

∂xi
+ g−1Ãig.
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Definition 23.2. A covariant derivative or a connection on E is a map

∇ : C∞(M,E)→ C∞(E ⊗ T ∗M)

such that

(1) ∇(s+ s′) = ∇s+∇s′,
(2) ∇(fs) = f∇s+ s⊗ df for any f ∈ C∞(M,R).

Lemma 23.3. If ∇ and ∇′ are two connections, then ∇−∇′ ∈ End(E)⊗T ∗M .

Proof. Note that (∇−∇′)(s1 +s2) = (∇−∇′)s1 +(∇−∇′)s2 by linearity. Also
if f ∈ C∞(M,R) then

(∇−∇′)(fs) = f(∇−∇′)s+ df ⊗ s− df ⊗ s = f(∇−∇′)s

which is what we need. Then we conclude by the next lemma.

Lemma 23.4. Let E and E′ be vector bundles and L : E → E′ be such that
L(s1 + s2) = L(s1) + L(s2) and L(fs1) = fL(s1) for each f ∈ C∞(M). Then
L ∈ Hom(E,E′).

Proof. Let U ⊆ M be an open set and {e1, . . . , er} be a local frame for E,
{ẽ1, . . . , ẽr} be a local frame for E′. Then we can write L(ei) = aki ẽk. Then
for any σ ∈ Γ(U,E), write σ = σiei with σi : U → R. By assumption, L(σ) =
σiaki ẽk. So L is determined by (aki ). So L transforms as a section of Hom(E,E′).

This shows that the space of connections is affine, and after choice of a
base point, is isomorphic to Hom(E,E ⊗ T ∗M). Next time, we will prove that
connections exist and ∇ = d+A for some A.
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We were discussing connections on vector bundles. A connection is a map
∇ : Γ(E)→ Γ(E⊗T ∗M) such that∇s(v) = ∇vs is like the directional derivative
for v ∈ TM . We saw that connections “should” be of the form ∇ = d+A where,
given a frame, A is matrix-valued 1-form.

24.1 Construction of connections

Proposition 24.1. Let E →M be a vector bundle and let M be compact. Then
there exists a connection.

We remark that compactness is not necessary–it can be dropped.

Proof. We first assume that E = M × Rr is the trivial bundle. A section of E
is an r-tuple of C∞ functions σ = (f1, . . . , fr) : M → Rr. Define

∇σ = (x, df1(x), . . . , dfr(x)) ∈ Rr ⊗ T ∗M,

where x ∈M . This defines a connection.
Now consider the general case E →M . Then there is map i : E ↪→M ×Rr.

Fix a (hermitian) metricH on Rr, and let πi(E) = π be the orthogonal projection
onto E ⊆M × Rr. Given σ ∈ Γ(M,E), define

∇Eσ = i−1(π∇Rr i(σ)).

We claim that ∇E is a connection. To show this we need to check the axioms.
Clearly ∇E(σ1 + σ2) = ∇Eσ1 +∇Eσ2. Also

∇E(fσ) = i−1π(i(σ)⊗ df + f∇Rr i(σ)) = σ ⊗ df + f∇Eσ.

This shows that ∇E is a connection.

Let’s see what this looks like locally. Let {e1, . . . , ek} be a frame for E such
htat i(e1), . . . , i(ek) is orthonormal in M × Rr. Choose sk+1, . . . , sr be such
that {i(e1), . . . , i(ek), sk+1, . . . , sr} is an orthonormal frame for M × Rr. Next,
we have another frame {f1, . . . , fr} adapted to ∇Rr so that fi is the section
corresponding to the (0, . . . , 0, 1, 0, . . . , 0).

Let g be the map

g : {fi} → {i(e1), . . . , i(ek), sk+1, . . . , sr},

and let σ be a section of E. We can write σ = σ1e1 + · · · + σkek and then
i(σ) = σ1i(e1) + · · ·+ σki(ek). Then

g



σ1

...
σk

0
...
0


=



v1

...

...

...
vr


,
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whre vi are the coordinates of i(σ) in the frame {fi}. Then

∇Rr i(σ) = d
(
g

(
(σj)
(0)

))
= dg

(
(σj)
(0)

)
+ gd

(
(σj)
(0)

)
.

In order to calculuate i−1π, we need to write it back in {i(e1), . . . , sr}. In this
frame,

π∇Rr i(σ) = πg−1dg

(
(σj)
(0)

)
+ d

(
(σj)

)
.

Note that this has this form of ∇Eσ = dσ + Aσ where A is a matrix-valued
1-form πg−1dg = A.

Corollary 24.2. Any connection is written in a frame a ∇ = d+ A, where A
is a matrix valued 1-form.

Proof. If ∇̃ is any connection of E, then ∇̃ = ∇E+T where T ∈ End(E)⊗T ∗M .
Clearly T is given as a matrix.

24.2 Parallel transport

One reason ∇ is called a connection is that it allows us to “connect” different
fibers of E →M . Given p, q ∈M , let γ(t) be a curve γ(0) = p and γ(1) = q. Let
σp ∈ Ep. A map σ(t) : [0, 1]→ E with σ(t) ∈ Eγ(t) is the parallel transport
of σp if

σ(0) = σp and ∇γ̇(t)σ = 0.

In a frame, the equation can be written as

dσα

dt
+Aαiβ γ̇

iσβ(t) = 0 and σα(0) = σα(p).

By existence and uniqueness of ordinary differential equations, the parallel trans-
port exists and is unique.
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25.1 The Levi-Civita connection

Theorem 25.1 (Levi-Civita). Let (M, g) be a Riemannian manifold. There is
a unique connection on TM such that

(1) ∇XY −∇YX = [X,Y ] (torsion-free),

(2) X〈Y,Z〉g = 〈∇XY, Z〉g + 〈Y,∇XZ〉g (metric compatible).

In local coordinates (x1, . . . , xn), the connections coefficients are Γkij the Christof-
fel symbols.

Proof. It suffices to determine 〈∇X , Z〉g for all X,Y, Z. We have

X〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉,
Z〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉 = 〈∇XZ, Y 〉+ 〈[Z,X], Y 〉+ 〈X,∇ZY 〉,
Y 〈X,Z〉 = 〈∇YX,Z〉+ 〈X,∇Y Z〉

= 〈∇XY,Z〉+ 〈[Y,X], Z〉+ 〈X,∇XY 〉+ 〈X, [Y,Z]〉.

So we have

〈∇XY,Z〉 =
1

2
{X〈Y,Z〉+ Y 〈X,Z〉 − Z〈X,Y 〉

+ 〈[Z,X], Y 〉+ 〈[Z, Y ], X〉+ 〈[X,Y ], Z〉}.

This shows uniqueness.
In local coordinates,

〈∇∂/∂xi∂/∂xj , ∂/∂xk〉 =
1

2
{∂igjk + ∂jgik − ∂kgij} = Γkij .

In other words, ∇∂/∂xi∂/∂xj = Γlij∂/∂x
l.

25.2 De Rham differential

Recall that for f ∈ C∞(M,R), then df ∈ T ∗M . Then we can define the de
Rham differential d as

d : Γ(M,
∧
pT ∗M)→ Γ(M,

∧
p+1T ∗M),

as in the homework. Recall that d2 = 0. So we have the cohomology groups
defined as

Hp
dR(M) =

ker d :
∧
pT ∗M →

∧
p+1T ∗M

im d :
∧
p−1T ∗M →

∧
pT ∗M

.

Given a connection ∇ on E →M , we can define

d∇ :
∧
pT ∗M ⊗ E →

∧
p+1T ∗M ⊗ E

in the following way.
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Definition 25.2. The exterior covariant derivative d∇ (or dA for ∇ =
d+A) is defined as

(1) if σ ∈ Γ(M,E) and ω ∈
∧
pT ∗M then

d∇(σ ⊗ ω) = ∇σ ∧ ω + σ ⊗ dω,

(2) d∇(s1 + s2) = d∇(s1) + d∇(s2) for s1, s2 ∈ Γ(M,
∧
pT ∗M ⊗ E).

So if E is the trivial bundle, then this is just the de Rham derivative. In a
trivialization,

σ ⊗ ω = σαdxi1 ∧ · · · ∧ dxip maps to

d∇(σ ⊗ ω) =

(
∂

∂xl
σα +Aαlβσ

β

)
dxl ∧ dxi1 ∧ · · · ∧ dxip .

Also

d2
∇(σdxI) = d∇(∂jσ +Ajσ)dxj ∧ dxI

=
∑
k,j

(∂k∂jσ + (∂kAj)σ +Aj∂kσ +Ak∂jσ +AkAjσ)dxk ∧ dxj ∧ dxI

=
∑
k<j

(∂kAj − ∂jAk +AkAj −AjAk)σdxk ∧ dxj ∧ dxI .

This is not necessarily zero! Viewing A as a matrix valued 1-form, d∇s =
ds+A ∧ s and so d2

∇ = (dA+A ∧A) ∧ s.

Definition 25.3. The curvature 2-form is defined as

F∇ = dA+A ∧A ∈
∧

2T ∗M ⊗ End(E).
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Last time, for a vector bundle E → M and a connection ∇ : Γ(E) → Γ(E ⊗
T ∗M), we defined d∇ : Γ(E⊗

∧
pT ∗M)→ Γ(E⊗

∧
p+1T ∗M). In general, d2

∇ 6= 0
if ∇ = d+A. We defined

F∇ = dA+A ∧A = d2
∇ ∈ End(E)⊗

∧
2T ∗M.

26.1 Induced connections

Given a connection (E,∇) → M , how do we induce a connection on E∗? The
idea is that we require ∇E∗ to be compatible with ∇E and the map E ⊗E∗ →
C∞(M). We can demand

d(τ(σ)) = (∇E
∗
τ)(σ) + τ(∇Eσ).

Let’s see how this looks. Fix a frame {e1, . . . , er} for E and let {e∗1, . . . , e∗r}
be the dual frame for E∗. We can write ∇E = d + A in this frame. Write
τ =

∑
α ταe

∗
α and σ =

∑
α σ

αeα. Then

∂

∂xi
(τ(σ)) =

∂

∂xi

(∑
α

τασ
α
)

=
∑
α

(∂τα
∂xi

)
σα +

∑
α

τα

(∂σα
∂xi

)
,

τ
(
∇E∂/∂xiσ

)
= τα

(
∇E∂/∂xiσ

)α
= τα

∂σα

∂xi
+ ταA

α
iβσ

β .

So (
∇E

∗

∂/∂xiτ
)
α
σα =

∂τα
∂xi

σα − ταAαiβσβ ,

and after switching α and β on the last component, we deduce(
∇E

∗

∂/∂xiτ
)
α

=
∂τα
∂xi
− τβAβiα.

In matrices, if τ = (τ1, . . . , τr) then

∇E
∗

∂/∂xiτ =
∂

∂xi
τ − τAi.

Now let us look at connections on tensor products. If (E,∇E) and (F,∇F )
are connections, then define ∇E⊗F on E ⊗ F by

∇(σ ⊗ τ) = (∇Eσ)⊗ τ + σ ⊗ (∇F τ).

As an example, suppose we have (E,∇E) and T ∈ End(E) = E ⊗ E∗. If
∇E = d+A then we have

∇T = dT +AT − TA.
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Corollary 26.1 (Second Bianchi identity). If ∇ is the connection on E and
F∇ is the curvature, then d∇F∇ = 0.

Proof. Because F∇ = dA+A ∧A, we have

d∇F∇ = d(dA+A ∧A) +A ∧ (dA+A ∧A)− (dA+A ∧A) ∧A
= 0 + dA ∧A−A ∧ dA+A ∧ dA+A ∧A ∧A− dA ∧A−A ∧A ∧A = 0.

26.2 Characteristic class

Recall that we have the trace map Tr : End(E) ⊗
∧
pT ∗M →

∧
pT ∗M , defined

by extending the map Tr : End(E)→ C∞(M) linearly.

Proposition 26.2. dTr(B) = Tr(d∇B).

Proof. If ∇ = d+A on E then d∇B = dB +AB −BA. Then

Tr(d∇B) = Tr(dB) + Tr([A,B]) = Tr(dB) = dTr(B).

Corollary 26.3. For any connection ∇ on E, we have Tr(F∇) defines an ele-
ment of H2

dR(M).

This is an example of a characteristic class.

Proposition 26.4. The cohomology [Tr(F∇)]dR depends only on E and not on
∇.

Proof. Let ∇, ∇̃ be connections on E, and write ∇ = d+A. Write ∇̃ = ∇+B
where B ∈ End(E)⊗ T ∗M . Then

F∇̃ = dA+ dB +A ∧A+A ∧B +B ∧A+B ∧B
= F∇ + dB +A ∧B +B ∧A+B ∧B.

Write Aidx
i = A and Bjdx

j = B. Then the dxi ∧ dxj component of A ∧ B +
B ∧A+B ∧B component is

(AiBj −AjBi) + (BiAj −BjAi) + (BiBj −BjBi) = [Ai, Bj ]− [Aj , Bi] + [Bi, Bj ]

that has trace 0. Also Tr(dB) = dTr(B). This shows that Tr(F∇) and Tr(F∇̃)
lies in the same cohomology class.
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If you have a vector bundle E → M with a connection ∇, then Tr(F∇) defines
a class inside H2

dR(M) that is independent of ∇.

27.1 Ad-invariant functions

More generally, let f : M(n,C) → C be a C∞ function such that f(gmg−1) =
f(m) for all g ∈ GL(n,C), i.e., f is Ad-invariant. For example, fk(m) =
Tr(mk). If f is Ad invariant and f is real analytic, then we can write

f(tm) = f0 + tf1(m) + t2f2(m) + · · · .

Then fk : M(n,C)→ C are Ad-invariant and homogeneous of degree k. Impor-
tant examples include

c(tm) = det
(
1 +

i

2π
tm
)
, Ch(tm) = Tr

(
exp
( it

2π
m
))
.

Theorem 27.1 (Ad-invariant function theorem). The vector space of Ad-invariant
real analytic functions, homogeneous of degree p, is the C-linear span of

{Tr(mk1) · · ·Tr(mkq ) : k1 + · · ·+ kq = p}.

Proof. We first claim that any C∞ Ad-invariant function on M(n,C) is deter-
mined by a symmetric, C∞ function on Cn. Note that there is a dense open
subset U ⊆ M(n,C) of diagonalizable matrices U ⊆ M(n,C) of diagonalizable
matrices on U . Then any Ad-invariant function is induces by a C∞ function on
Cn, and vice versa. Moreover, this function is symmetric because[

λ1 0
0 λ2

]
=

[
0 1
−1 0

] [
λ2 0
0 λ1

] [
0 −1
1 0

]
.

So it suffices to understand functions on Cn. Let us write

n∏
j=1

(1 + λju) = 1 + σ1(λ)u+ σ2(λ)u2 + · · ·+ σn(λ)un.

Theorem 27.2 (Fundamental theorem of symmetric polynomials). The ring of
symmetric polynomilas is generated by σ0, . . . , σn as an algebra, i.e., if τ(λ) is
any symmetric polynomial, then τ(λ) = p(σ0, σ1, . . . , σn) for some polynomial p
with C-coefficients.

Observe

log
(∏

j(1 + λju)
)

=
∑
j

(
λju−

λ2
j

2
u2 + · · ·+ (−1)k+1

λkj
k!
uk + · · ·

)
.

Thus
∑n
j=1 λ

p
j for 1 ≤ p ≤ n generate σ1, . . . , σn as an algebra. So we can

change bases.
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27.2 More characteristic classes

Going back to our two examples of Ad-invariant functions, we have

c(tm) = 1 +
i

2π
Tr(m)t− 1

(8π)2
((Trm)2 − (Trm2))t2 + · · ·

Ch(tm) = 1 +
∑
k≥1

1

k!

( i

2π

)k
Trmk.

Theorem 27.3. Every Ad-invariant real analytic function f defines a coho-
mology class Cf (E) ∈ H∗dR(M), by setting

[Cf (E)] = [f(F∇)].

In particular, this is independent of the choice of ∇.

Let’s say exactly what we mean. If fk = Tr(mk), then

fk(F∇) = Tr(F∇ ∧ · · · ∧ F∇) ∈
∧

2kT ∗M,

and

fl(F∇)fk(F∇) = Tr(F∇ ∧ · · · ∧ F∇) ∧ Tr(F∇ ∧ · · · ∧ F∇) ∈
∧

2(k+l)T ∗M.

Note that there is no ambiguity in multiplication because
⊕

k

∧
2kT ∗M is a

commutative algebra.
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Last time, for a bundle E → M and a connection ∇ on E, for every Ad-
invariant polynomial, we got a characteristic class Cf (E) = f(F∇) ∈ H∗dR(M).
Also we showed that Ad-invariant polynomials are generated as an algebra by
m 7→ Tr(mk).

28.1 Ad-invariance functions give well-defined cohomol-
ogy

Proposition 28.1. Tr(F∇ ∧ · · · ∧ F∇) is a closed 2k-form and its cohomology
class is independent of the choice of ∇ on E.

Combining this statement with what we proved last time, we get the same
statement for every Ad-invariant f .

Proof. Because F∇ ∧ · · · ∧ F∇ ∈ End(E)⊗
∧

2kT ∗M ,

d∇(F∇ ∧ · · · ∧ F∇) = (d∇F∇) ∧ · · · ∧ F∇ + · · ·+ F∇ ∧ · · · ∧ F∇ ∧ (d∇F∇) = 0

by Bianchi. Now for every B ∈ End(E)⊗
∧
pT ∗M ,

dTr(B) = Tr(dB) = Tr(d∇B)

because d and d∇ differ by a commutator. This shows that Tr(F∇ ∧ · · · ∧ F∇)
is closed.

Let ∇ = d+A ad ∇̃ = ∇+B with B ∈ End(E)⊗T ∗M . Define ∇t = ∇+ tB
and consider Tr(F∇t ∧ · · · ∧ F∇t). Then

d

dt
Tr(F∇t ∧ · · · ∧ F∇t) = kTr(Ḟ∇t ∧ F∇t ∧ · · ·F∇t).

Because F∇t = dA+ tdB + (A+ tB) ∧ (A+ tB), we get

Ḟ∇t = dB +A ∧B +B ∧A+ 2tB ∧B.

Now we claim that dB +A ∧B +B ∧A = d∇B. If B = Bjdx
j , we have by

definition

d∇B = ∇∂/∂xiBjdxi ∧ dxj = (∂iBj +AiBj −BjAi)dxi ∧ dxj .

On the other hand,

dB = d(Bjdx
j) = ∂iBjdx

i ∧ dxj ,
A ∧B = AiBjdx

i ∧ dxj ,
B ∧A = BjAidx

j ∧ dxi.

So d∇B = dB +A ∧B +B ∧A.
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Thus

d

dt
Tr(F∇t ∧ · · · ∧ F∇t) = kTr(d∇B ∧ F∇t ∧ · · · ∧ F∇t)

+ 2tkTr(B ∧B ∧ F∇t ∧ · · · ∧ F∇t).

Note also that d∇B + 2tB ∧B = d∇tB. Finally,

Tr(d∇tB ∧ F∇t ∧ · · · ∧ F∇t) = dTr(B ∧ F∇t ∧ · · · ∧ F∇t).

So

Tr(F k∇̃)− Tr(F k∇) = d

∫ 1

0

Tr(B ∧ F∇t ∧ · · · ∧ F∇t)dt

is a boundary.

Lemma 28.2. If E and E′ are vector bundles over M and E ∼= E′ then
Cf (E) = Cf (E′) for any real analytic Ad-invariant f : M(n,C)→ C.

Proof. It suffices to show for fk = Tr(mk). Let us unravel the definitions. There
is a σ ∈ Hom(E′, E) with an inverse σ−1 ∈ Hom(E′, E). In order to compute
Cfk(E′), fix a connection ∇′ on E′. Define ∇ on E by ∇s = σ−1∇′σ(s). If
∇′ = d+A′, then

∇ = σ−1d(σs+A′σs) = ds+ (σ−1dσ + σ−1A′σ)s = (d+A)s.

Then

dA = d(σ−1dσ + σ−1A′σ)

= d(σ−1) ∧ dσ + (dσ−1) ∧A′σ + σ−1dA′σ − σ−1A′ ∧ dσ.

Here, dσ−1 = −σ−1dσσ−1 because d(σσ−1) = 0. So

dA = −σ−1dσ ∧ σ−1A′σ + σ−1dA′σ − σ−1A ∧ dσ.

Now let us compute F∇ = dA+A ∧A. We have

A ∧A = σ−1A′ ∧A′σ + σ−1dσ ∧ σ−1A′σ + σ−1A′σ ∧ σ−1dσ.

Therefore

F∇ = dA+A ∧A = σ−1(dA′ +A′ ∧A′)σ = σ−1F∇′σ.

So we are done by Ad-invariance.
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Last time we showed that if E and E′ are isomorphic then Cf (E) = Cf (E′) for
every Ad-invariant f .

29.1 The Chern class and the Chern character

Let E → M be a complex vector bundle with a (C-linear connection) ∇. The
k-th Chern class is the characteristic class defined by σk : M(n,C)→ C, i.e.,
ck(E) is the coefficient of tk in det(1 + (i/2π)F∇t). For instance,

c0(E) = 1, c1(E) =
i

2π
Tr(F∇),

c2(E) = − 1

8π
(Tr(F∇) ∧ Tr(F∇)− Tr(F∇ ∧ F∇)), · · · .

The k-th Chern character class ck(E) is the expansion Tr(exp((i/2π)tF∇)).
So for instance,

ch0(E) = rk(E), ch1(E) =
i

2π
Tr(F∇) = c1(E),

ch2(E) = − 1

4π2
Tr(F∇ ∧ F∇), · · · , chk(E) =

( i

2π

)k
Tr(F∇ ∧ · · · ∧ F∇).

Using them, we can define the total Chern class and total Chern char-
acter as

c(E) = det(1 + (i/2π)F∇) = c0(E) + c1(E) + · · ·+ cbn/2c(E),

ch(E) = ch0(E) + ch1(E) + · · · .

Proposition 29.1. Let E, Ẽ be vector bundles. Then

(1) ch(E ⊗ Ẽ) = ch(E) ∧ ch(Ẽ),

(2) ch(E ⊕ Ẽ) = ch(E) + ch(Ẽ).

Proof. Let ∇E and ∇Ẽ be connections on E and Ẽ respectively. Define ∇E⊗Ẽ
by

∇E⊗Ẽ(σ ⊗ τ) = (∇Eσ)⊗ τ + σ ⊗ (∇Ẽ ⊗ τ)

and extend by linearity.
We now claim that F∇E⊗Ẽ = F∇E ⊗ 1Ẽ + 1E ⊗ F∇Ẽ . We can just compute

d∇E⊗Ẽ (σ ⊗ τ) = d∇E⊗Ẽ (d∇Eσ ⊗ τ + σ ⊗ (d∇Ẽτ))

= (d2
Eσ)⊗ τ − dEσ ∧ dẼτ + dEσ ∧ dẼτ + σ ⊗ (d2

Ẽ
τ)

= FEσ ⊗ τ + σ ⊗ FẼτ.
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Let mE = FE ⊗ 1Ẽ and mẼ = 1E ⊗ FẼ . Then mEmẼ = mẼmE and so

exp
( i

2π
(mE +mẼ)

)
= exp

( i

2π
mE

)
exp
( i

2π
mẼ

)
.

Now note that

mn
E = FE ∧ · · · ∧ FE ⊗ 1Ẽ .

So we get ch(E ⊗ Ẽ) = ch(E) ∧ ch(Ẽ).

The direct sum is easier. Because (∇E⊕∇Ẽ)(σ⊕τ) = ∇Eσ+∇Ẽτ , we have
FE⊕Ẽ = FE ⊕ FẼ . So ch(E ⊕ Ẽ) = ch(E) + ch(Ẽ).

For example,

ch0(E ⊗ Ẽ) = ch0(E) ch0(Ẽ) = rk(E) rk(Ẽ) = rk(E ⊗ Ẽ),

ch1(E ⊗ Ẽ) = ch0(E) ch1(Ẽ) + ch0(Ẽ) ch1(E) = rk(E)c1(Ẽ) + rk(Ẽ)c1(E),

ch2(E ⊗ Ẽ) = rk(E) ch2(Ẽ) + rk(Ẽ) ch2(E) + 2 ch1(E) ∧ ch1(Ẽ).

Lemma 29.2. All characteristic classes of Ad-invariant analytic functions are
generated by ch0, . . . , chbn/2c, or equivalently by c0, . . . , cbn/2c as an algebra.

Proof. Ad-invariant function theorem.

In the real vector bundle cases, things are not very interesting. For instance,
it is a nice exercise to show that if E → M is a real vector bundle, then
[Tr(F∇)] = 0. This is not the case for a complex vector bundle. So how do we
get interesting invariants? Given E →M , we may consider the complexification
E ⊗ C→M . A connection ∇ on E can be extended (by C-linearity) to ∇C on
E ⊗ C. In other words, we define ∇C so that if σ = σ1 + iσ2 with σ ∈ Γ(E)
then ∇Cσ = ∇Eσ1 + i∇Eσ2. Then define characteristic classes for E, by taking
Chern classes of E ⊗ C. These are called the Pontryagin classes.
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Last time, for a complex vector bundle E →M we defined the Chern classes as

det
(
1 +

i

2π
F∇t

)
= c0(E) + c1(E)t+ · · ·+ ck(E)tk + · · · .

If E is real, then consider the complexification E ⊗ C. If ∇ is a connection onf
E, then it extends to E ⊗ C, which we denote by ∇C. Then we define the k-th
Pontryagin class as

pk(E) = (−1)kc2k(E ⊗ C).

Note that pk(E) ∈ H4k
dR(M). Why do we only consider 2k and not k?

Proposition 30.1. If k is odd, then ck(E ⊗ C) = 0.

The way we are going to prove this is using metric compatible connections.

30.1 Metric compatible connections

Definition 30.2. A connection on E →M is compatible with a metric H
if

X〈σ, τ〉H = 〈∇Xσ, τ〉+ 〈σ,∇Xτ〉

for all vector fields X and σ, τ ∈ Γ(E).

Theorem 30.3. Given a vector bundle E →M with a smooth metric H, there
exists a connection on E compatible with H (although they are definitely not
unique).

Proof. Let ∇̃ be one connection on E. Let {e1, . . . , er} be an orthonormal frame
for E over an open set U . In this frame, ∇̃ = d+A and H = 1.

We claim that ∇ is compatible with H if and only if ∇H = 0, whre ∇
denotes the induced connection on E∗ ⊗ E∗. In a local frame, 〈σ, τ〉 = σTHτ .
If I covariantly differentiate this,

∇(σTHτ) = (∇σ)THτ + σT (∇H)τ + σTH(∇τ).

So if I want this to equal to the sum of the first and third terms, the ∇H must
be zero.

In teneral, the covariant derivative acts on H by

(∇∂/∂xlH)αβ = ∂lHαβ −AγlαHγβ −AγlβHαγ

= ∂lHαβ − (HAl)αβ − (HAl)
T
αβ = (∂lH −HAl −ATl H)αβ .

In an orthonormal frame H = 1, we have ∇̃H = −(A + AT ). In other words,
∇̃ is metric compatible if and only if A = −AT in an orthonormal frame.
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So our gaol is to find T ∈ End(E)⊗T ∗M such that −(T +TT ) = A+AT in
{e1, . . . , er} since then ∇ = d+A+T has ∇H = 0. Note that if we are defining
T locally in one frame, and so we need to check that our local definitions glue to
give a section of End(E) ⊗ T ∗M . For example, T = −A doesn’t work because
A doesn’t transform like a endomorphism.

Let’s guess and take T = −(A + AT )/2. Then ∇ = d + (A − AT )/2 in
the orthonormal frame {e1, . . . , er}. Does T glue to give a global section of
End(E) ⊗ T ∗M? Suppose we have two open sets U1 and U2. Let {e1

1, . . . , e
1
r}

and {e2
1, . . . , e

2
r} be the orthonormal frames on U1 and U2, and write ∇̃ = d+A1

and ∇̃ = d + A2. Also let T1 = −(A1 + AT1 )/2 and T2 = −(A2 + AT2 )/2. On
U1 ∩U2, we have g : {e2} → {e1} given by g : U1 ∩U2 → O(r) because {e1} and
{e2} are orthonormal frames. We have

A2 = g−1dg + g−1A1g

because ∇̃ shouldn’t depend on the coordinates. Since g ∈ O(r), gT = g−1.
Then

A2 +AT2 = (g−1dg)T + gTAT1 (g−1)T + g−1dg + g−1A1g

= (g−1dg)T + g−1dg + g−1(AT1 +A1)g.

But dg ∈ Tg O(r) and so g−1dg ∈ T1 O(r) is anti-symmetric. So A2 + AT2 =

g−1(A1 +AT1 )g. This shows that T ∈ Γ(M,End(E)⊗ T ∗M) and so ∇ = ∇̃+ T
is metric compatible.

In this case, people abusively write

A+ T ∈ Γ(lie(O(r))⊗ T ∗M).

Now ∇ = d+ (A−AT )/2 = d+M is compatible with the metric. Then

F∇ = Fijdx
i ∧ dxj = dM +M ∧M = ∂iMj − ∂jMi

= (∂iMj − ∂jMi +MiMj −MjMi)dx
i ∧ dxj .

Then Fij is anti-symmetric. In particular, if k is ood, then

Tr(F∇ ∧ · · · ∧ F∇) = Tr((F∇ ∧ · · · ∧ F∇)T ) = (−1)k Tr(FT∇ ∧ · · · ∧ FT∇).

Thus Tr(F∇ ∧ · · · ∧ F∇) = 0.

Proposition 30.4. Up to a factor, chk(E ⊗ C) = ( ) Tr(F∇ ∧ · · · ∧ F∇).

Proof. Exercise.

We have shown that chk(F∇) = 0 for k odd. Since cm(F∇) are made up of
chk, we get cm(F∇) = 0 for m odd.

The reason this doesn’t show that odd degree Chern classes vanish is because
the reduction of the gauge group is from GL to U and then the same argument
only shows that the Chern class is only pure imaginary.
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We are going to do some Riemannian geometry.

31.1 Curvature of a Riemannian manifold

Let (M, g) be a Riemannian manifold and let ∇ be the Levi-Civita connection
on TM . Then for C∞ vector fields X,Y, Z, we can define

R(X,Y )(Z) = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Proposition 31.1. R(•, •) is endomorphism valued, i.e., is in End(TM) ⊗
T ∗M⊗2.

In local coordinates (x1, . . . , xn) near p, we can use {∂/∂x1, . . . , ∂/∂xn} as
a frame for TM . Then we can write

R
( ∂

∂xi
,
∂

∂xj

) ∂

∂xk
= Rij

l
k
∂

∂xl
.

In other words, if v = vk∂/∂xk, then

R
( ∂

∂xi
,
∂

∂xj

)
v = Rij

l
kv
k ∂

∂xl
.

We can also define, for X,Y, Z,W ∈ Γ(TM),

R(X,Y, Z,W ) = 〈R(X,Y )Z,W 〉.

This defines a section of (T ∗M)⊗4. In local coordinates,

Rijpk = glpRij
l
k

Proposition 31.2 (The Bianchi identities).

(1) R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0

(2) ∇R = 0

Proof. We have already proved (2). Let us do (1). Since everything is tensorical,
we can check (1) at a point p ∈M , in normal coordinates (x1, . . . , xn). We have

R
( ∂

∂xi
,
∂

∂xj

) ∂

∂xk
= (∇i∇j −∇j∇i)

∂

∂xk

= ∇i
(

Γljk
∂

∂xl

)
−∇j

(
Γlik

∂

∂xl

)
= ∂iΓ

l
jk − ∂jΓlik

because we are working in normal coordinates and so the evaluation of Γ at p
is zero. Now

Rij
l
k +Rjk

l
i +Rki

l
j = ∂iΓ

l
jk − ∂jΓlik + ∂jΓ

l
ki − ∂kΓlji + ∂kΓlij − ∂iΓlkj = 0

since Γljk = Γlkj .
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Lemma 31.3 (Symmetries of R).

(i) R(X,Y, Z,W ) = R(Z,W,X, Y ).

(ii) R(X,Y, Z,W ) = −R(Y,X,Z,W ) = −R(X,Y,W,Z).

Proof. Homework.

The curvature tensor has a lot of information.

31.2 Sectional curvature

Definition 31.4. Let p ∈M , and let σ ⊆ TpM a 2-dimensional subspace. Let
σ = span{x, y} and define

K(σ) =
R(X,Y, Y,X)

‖X ∧ Y ‖2

where ‖X ∧ Y ‖2 = |X|2|Y |2 − 〈X,Y 〉2. This K(σ) is called the sectional
curvature.

Proposition 31.5.

(1) K(σ) is independent of the choice of {X,Y } spanning σ.

(2) K(σ) for every σ ⊆ TpM determines R(p).

Proof. (1) We can just check that K(σ) is not changed by (X,Y )→ (Y,X) and
(X,Y )→ (λX, Y ) and (X,Y )→ (X,Y + λX). This can be checked.

(2) It suffices to prove the following lemma.

Lemma 31.6. If V is a vector space with an inner product 〈•, •〉 and trilinear
maps R,R′ : V × V × V → V such that

R(X,Y, Z,W ) = 〈R(X,Y )Z,W 〉, R′(X,Y, Z,W ) = 〈R′(X,Y )Z,W 〉

satisfy the symmetries of the Riemannian curvatures, then R(X,Y, Y,X) =
R′(X,Y, Y,X) for all X,Y implies R = R′.

Proof. By assumption, expanding R(X+Z, Y, Y,X+Z) = R(X+Z, Y, Y,X+Z)
implies

R(X,Y, Y,X) +R(Z, Y, Y, Z) +R(X,Y, Y, Z) +R(Z, Y, Y,X) = same with R′.

Becuase R(X,Y, Y, Z) = R(Y,Z,X, Y ) = R(Z, Y, Y,X), we get

R(Z, Y, Y,X) = R′(Z, Y, Y,X).

Now let us expand R(Z, Y +W,Y +W,X). From this, we get

R(Z,W, Y,X)−R′(Z,W, Y,X) = R′(Z, Y,W,X)−R(Z, Y,W,X)

= R(Y, Z,W,X)−R′(Y,Z,W,X).
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That is, R−R′ is invariant under cyclic permutations of the first three entries.
So summing over a cyclic permutation and using the first Bianchi identity, we
get

3[R(Y, Z,W,X)−R′(Y,Z,W,X)] = 0.

Therefore R = R′.
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Last time we defined the Riemann curvature tensor as

R(X,Y, Z,W ) = 〈R(X,Y )Z,W 〉, R(X,Y )Z = (∇X∇Y −∇Y∇X −∇[X,Y ])Z.

Then we defined

K(σ) =
R(X,Y, Y,X)

|X ∧ Y |2
for σ = span(X,Y ) ⊆ TpM

We proved that K(σ) determines K.

Definition 32.1. Let us say that (M, g) has constant sectional curvature
K(σ) = K is independent of both p and σ.

Lemma 32.2. If (M, g) has constant sectional curvature K, then

R(X,Y, Z,W ) = K(〈X,W 〉〈Y,W 〉 − 〈X,Z〉〈Y,W 〉)

Proof. This is a 4-tensor that has agrees on 2-planes and has all the symmetries.

Definition 32.3. The Ricci curvature is given by

Ric(X,Y ) = Tr(Z 7→ R(Z,X)Y ).

In local coordinates, we have

(Ric)ij = Rki
k
j = glkRkilj .

Note that this is not Tr(F∇).

Definition 32.4. The scalar curvature is defined as

R = gij(Ric)ij .

32.1 Effect of curvature on geodesics

Fix a point p ∈ M , a vector v ∈ TpM and consider γ(t) = expp vt. Our goal is
to study variations of γ(t). The general family of geodesics is

α(t, s) = expp(t(v, w(s)))

where w(s) : (−ε, ε) → TpM with w(0) = 0. Then for each s0, α(t, s0) is a
geodesic with initial vector v + w(s0). We are going to study the infinitesimal
variations of the geodesics. We have

d

ds

∣∣∣
s=0

expp(t(v + w(s))) = d(expp)tvtw
′(0).

This gives us a vector field.
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Proposition 32.5. The vector field J(t) = d(expp)tvtw is solves the following
Jacobi field equation:

∇γ̇∇γ̇J(t) = R(γ̇, J)γ̇.

Proof. By torsion-freeness of the connection,

∇γ̇J −∇J γ̇ = [γ̇, J ] = [d(expp)tvtv, d(expp)tvtw] = d(expp)tv[v, w] = 0

because v and w are constant on TpM . Then

∇γ̇∇γ̇J = ∇ġ∇J γ̇ = R(γ̇, J)γ̇ +∇J∇γ̇ γ̇ +∇[γ̇,J]γ̇ = R(γ̇, J)γ̇.

Definition 32.6. For a geodesic γ : [0, a]→ M , a vector field J(t) along γ(t)
is a Jacobi field with initial data J0, J

′
0 if J(t) solves the Jacobi field equations

with J(0) = J0 and J ′(0) = J ′0.

Let us show that Jacobi fields exist. Let e1, . . . , en be an orthonormal basis
for TpM , and let E1(t), . . . , En(t) be the parallel transport of e1, . . . , en along
γ(t). Then {Ei(t)} is orthonormal for all t ∈ [0, a] because the Levi-Civita
connection is compatible with g. More formally, we can write

d

dt
〈Ei(t), Ej(t)〉 = 〈∇γ̇Ei(t), Ej(t)〉+ 〈Ei(t),∇γ̇Ej(t)〉 = 0 + 0 = 0.

Now write J(t) =
∑n
i=1 ai(t)Ei(t). Then

∇γ̇∇γ̇J =

n∑
i=1

äi(t)Ei(t) =
∑
i

ai(t)R(γ̇, Ei)γ̇.

Taking the inner product with Ej , we get

g̈j(t) =
∑
i

ai(t)R(γ̇, Ei, γ̇, Ej).

This is an ODE, so we can always solve it.

Theorem 32.7. Given γ(t), J0, J
′
0 ∈ TpM , there exists a unique Jacobi field

J(t) along γ(t) with initial conditions J(0) = J0 and J ′(0) = J ′0.

So if J0 = 0 and J ′0 = w then J(t) = d(expp)vtwt.
Recall that Gauss’s lemma says

〈d(expp)vw, d(expp)vv〉 = 〈v, w〉.

Proposition 32.8. If J(0) = 0 and J ′(0) ⊥ γ′(0) then J(t) ⊥ γ′(t) for all t.

Proof. Note that

d

dt
〈J(t), γ̇(t)〉 = 〈∇γ̇(t)J(t), γ̇(t)〉
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because ∇γ̇ γ̇ = 0 since γ is a geodesic. Then

d2

dt2
〈J(t), γ̇(t)〉 = 〈∇γ̇∇γ̇J(t), γ̇(t)〉 = R(γ̇, J(t), γ̇, γ̇) = 0.

Thus

〈J(t), γ̇(t)〉 = 〈J(0), γ̇(0)〉+ t〈J ′(0), γ̇(0)〉.

If J(0) = 0 and J ′(0) ⊥ γ̇(0), then we immediately get J(t) ⊥ γ̇(t).

32.2 Jacobi fields on manifolds with constant sectional
curvature

Suppose (M, g) has sectional curvature K ∈ R. Fix γ(t) a geodesic with |γ̇(t)| =
1.

Proposition 32.9. The Jacobi field equation is

∇γ̇∇γ̇J = −KJ

if J(0) = 0 and J ′(0) ⊥ γ̇.

Proof. We have R(γ̇, J)γ̇ = −KJ since we have an explicit formula.

For example, if w(t) is parallel along γ̇(t) with |w(t)| = 1 and w(t) ⊥ γ̇ then

J(t) =
sin(t
√
K)√

K
w(t)

is a Jacobi field K > 0.
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Let (M, g) be a Riemannian manifold and γ : [0, 1] → M be a geodesic. Then
J(t) is a Jacobi vector field along γ(t) if it satisfies the equation ∇γ̇∇γ̇J(t) =
R(γ̇, J)γ̇.

Let us now look at the special example where (M, g) has constant sectional
curvature K. Then ∇γ̇∇γ̇J + KJ = 0. If w(t) is parallel along γ(t) with
w(t) ⊥ γ̇(t), then J(t) is a Jacobi field with J(0) = f(0)w(0) and J ′(0) =
f ′(0)w(0) + f(0)w′(0) if and only if

d2f

dt2
+Kf(t) = 0

if we set J(0) = 0. The solution to this differential equation is

J(t) =


sin(t

√
K)√

K
w(t) K > 0

tw(t) K = 0
sinh(t

√
−K)√

−K w(t) K < 0.

Let us think what this is saying. IfK < 0, then a small variation of a geodesic
oscillates around the original geodesic. This already hints that the manifold M
looks somewhat like the sphere. If K = 0, then a small variation of a geodesic
linearly drifts away from the original one. The Euclidean space (Rn, geug) is
an example of this. If K < 0, then the variational geodesic goes away from
the original one exponentially. The upper-half plane (H2, (dx2 + dy2)/y2) is an
example.

33.1 Conjugate points

Definition 33.1. q is conjugate to p (along v ∈ TpM) if q is a singular value of
expp : TpM → M , i.e., q = expp v and d(expp)v : TpM → TqM has non-trivial
kernel.

Proposition 33.2. q is conjugate to p along v if there exists a non-zero Jacobi
field J(t) along γ(t) = expp(vt) such that J(0) = 0 = J(1). Moreover q is
conjugate to p if and only if p is conjugate to q.

Proof. Take any w ∈ TpM . Then J(t) = d(expp)vttw is a Jacobi field with J(0)
and J ′(0) = w. Then J(1) = 0 if and only if w ∈ ker d(expp)v. The symmetry
of the statement is obvious.

Recall that the first variation of the arc length functional gave rise to the
geodesic equation. Now let us look at the second variation of the arc length.
Since geodesics may not be length minimizing, the second variation may not be
positive definite.
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Theorem 33.3. Let γ(t) : [a, b] → M be a geodesic with unit speed. Let Q =
[a, b]× [−ε, ε]× [−δ, δ]→M be a smooth map such that Q(t, 0, 0) = γ(t). Then

∂2

∂v∂w
L(v, w)

∣∣∣
(v,w)=(0,0)

=

∫ b

a

(
〈∇TV,∇TW 〉 − 〈R(W,T )T, V 〉

− (T 〈V, T 〉)(T 〈W,T 〉)
)
dt+ 〈∇WV, T 〉|ba,

where

L(v, w) =

∫ b

a

∣∣∣∂Q
∂t

(t, v, w)
∣∣∣
g
dt,

W =
∂Q

∂w
(t, 0, 0), V =

∂Q

∂V
(t, 0, 0), T =

∂Q

∂t
(t, 0, 0).

Proof. We have L(v, w) =
∫ b
a
‖T‖dt. Then

∂L

∂v
=

∫ b

a

V
√
〈T, T 〉dt =

∫ b

a

〈∇V T, T 〉
‖T‖

dt.

But V 〈T, T 〉 = 2〈∇V T, T 〉 and ∇V T = ∇TV + [V, T ] and [V, T ] = 0. So

∂L

∂V
=

∫ b

a

〈∇TV, T 〉
‖T‖

dt.

Note that this is the same thing we got when we were talking about the geodesic
equation.2

Now the second derivative is

∂2L

∂w∂v
=

∫ b

a

(
W 〈∇TV, T 〉
‖T‖

− 〈∇TV, T 〉W‖T‖
‖T‖2

)
dt

=

∫ b

a

(
〈∇W∇TV, T 〉+ 〈∇TV,∇TW 〉

‖T‖
− 〈∇TV, T 〉〈∇WT, T 〉

‖T‖3

)
dt.

We can do the swapping using the same arguments, and evaluate at u = v = 0.
Then ∇TT = 0 and ‖T‖ = 1 and so 〈∇TV, T 〉 = T 〈V, T 〉 and 〈∇TW,T 〉 =
T 〈W,T 〉. Thus

∂2L

∂v∂w

∣∣∣
(0,0)

=

∫ b

a

(
〈∇T∇WV, T 〉+ 〈R(W,T )V, T 〉

+ 〈∇TV,∇TW 〉 − (T 〈V, T 〉)(T 〈V,W 〉)
)
dt.

Now 〈∇T∇WV, T 〉 = (d/d)〈∇WV, T 〉 and so finally

∂2L

∂V ∂W
= 〈∇WV, T 〉|ba +

∫ b

a

(
〈∇TV,∇TW 〉

−R(W,T, T, V )− (T 〈V, T 〉)(T 〈W,T 〉)
)
dt.

2If we require V (a) = V (b) = 0 and ‖γ̇‖ = 1, then 〈∇TV, T 〉 = (d/dt)〈V, T 〉 − 〈V,∇TT 〉
and so we get that ∇TT = 0. This gives another (really the same) proof of the fact that
geodesics are the critical points of L.
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Note that this makes sense even when V and W are piecewise C∞. Assume
that V and W are C∞ on [ti, ti+1] where a = t0 < · · · < tn = b, and assume
also that 〈V, T 〉 = 〈W,T 〉 = 0. Then

∂2L

∂v∂w
=

n−1∑
i=0

∫ ti

ti−1

(
〈∇TV,∇TW 〉 −R(W,T, T, V )

)
dt+ 〈∇WV, T 〉|ti+1

ti .

The second term telescopes. For the first term, we can integrate by parts and
get ∫ ti+1

ti

(
〈∇TV,∇TW 〉 −R(W,T, T, V )

)
dt

= ∆ti〈∇TV,W 〉 −
∫ ti+1

ti

(
〈∇T∇TV,W 〉 −R(T, V, T,W )

)
dt.

I will discuss the applications next week.
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34 November 28, 2016

Recall that p, q ∈M are conjugate (along v ∈ TpM) if q = expp v and d(expp)v
has non-trivial kernel. We have proved that q ∈M is conjugate to p if and only if
there exists a non-zero Jacobi field J(t) along expp vt such that J(0) = J(1) = 0.

Corollary 34.1. If q is not conjugate to p then for any w ∈ TqM there exists a
Jacobi field along the geodesic g(t) connecting p and q = γ(1) such that J(0) = 0
and J(1) = w.

Proof. Let v̂ ∈ TpM . Let Jv̂(t) be the Jacobi field with Jv̂(0) = 0 and J̇v̂(0) = v̂.
Consider the map TpM → TqM given by v̂ 7→ Jv̂(1). This map is linear and
has no kernel. Thus it is an isomorphism.

34.1 Second variation of arc length

If γ : [0, a] → M is a geodesic with ‖γ̇‖ = 1, we want to compute the second
variation or arc-length. Given piecewise C∞ vector fields V,W along γ(t) such
that V (0) = 0,W (0) = 0 and V (a) = 0,W (a) = 0 and V ⊥ γ̇,W ⊥ γ̇.

The second variation, we have shown last time, can be computed as

I(V,W ) =

n∑
i=0

〈∆ti∇γ̇V,W 〉 −
n−1∑
i=0

∫ ti+1

ti

〈∇γ̇∇γ̇V −R(γ̇, V )γ̇,W 〉,

where V,W are C∞ on [ti, ti+1] and ∆ti∇γ̇V = limt→t+i
∇γ̇V − limt→t−i

∇γ̇V .

We can consider I(V,W ) as a symmetric bilinear form on piecewise C∞

vector fields along γ(t). (Here, we don’t necessarily have to put assumptions at
end points or being perpendicular to γ̇.)

Proposition 34.2. The null space of I is exactly the set of Jacobi fields along
γ(t) which vanish at the end points.

Proof. If V (t) is a Jacobi field along γ(t), then

I(V,W ) =

n∑
i=0

〈∆ti∇γ̇V,W 〉 −
n−1∑
i=0

∫ ti+1

ti

〈∇γ̇∇γ̇V −R(γ̇, V )γ̇,W 〉 = 0

because V is C∞ and solves the Jacobi equation.
Conversely, Take 0 = t0 < · · · < tn = a such that V |[ti,ti+1] is C∞. Let

f(t) : [0, a]→ R be C∞ with f ≥ 0 and f(ti) = 0. As a test vector field, take

W = f(t)[−∇γ̇∇γ̇V +R(γ̇, V )γ̇].

Then we get

I(V,W ) =

n−1∑
i=0

∫ ti+1

ti

f(t)‖∇γ̇∇γ̇V −R(γ̇, V )γ̇‖2dt = 0.
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So ∇γ̇∇γ̇V − R(γ̇, V )γ̇ = 0 on [ti, ti+1]. So I(V,W ) =
∑n
i=0〈∆ti∇γ̇V,W 〉.

Let W be any C∞ vector field so that W (ti) = ∇ti∇γ̇V . Then I(V,W ) =∑n
i=0‖∆ti∇γ̇V ‖2 and so ∆ti∇γ̇V = 0. So ∇γ̇V is continuous.
Now we claim that V is C∞ and solves the Jacobi equation. This is because

the Jacobi equation is determined by V (t), V̇ (t) and since ∇γ̇V is continuous,
the two solutions around a singular point actually have to agree. This is basically
appealing to the existence and uniqueness of ODEs.

Corollary 34.3. I has non-trivial null space if and only if γ(0) is conjugate to
γ(a). The dimension of the null space is equal to the order of the conjugacy.

34.2 First index lemma

Lemma 34.4 (First index lemma). Suppose γ is a unit speed geodesic between
p = γ(0) and q = γ(a). Suppose there are no points on γ conjugate to p. Let
W be a piecewise C∞ vector field along γ such that W (p) = 0. Then

(i) there exists a unique Jacobi field V along γ such that V (p) = 0 = W (p)
and V (q) = W (q).

(ii) I(V, V ) ≤ I(W,W ) with equality if and only if V = W .

Theorem 34.5 (Bonnet–Myers). Let (Mn, g) be a compact Riemannian man-
ifold. If there exists a H ∈ R>0 such that

(i) Ric(x, x) ≥ (n− 1)H for all unit vectors x, or

(ii) K ≥ H,

then every geodesic γ of length (γ) > π/
√
H has conjugate pints, and dim(M) =

sup{d(p, q) : p, q ∈M} ≤ π/
√
H. In particular, M is compact.

I’ll prove both of these next time.
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Lemma 35.1 (First index lemma). Suppose we have γ : [0, a] → M be a unit
speed geodesic connecting the points p = γ(0) and q = γ(a). Suppose there are
no points on γ conjugate to p. If W is any piecewise C∞ vector field along γ
with W (p) = 0, then

(1) there is a unique Jacobi field V along γ such that V (p) = W (p) = 0 and
V (q) = W (q), and

(2) I(V, V ) ≤ I(W,W ) with equality if and only if V = W .

Proof. (1) Since q is not conjugate to p, we can find a unique V .
(2) Let {Vi}Ni=1 be a basis of TqM . Extend Vi to Jacobi fields Ji(t) along

γ(t) such that Ji(0) = 0. For each t ∈ (0, a), the Ji(t) are linearly independent.

This is because if
∑N
i=1 αiJi(t) vanishes at t = t0 and t = 0, then p is conjugate

to γ(t0). This contradicts our assumption.
We now claim that W =

∑
fi(t)Ji(t) for fi piecewise C∞. Because Ji(0) =

0, we can write Ji(t) = tAi(t) for Ai smooth vector fields linearly independent on
[0, a]. Here, Ai(0) are linearly independent because Ai(0) = J ′i(0). Then W (t) =∑
i qi(t)Ai(t) where qi(t) are piecewise C∞. But now, W (0) =

∑
i qi(0)Ai(0) =

0 and so qi(0) = 0 for all i. Then we can write qi(t) = tfi(t) with fi(t) piecewise
C∞. This implies that W (t) =

∑
fi(t)Ji(t).

Because V is a Jacobi field that agrees withW at a, we get V =
∑
i fi(a)Ji(t).

Then

I(V, V ) =
∑
i,j

fi(a)fj(a)〈J ′i(a), Jj(a)〉.

Likewise we have ∇γ̇W =
∑
i ḟi(t)Ji(t) +

∑
i fi(t)J̇i(t) = A+B and so

I(W,W ) =

∫ a

0

〈∇γ̇W,∇γ̇W 〉dt+

∫ a

0

〈R(γ̇,W )γ̇,W 〉dt

=

∫ a

0

〈A,A〉+ 〈A,B〉+ 〈B,A〉+ 〈B,B〉+R(γ̇,W, γ̇,W ).

The term 〈B,B〉 looks like∫
〈B,B〉 =

∑
i,j

∫ a

0

fifj〈J̇i, J̇j〉 =
∑
i,j

∫ a

0

fifj

[ d
dt
〈Ji, J̇j〉 − 〈Ji, J̈j〉

]
=
∑
i,j

fi(a)fj(a)〈Ji(a), J̇j(a)〉 −
∑
i,j

∫ a

0

(ḟifj + ḟjfi)〈Ji, J̇j〉 −
∫
R(γ̇,W, γ̇,W ).

Also ∫ a

0

〈A,B〉dt =

∫ a

0

∑
i,j

ḟifj〈J̇i, Jj〉
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cancels one of the terms.
We note that 〈Ji, J̇j〉 = 〈J̇i, Jj〉 because

d

dt
(〈Ji, J̇j〉 − 〈J̇i, Jj〉) = 〈Ji, J̈j〉 − 〈J̈i, Jj〉 = R(γ̇, Jj , γ̇, Ji)−R(γ̇, Ji, γ̇, Jj) = 0

and 〈Ji, J̇j〉 − 〈J̇i, Jj〉 = 0 at t = 0. So∑
i,j

∫ a

0

fiḟj〈Ji, J̇j〉dt =
∑
i,j

∫ a

0

fiḟj〈J̇i, Jj〉dt =

∫ a

0

〈B,A〉dt.

Therefore we get

I(W,W ) = I(V, V ) +

∫ a

0

〈A,A〉dt

and A = 0 if and only if fi(t) = 0, which means W = V .

35.1 Bonnet–Myers theorem

Theorem 35.2 (Bonnet–Myers). Let Mn be a complete Riemannian manifold
with H ∈ R>0 such that

(i) (Myers) Ric(x, x) ≥ (n− 1)H for all unit vectors x.

(ii) (Bonnet) K ≥ H.

Then diam(M) ≤ π/
√
H and in particular, M is compact.

Note that (i) is a stronger result than (ii) because if K ≥ H then Ric(x, x)
is a sum of n− 1 sectional curvatures.

Proof. Take p, q ∈ M and let d(p, q) = l. Take γ : [0, l] → M a unit speed
geodesic connecting p and q. Let Ei(t) be an orthonormal frame of parallel
vectors along γ(t). Let Wi(t) = sin(πt/l)Ei(t). (This will serve as the model
Jacobi field from space of constant curvature K = l2.) We have

I(Wi,Wi) =

∫ l

0

sin
(π
l
t
)2[π2

l2
−R(γ̇, Ei, γ̇, Ei)

]
dt.

So if K ≥ H then

I(Wi,Wi) ≤
∫ l

0

sin
(π
l
t
)2[π2

l2
−H

]
.

If l > π/
√
H, then I(Wi,Wi) < 0. This contradicts the fact that γ is length

minimizing.
For Myers, we sum over i. Then

n−1∑
i=1

I(Wi,Wi) =

∫
sin
(π
l
t
)[

(n− 1)
π2

l2
− Ric(γ̇, γ̇)

]
dt < 0

if l > π/
√
H where Ric(γ̇, γ̇) ≥ (n − 1)H. Then I(Wi,Wi) < 0 for some i and

so γ is not length minimizing.
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36.1 Covering spaces

Definition 36.1. Let B be a topological space. B̃ is a covering space with
covering map π : B̃ → B if it is continuous and surjective and for each p ∈ B
there exists a neighborhood U ⊆ B such that π−1(U) =

⋃
α Vα with Vα ⊆ B

open and π|Vα : Vα → Uα a homeomorphism.

For example, the map R → R/Z ∼= S1 is a covering map. The map R2 →
R2/Z⊕ Z ∼= S1 × S1 is also a covering map.

Proposition 36.2 (Curve lifting). If α : [0, l]→ B is curve and π : B̃ → B is
a covering map, then for any p̃0 ∈ B̃ with π(p̃0) = α(0), there is a unique lift
α̃ : [0, l]→ B̃ such that π(α̃) = α and α̃(0) = p̃0.

Definition 36.3. α0, α1 : [0, l] → B with α0(0) = α1(0) = p and α0(l) =
α1(l) = q are homotopic if there exists a continuous map H : [0, 1]× [0, 1]→ B
such that H(•, 0) = α0, H(•, 1) = α1, and H(0, •) = p, H(l, •) = q.

Proposition 36.4 (Homotopy lifting). If π : B̃ → B are local homeomorphisms
with path lifting, then we can lift homotopies. So if α0 and α1 are homotopic,
then they lift to homotopic curves provided α̃0(0) = α̃1(0) = p̃0.

Corollary 36.5. The cardinality #π−1(p) is independent of p if π : B̃ → B is
a covering map and B is connected.

Definition 36.6. B if simply connected if all curves connecting any p, q ∈ B
are homotopic.

The sphere Sn is simply connected if n ≥ 2 and S1 is not.

Proposition 36.7. If π : B̃ → B is local homeomorphism with path lifting, then
if B is simply connected and B̃ is path connected, then π is a homeomorphism.

Proof. We need to show that π is one-to-one. If π(p1) = π(p2), then consider
a path connecting p1 and p2. The image of this curve is homotopic to the
constant map. This implies that the path is homotopic to the constant map.
So p1 = p2.

Corollary 36.8. If π : B̃ → B is a covering map and B̃ is path connected, B̃
is simply connected, then π is a homeomorphism.

Proposition 36.9. Let π : B̃ → B be a local homeomorphism with path lifting
and let B̃ be locally path connected. If B is locally simply connected, then π is
a covering map.

Proof. For p ∈ B, let V 3 p be a simply connected neighborhood. Let π−1(V ) =⋃
α Ṽα where the Ṽαs are the path components. We claim that π(Ṽα) = V . If

q ∈ V \ π(Ṽα, then a path connecting q and a point in π(Ṽα) can be connected
by a path in V . The lift has to be in π−1(V ) and so we get a contradiction.
This shows that π|Ṽα : Ṽα → V is a covering map. Then By the proposition, it

is a homeomorphism. Since Ṽα are disjoint, we see that π is a covering map.
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36.2 Hadamard’s theorem

Theorem 36.10 (Hadamard). Let (M, g) be a complete metric with K ≤ 0.
Then for every p ∈M , expp : TpM →M is a covering map.

Corollary 36.11. If (M, g) is complete, simply connected, and K ≤ 0, then
M ∼= Rn.

For example, Tn ∼= Rn/Zn has a flat metric, and Rn → Tn is a covering
map. For Sn, this cannot be true for n ≥ 2.

Lemma 36.12. The map expp : TpM →M is a local diffeomorphism.

Proof. We just need to show that ker d(expp)v = ∅ for v ∈ TpM . In other words,
we need to show that if γ(t) = expp vt and J(t) is a nonzero Jacobi field along
γ(t) with J(0) = 0, then J(t) 6= 0 for t > 0. We have

d

dt
|J(t)|2 = 2〈J, J̇〉,

and then

d2

dt2
|J(t)|2 = 2〈J̇ , J̇〉 − 2K(γ̇, J)‖J, γ̇‖ > 0.

Because d|J(t)|2/dt|t=0 = 0, we get |J(t)| > 0 for t > 0. This implies that there
are no conjugate points. So expp is a local diffeomorphism.

Thus (Rn, exp∗p g)→ (M, g) is a local isometry.

Lemma 36.13. If (N,h)→ (M, g) is a local isometry between complete mani-
folds, then π is a covering map.

Proof. We need to verify the path lifting property. Given α : [0, l] → M , we
need to lift α uniquely on [0, t0) for t0 > 0. If tα → t0, then lᾱ(ᾱ(0), ᾱ(tk))N =
lα(α(0), α(tk))M ≤ C. Because M is complete, bounded sets are compact. Sow
α(tk)→ α(t0) ∈M . Now use local path lifting.
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