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1 January 24, 2017

We will use Vakil’s Foundations of Algebraic Geometry.

1.1 Introduction

Scheme theory is a modern language for algebraic geometry, which is the study
of geometry of solutions of systems of polynomial equations. You can ask about
the zero locus of x2 + y2 − 1, and the subject becomes close to geometry or
topology, or you can ask about integer solutions of xn + yn − zn = 0. If you
are doing classical algebraic geometry over C, then you don’t need much of a
language to get to the front end. But if you want to prove things, or see the
connection between the geometric and algebraic side.

I want to talk about the Weil conjectures, which we won’t prove because it
is quite hard. If we have r equations fi(x1, . . . , xn) = 0 then we expect their
intersection to have dimension n − r. Let us look at a smooth curve X, i.e., a
1-dimensional set of solutions of y2 = x3 + x. Consider X over C. These are
1-dimensional complex manifolds, and they are parametrized by the genus (or
the number of holes).

Here is another thing you can do. How many solutions are there in integers?
This is a bit tricky, so let us count the number of solutions over Fq, a finite
field. There will be some number of solutions |X(Fq)|. Heuristically, this is a
1-dimensional manifold, and so we expect |X(Fq)| ∼ q.

Theorem 1.1. If g is the genus of X, then

||X(Fq)| − q| < 2g
√
q.

This is interesting, because the error term somehow depends on the topology
of the surface. This is algebraic geometry.

1.2 Category theory

This is basically a language.

Definition 1.2. A category C is some fellow with a collection of objects ob C
and morphisms Mor(A,B) for every A,B ∈ C , with

(i) a composition law: given A,B,C ∈ ob C and f ∈ Mor(A,B) and g ∈
Mor(B,C) a morphism g ◦ f ∈ Mor(A,C) such that the composition law
is associative,

(ii) identity morphisms: for every A ∈ ob C and element idA ∈ Mor(A,A)
which is a two-sided identity for composition.

Example 1.3. The category Set of sets have objects sets and morphisms maps.
The category InjSet have object sets and morphisms injective maps. There are
categories Grp, AbGrp, Top, Mfld, Ring, CRing, etc.
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Definition 1.4. A morphism f : A→ B is an isomorphism if it is invertible,
i.e., there exists a g : B → A such that g ◦ f = idA and f ◦ g = idB .

Definition 1.5. A poset is a set P with a binary relation ≤ satisfying

(i) reflexivity: x ≤ x for all x ∈ P
(ii) transitivity: if x ≤ y and y ≤ z then x ≤ z
(iii) antisymmetry: if x ≤ y and y ≤ x then x = y

Proposition 1.6. A poset is the same thing as a category where all morphism
spaces have cardinality at most 1.

Let us draw an example.
•

• •

There are also things called diagram categories, which allow more than one
arrows.

Definition 1.7. A subcategory D ⊆ C is the following:

(i) ob D ⊆ ob C

(ii) for all A,B ∈ ob D , MorD(A,B) ⊆ MorC (A,B)

A full subcategory is one where ifA,B ∈ ob D then MorD(A,B) = MorC (A,B).

Definition 1.8. A (covariant) functor F : C → D consists of the following:

(i) F : ob C → ob D ,

(ii) given f ∈ MorC (A,B) a F (f) ∈ MorD(F (A), F (B)), preserving identity
maps and composition.

Example 1.9. There are the forgetful functors. There is a technical definition,
but colloquially these are just functors that forget structure. For example,
consider F : AbGrp→ Set given by A 7→ A and (f : A→ B) 7→ (f : A→ B).

Example 1.10. The whole business of algebraic topology is to find interesting
functors. The fundamental group is a functor π1 : Top∗ → Grp, or fancier,
π1 : Top→ Grpd. Likewise Hi(−,Z) : Top→ AbGrp and K∗ : Top→ GrAbGrp.

Definition 1.11. A functor is called faithful if the associated maps of mor-
phisms are injective, i.e., MorC (A,B) ↪→ MorD(A,B). A functor is full if the
associated maps of morphisms are surjective.

Example 1.12. The forgetful functor AbGrp→ Set is faithful but not full. The
forgetful functor AbGrp→ Grp is fully faithful.
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Example 1.13. For S a set, we define Subset(S) as the category where objects
are subsets T ⊆ S and the morphisms are inclusions. More interestingly, if X is
a topological space, we can think of a category OP (X) of open sets of X with
morphisms inclusions. This is the topology of X in some sense. You can do
this for other objects, for instance, for a manifold X, consider the category of
open sets inside submersions to X.

Definition 1.14. Let C be a (locally small) category and A ∈ ob C . Define a
functor hA : C → Set in the following way.

• For B ∈ ob C , let hA(B) = MorC (A,B).

• For B1, B2 ∈ ob C , we define MorC (A,B1)→ MorC (A,B2) by g 7→ f ◦ g.

This whole setup gives a Yoneda embedding:

C → Funct(C ,Set); A 7→ hA

Here, Funct(C ,D) is a category with objects functors and morphisms natural
transformations.

Proposition 1.15. The Yoneda embedding is faithful.

Why are we doing this thing? Sometimes it is easier to construct stuff in
Funct(C ,Set). Then we only need to show that that thing actually lives in C .

Definition 1.16. For C a category, the opposite category C op has the same
objects but all the morphism spaces are reversed: MorC op(A,B) = MorC (B,A).

Definition 1.17. A contravariant functor from C to D is a (covariant)
functor C op → D (or from C to Dop).

For example, H∗(−,Z) is a functor Topop → GrAbGrp. The dual vector
space or the Pontryagin dual also gives a contravariant functor.

Definition 1.18. The (contravariant) Yoneda embedding is constructed in
the following way. For A ∈ ob C , there is a contravariant functor hA : C op → Set
by B 7→ MorC (B,A). Then this gives and embedding C ↪→ Funct(C op,Set).

Definition 1.19. A natural transformation η between two functors f1, f2 ∈
Funct(C ,D) is the data: for everyA ∈ ob C such that η(A) ∈ MorD(f1(A), f2(A))
such that for any g : A→ B in C , the following diagram commutes.

f1(A) f1(B)

f2(A) f2(B)

f1(g)

η(A) η(B)

f2(g)

Definition 1.20. A representable functor for C is an object F ∈ Funct(C op,Set)
that is in the (essential) image of the Yoneda embedding.
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2 January 26, 2017

I figured out most people know about categories.

2.1 Sheaves

In geometry, shapes are good to study by their ring of functions. Here is functor
F : Topop → CRing defined as X 7→ {continuous functions}. Likewise there can
be a functor Diffop → CRing by X 7→ C∞(X). Usually rings are easier, so this
functor kind of embeds our category to the category of rings. This is a special
case of a Yoneda functor hA : X 7→ MorC (X,A), in this case A = R.

Why do we use R? This is because of the Whitney embedding. The basic
statement is that there is an embedding X ↪→ RN . This gives a set of functions
that contains everything about X. But there is a problem with this motivation.
The holomorphic category CplxMfld does not have a Whitney embedding. The
maximum principle tells us that compact complex manifolds only have constant
functions. The solution to this problem is to study functions on open sets on
the manifold.

Now we have to keep track of a lot of data, namely for each U ⊆ X the ring of
functions C(U) on U . There are going to be restriction maps res : C(U)→ C(V )
and so this is actually a functor C : Op(X)op → CRing.

Definition 2.1. A presheaf on a topological space X valued in a category C
is a functor F : Op(X)op → C .

Note that you can define analogues of sheaves by using other things than open
sets.

Example 2.2. Continuous functions on a topological space, smooth functions
on manifolds, holomorphic functions on complex manifolds, polynomials on
schemes are presheaves.

Note that if C is abelian, then the category PShvC (X) of all presheaves is
also abelian. Also, all constructions of kernels and cokernels are pointwise.

Definition 2.3. A sheaf is a presheaf F : Op(X)op → C that satisfies the
following: for any open cover {Ui}i∈I ,

0 F (U)
∏
i∈I

F (Ui)
∏
i,j∈I

F (Ui ∩ Uj)

is exact.

You can try to define categories to other things than commutative rings.
One of the basic examples of adjoint functors is the ⊗-Hom adjunction. In
topological spaces, we have

MorTop∗(X ∧ Y, Z) ∼= Mor(X,Mor(Y,Z)).
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So you look at it and hmm. Now there are many cohomologies in topological
spaces, like H∗(−;Z) or K∗ or MU∗. Are these representable? Not quite, but
there are these things called “spectra”, that are like abelian group objects in
topology. You can replace CRing by other categories, and derived algebraic
geometry is one of these things. The point is that this is a useful framework.

2.2 Stalks and sheafification

There is a forgetful functor Shv(X) → PShv(X). Now the question is, is there
a preferred way to make a sheaf from a presheaf? To restate the question, is
there a left adjoint (a free/minimal way to make a presheaf into a sheaf)? The
answer is yes, and it is called sheafification, usually denoted s.

Tensor products and cokernels in the category of shaves näıvely lands in
the category of presheaves and it needs to be fixed. Because the condition for
something being a sheaf is left exact, limt constructions are going to be fine but
colimit constructions don’t work.

Example 2.4. Take the example on X = C \ {0}

0 2πiZ O O∗ 0,
exp

where Z is the constant sheaf, the sheaf of locally constant functions with values
in Z, O is the sheaf of holomorphic functions, O∗ is the sheaf of nonvanishing
holomorphic functions. The map O(U) → O∗(U) is not surjective for U =
X, because the function f(z) = z is not the exponential of a globally defined
function. But this is a surjection in the category of sheaves, because there exists
an open cover {Ui}i∈I of C\{0} such that z|Ui does have a preimage in Γ(Ui,O).

Definition 2.5. The sheafification functor is defined by the following.

sF (U) = lim−→
{Ui} open cover

ker
( ∏

F (Ui)
∏

F (Ui ∩ Uj)
)

Proposition 2.6. If C is an abelian category, then ShvC (X) is also abelian
where kernels and as in PShvC (X) and

cokerShv(F →H ) = s(cokerPshv(F →H )).

The structure sheaf OX on a space is the sheaf of functions on X. Let F
be a (pre)sheaf, and let p ∈ X be a point. I’d like sections of F in a very small
neighborhood of p.

Definition 2.7. The stalk at p is defined as

Fp = lim−→
p∈U⊆X

F (U).

The elements of Fp are germs at p.

Example 2.8. Let us look at two sheaves C∞(R) and Canal(R). The ring
Canal(R) is a very large ring, but the stalk at 0 is quite small. It is a subring of
R[[x]] because it is determined by the Taylor series.
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2.3 Functoriality of sheaves

Let f : X → Y be a continuous map of topological spaces. This give functors
between the two categories Shv(X) and Shv(Y ).

Definition 2.9. The direct image sheaf is defined as

f∗F (V ) = F (f−1(V )).

Definition 2.10. The inverse image sheaf is defined as

f−1F (U) = lim−→
f−1(V )⊇U

F (V ).

If you remember from category theory, filtered colimits are both left and
right exact. This is why this construction works.
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3 January 31, 2017

3.1 Idea of schemes

We want to define geometric spaces in terms of the ring of functions. There are
two approaches to define the category of schemes. The first one is the functor-
of-points, which is basically the Yoneda functor, and the second approach is
using locally-ringed-space.

We know how to define a topological space in terms of continuous functions,
smooth manifolds as smooth functions, complex manifolds as holomorphic func-
tions. So we want to define a “algebraic space” by regular(polynomial) functions.

For instance, we want to from AnC get C[x1, . . . , xn]. In the case of smooth
manifolds, we have C∞-rings, which are commutative rings over R with some
notion of differentiation. So for schemes, we want this ring, which we want to
be commutative. We might add some conditions like it is over C, but we want
to do this. In fact, here are some additions that algebraic geometry has over
other geometries:

• don’t need to work over C or Fp or Z
• nilpotents (why not?)

• patch things together (which is stupid I think)

Definition 3.1. The category of schemes is defined as Sch = CRingop.

This is actually a joke. The reason this doesn’t work is because this is the
ring of global functions. Instead, we want a sheaf of functions on all open sets.
We also need a notion of a “small enough”(affine) scheme that is determined by
its global functions.

Definition 3.2. The category of affine schemes is defined as AffSch = CRingop.

The functor CRingop → AffSch is called Spec.
Now our focus is the patch together affine schemes to global schemes. The

first approach is to use the Yoneda embedding. For a scheme X ∈ Sch we have
a functor hX : Schop → Set. This should be determined by hX : AffSchop =
CRing→ Set. So a scheme should be a functor CRing→ Set. And it we want it
to “locally” take the shape of hSpecB : A 7→ MorCRing(B,A). This is the functor
of points approach, but we are not going to use this.

Definition 3.3. The category RingSpc of ringed spaces is defined as

• objects (X,OX) where X is a topological space and OX is a sheaf of
commutative rings on X,

• morphisms (X,OX) → (Y,OY ) defined by a continuous map f : X → Y
and a map φ : OY → f∗OX giving the data of how to pull functions.

Definition 3.4. The category LocRingSpc of locally ringed spaces has ob-
jects as above, but all stalks OX,x must be local for all x ∈ X. The morphisms
are as above, but we require

φ : OY,f(x) → f∗(OX,x), mY,f(x) → mX,x.
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In other words, we want functions that vanish on f(x) to pull back to func-
tions that vanish on x.

3.2 Affine schemes

We want to define SpecA as a locally ringed space.

Definition 3.5. We define the underlying set of SpecA as

SpecA = {p ⊆ A prime ideals}.

For example, if A = C[x] then SpecA = {(0), (x−a) for a ∈ C}. So we have
the usual complex plane C and some weird lurker (0).

Definition 3.6. We are going to give the Zariski topology on SpecA so that
the closed are going to be of the form

V (S) = {p ⊇ S} ⊆ SpecA

for some subset S ⊆ A. You can check that this is a topology.

The affine space is defined as

AnC = SpecC[x1, . . . , xn].

We have a bunch of maximal ideals (x1 − a1, . . . , xn − an). We also have this
one (0) ideals. But there are also some intermediate prime ideals (x1x2−2). So
there is some deeper structure in algebraic geometry.

The reason there aren’t more maximal ideals is because of the Nullstellen-
satz.

Theorem 3.7 (Weak Nullstellensatz). If k = k, then maximal ideals in k[x1, . . . , xn]
are of the form (x− a1, . . . , x− an).

Theorem 3.8 (Strong Nullstellensatz). If k is a field and A is an algbera over
k, then A is finitely generated as a k-algebra if and only if A is finite as a
k-module.

Obviously open sets are given as

SpecA \ V (S) = {p : p 6⊇ S}.

This is a bit weird, so let us take one function at a time and let

D(f) = SpecA \ V (f) = {p : p 63 f}.

We see that D(f) = SpecAf .

Definition 3.9. The structure sheaf on SpecA is defined as OSpecA(D(f)) =
Af .
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There are so many things to check. One is about sheaves on a base for a
topology. So far I’ve told you what to get for a base. You need to check that
this extends uniquely to all open sets. We also need to check that D(f) = D(g)
then Af = Ag. You also need to check the sheaf axioms. Finally you need to
check that stalks are local rings. This is actually easy because

OSpecA,p = lim−→
D(f)3p

Af = Ap

is a local ring. Let me also check the sheaf axiom.

Proposition 3.10. OSpecA satisfies the sheaf axiom.

Proof. It suffices to check for basic open covers of basic open sets. Now U =
D(f) = SpecAf and so we can rename Af = A. So U = SpecA. Suppose I
have an open cover of SpecA by basic opens {D(fi)}i∈I . When does

⋃
D(fi) =

SpecA? This means that (fi)i∈I = A, which is equivalent to 1 =
∑
i cifi for

ci ∈ A.1 Now we are trying to show the exactness of

1→ A→
∏
i∈I

Ai →
∏
i,j∈I

Afifj .

Let us show injectivity. We can assume I is finite. We have a ∈ A such that
a ∈ Afi is 0 for all i. Then a · fnii = 0 for every i. Then

a = a · 1
∑
ni = a

(∑
cifi

)∑ ni
= 0.

We now have some finite stuff that is like ai/fi. By the condition we have
a1/f1 = · · · = an/fn. Then we have that this is equal to (

∑
ciai)/(

∑
cifi) =∑

ciai ∈ A.

3.3 Schemes

Definition 3.11. A scheme (X,OX) is a locally ringed space that’s “locally
isomorphic” to affine schemes. In other words, for every x ∈ X there exists a
neighborhood U 3 x such that (X,OX)|U = (U,O|U ) is isomorphic (as a locally
rined space) to (SpecA,OSpecA) for A ∈ CRing.

Example 3.12. Let us try to glue two A1 = SpecC[x] together. Here is a
stupid example to mess around with people. You can try to glue them at every
point except for the origin. Then you get an affine line with two points at the
origin. The topological space is

A1 ∪A1\{(x)⊆C[x]} A1.

The structure sheaf is defined via base for the topology on one or the other
factor. This is an example of a non-separated scheme.

1Note that this means that there exists a finite subcover. So SpecA is always
(quasi)compact in the Zariski topology.
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Example 3.13. Let us glue two A1 and this time do something cool. We are
going to glue x with 1/x. This gives P1

C, which is a “compact” geometric object.
The right word is proper.
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4 February 2, 2017

First I defined affine schemes AffSch as CRingop and defined Sch as a subcategory
of LocRingSpc that looks locally like affine schemes. A morphism of schemes
is a map f : X → Y of locally ringed spaces, i.e., OX → f∗OY .

4.1 Morphism of schemes

One thing is, we want AffSch to be a full subcategory of Sch. That is, we want
to check

MorSch(SpecB, SpecA) ∼= MorCRing(A,B).

Suppose we have a map φ : B → A. Given a prime ideal q ⊆ B we get a
prime ideal φ−1(q) of A. This is continuous because the inverse image of D(f) is
D(φ(f)). Giving the map of sheaves is easy. We need to give a map OSpecA →
φ∗OSpecB . This is giving a map Γ(D(f),OSpecA)→ Γ(D(φ(f)),OSpecB). This
is same as giving a map Af → Bφ(f). You can do this by using the universal
property or something. Finally you need to check that maximal ideals of stalks
map to maximal ideals. On stalks, maps are given by Aφ−1(q) → Bq. You can
check that maximal ideals are sent to maximal ideals.

Conversely, given a map SpecB → SpecA we can look at the global sections
and get a map A→ B.

For any scheme Y , note that MorSch(−, Y ) is a sheaf. This is because maps
are determined locally. What if Y = SpecA? Take Ui = SpecBi to be an affine
cover of X, and let us assume that Ui ∩ Uj are also affine. Then

1→ Mor(X,SpecA)→
∏
i

MorCRing(A,Bi) ⇒
∏

MorCRing(A,Bij).

We can also use the sheaf property of OX and see that

1→ Γ(X,OX)→
∏

Bi ⇒
∏

Bij .

If you think about this, you get an isomorphism

MorCRing(A,Γ(X,OX)) ∼= Mor(X,SpecA).

There is a forgetful functor Sch→ AffSch. Now what I’m saying is that the
global section is the adjoint functor.

Proposition 4.1. X is affine if and only if X → Spec Γ(X,OX) is an isomor-
phism.

Example 4.2. Let’s look at A2
C = SpecC[x, y]. There are points like (x−2, y−4)

and (0). There are also points like (y − x2).
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What’s the use of generic points? You want to sometimes show that some-
thing is true generically. In this case, you can show that it is true at the generic
point.

Example 4.3. What does SpecC[x, y](x,y) look like? It is first a subspace of
SpecC[x, y]. It only zooms in (0, 0) and look at the points (curves, generic
points) that passes through (0, 0).

Example 4.4. What does A1
R = SpecR[x] look like? There are ideals generated

real irreducible polynomials, (x− r), (x−γ)(x− γ̄) for γ ∈ C\R. You can think
this as A1

C/Gal(C/R). Same thing for SpecFq[x] or SpecQ[x].

Example 4.5. The ring k[[t]] is a discrete valuation ring and so there are two
points. This is a more localized version of C[x, y](x,y).

4.2 Non-affine schemes

If (X,OX) is a scheme, and U ⊆ X is a scheme, then I claim that (U,OX |U ) is
a scheme. As a locally ringed space, it is obvious. For any point p /∈ U take an
affine neighborhood of p. This intersected with U is also locally affine because
we have basic open sets D(f) contained in U .

Example 4.6. Let’s take U = A2 \ {(0, 0)}. I claim that this is not affine.
Let us compute its global functions. We can take U1 = SpecC[x, y]x and U2 =
SpecC[x, y]y. Then the equalizer sequence shows that

Γ(U) = C[x, y]x ∩ C[x, y]y = C[x, y].

Now if U is an affine scheme, then U = SpecC[x, y]. But how do we know
that it’s not? We know that U ⊆ A which is not an isomorphism gives an
isomorphism Spec Γ(U,OU ) → Spec Γ(A2,OA2). By functoriality, this cannot
be the case.

This is actually Hartog’s lemma. If you have a codimension two thing then
any function defined outside that extends well over that codimension two set.

Example 4.7. We defined A1 ∪A1\{0} A1 = P1. What is the ring of global
sections? We have an open cover and compute it as C[x] ∩ C[x−1] = C.
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5.1 Open and closed subsets

Schemes are basically topological spaces, and open subsets of a scheme is a
scheme. Later we will see that “closed subset of a scheme is also a scheme”.
Closed subsets in SpecA looks like V (I) = SpecA/I. So closed subsets of affine
schemes are affine schemes.

Abstractly AffSch = CRingop. Typically we care about rings A that are
finitely generated over a field k, i.e., of finite type. In this case, we have a
surjective map k[x1, . . . , xn] → A and so SpecA = V (I) ⊆ Ank . So we will
typically look at closed subsets of affine space, or them patched together.

5.2 Nilpotents

There is this guy Spec k[x]/(x2). What is the set? It is just SpecA = {(x)}. In
general if we define the nilradical

N(A) = {x ∈ A : xn = 0},

then this has to be contained in any prime ideal. That is, if p ⊆ A is prime,
then N(A) ⊆ p.

So that’s it. We have one point. There is a typical example of a scheme of
one point, Spec k. How are these related? Visibly we have

Spec k ↪→ Spec k[x]/(x2) ↪→ A1
k.

We can also have a sequence of embeddings

Spec k ↪→ Spec k[x]/(x2) ↪→ · · · ↪→ Spec k[x]/(xn) ↪→ · · · ↪→ Spec k[[x]] ↪→ A1
k.

This Spec k[[x]] is the algebraic geometers’ local disc around a point. Note that
has two points. You can think the sequence as taking thicker and thicker neigh-
borhoods around the point 0 ∈ A1

k. These are sometimes called “fat points”.
You can also look at points in A2

k = Spec k[x, y]. I can look at k[x, y]/(x2, y).
This kills everything in the y-direction, but has some fatness in the x-direction.
Compare k[x, y]/(x, y2) that has some fatness in the y-direction. There can be
k[x, y]/(x2, xy, y2) or k[x, y]/(x2, y3).

Why does one introduce all these? There is a subject called intersection
theory. Suppose you have some curves and you ask, how many times do they
intersect? For example, how often do two conics intersect? Generically, there
are 4 intersections. We want to make this really true. First we take algebraically
closed fields to resolve this. Then because there are intersections at∞, we have
to work in projective space. We also may have points of tangency, so we have
to take multiplicities into account. In this case, we want the intersection to be
the three points, but one of them having multiplicity 2. We want this to be a
fat point with fuzz in the tangent direction.
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5.3 Projective space

Our goal is to compactify An via “directions in which we can go off to ∞”.
The solution to this is using projective space Pnk , lines through the origin in
Spec k[x0, . . . , xn]. There are coordinates on this space, identified with

[a0, . . . , an] ∼ [λa0, . . . , λan]

for λ ∈ k \ {0}.
But points are not good enough for us. So we are now going to glue affine

charts to Pnk . Let us look at the coordinates for which an = 1. This is going to
give an affine chart

Un = Spec k[x0,n, . . . , xn−1,n].

Likewise we can take Ui = Spec k[x0,i, . . . , xi−1,i, xi+1,i, . . . , xn,i]. In order to
glue them, I need to provide isomorphisms between open sets Ui,j ⊆ Ui and
opens in Uj,i ⊆ Uj . Looking at the picture, we want

Ui,j = Spec k[x0,i, . . . , xn,i]xj,i = Spec k[x0,i, . . . , xn,i, x
−1
j,i ].

Then we give isomorphisms

Φi,j : k[x0,i, . . . , xn,i, x
−1
j,i ]→ k[x0,j , . . . , xn,j , x

−1
i,j ].

We want xi,j = ai/aj . This gives ways of identifying, and it will be xt,i 7→
xt,jx

−1
i,j and xi,j 7→ x−1

j,i . We need the cocycle relation, and you can check this.

5.4 Connectedness

Definition 5.1. A topological space connected if it is not a disjoint union of
two open subsets. A connected component is a maximal connected subset.
(General connected components are closed, but not necessarily open.)

Definition 5.2. A scheme X is connected if its underlying space is connected.

Proposition 5.3. SpecA is disconnected if and only if A = A1 ×A2.

Proof. If A = A1×A2 then SpecA = SpecA1qSpecA2. Now suppose SpecA =
V (I1)q V (I2). This means that every p contains one of I1 or I2. We are going
to look for idempotents in A. We first see I1 +I2 = A. Then the other condition
says

√
I1 ∩

√
I2 = N(A). Then i1 + i2 = 1 with i1 ∈ I1 and i2 ∈ I2. We also

know that (i1i2)big = 0. So you can raise to a power (i1 + i2)N = 1 and define
so that i′1 + i′2 = 1 and i′1i

′
2 = 0.

Here we are using

Theorem 5.4. N(A) =
⋂

p∈SpecA p.

Proof. One direction is obvious. For the other direction, take x /∈ N(A). Then
Ax is not the zero ring, and so there is a prime ideal. Then this prime does not
contain x.
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Example 5.5. Consider SpecQ⊗Q Q. This is something like Gal(Q/Q)-many

copies of Q. But this doesn’t have the discrete topology. In fact, the Zariski
topology is the profinite topology of Gal(Q/Q). The basis is given by the inverse
image of Gal(Q/Q)→ Gal(E/Q).
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6.1 Projective schemes

You should read about the Proj construction, but for me a projective scheme
is a closed subset of Pnk .

What do the closed subsets of Pnk look like? They are the vanishing set of
some homogeneous polynomials. Scheme theoretically, Pnk = Proj k[x0, . . . , kn]

is defined by gluing some Ank together. For some ideal I, the closure V (I) is a
closed subset of Pnk .

Example 6.1. Take V (I) ⊆ A2
k,z = Spec k[x/z, y/z] for I = (x2 − 4y). What

is the closure of V (I)? The only way I can answer this is by going to the
other charts, because that is how I defined P2

k. Restricting to the intersection
A2
k,z ∩ A2

k,x = Spec k[y/x, z/x, x/z], we will get V ((x/z)2 − 4(y/z)2). Now
what ideal J ⊆ k[y/x, z/x] will restrict to this set? In other words, I am
looking for the maximal ideal J such that any prime p containing J also contains
(x/z)2 − 4(y/z). This prime p will also contain 1 − (y/x)(z/x). So J has to
exactly be the radical of (1− 4yz/x2).

The point is that we have to naturally work with homogeneous ideals. So
closed subset of Pnk (radical) homogeneous ideals of k[x0, . . . , xn].

6.2 Irreducibility reducedness

Definition 6.2. If X is a topological space, X is said to be irreducible if X
can’t be written as the union of two proper closed subsets. Equivalently, any
nonempty open subset is dense. A scheme is irreducible if its underlying space
is.

Example 6.3. A1
k is irreducible because every nonempty open contains the

generic point. Spec k[x, y]/(xy) is not irreducible.

Proposition 6.4. If A is an integral domain, then SpecA is irreducible.

Proof. Any nonempty open set contains the generic point.

Definition 6.5. A ring is reduced if N (A) = 0. A scheme X is reduced if it
satisfies the following equivalent properties:

(i) For every open U , Γ(U,OX) is reduced.

(ii) There exist an affine cover {SpecAi} such that each Ai is reduced.

(iii) Each stalk OX,p is reduced.

Example 6.6. The fat point is not reduced. A fat line, Spec k[x, y]/(y2) is not
reduced. A line with a fat point, Spec k[x, y]/(y, xy), is not reduced.
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Proof. (i) ⇒ (ii) is obvious.
(ii) ⇒ (i) First note that any affine refinement of a reduced affine cover is

again a reduced affine cover. This is because A reduced implies AS reduced.
Then U =

⋃
SpecAi,fi and so we get an injection

0→ Γ(U,OX) ↪→
∏
i

Ai,fi .

Equivalence with (iii) can be done similarly.

Theorem 6.7. A is an integral domain if and only if SpecA is irreducible and
reduced.

So if something is not an integral domain, you can think about why it fails.

Proof. One direction is trivial. For the other direction, assume xy = 0 with
x, y 6= 0. Then SpecAxy = SpecAx ∩ SpecAy with SpecAxy = ∅ but SpecAx,
SpecAy 6= ∅.

Here is the way algebraic geometers think:{
closed subsets

of SpecA

}
←→

{
radical ideals

I ⊆ A

}
{

irreducible subsets
of SpecA

}
←→

{
prime ideals

p ⊆ A

}
= SpecA{

irreducible components
of SpecA

}
←→

{
minimal primes

p ⊆ A

}
.

6.3 Quasicompactness

Definition 6.8. A scheme is quasicompact is its underlying space is compact.

Proposition 6.9. X is quasicompact if and only if it has a finite affine open
cover.

This is good for ruling out various pathologies. Here is a question. Does any
scheme have closed points? The answer is no, but that sucks. If the scheme is
quasicompact, then the answer is yes.

Here is an counterexample. Recall that the DVR k[[t]] has two points, one
Spec k and Spec k((t)). Then we can try to stack these schemes together like
letting k1 = k((t)) and looking at Spec k1[[t2]]. You can make this work, and
this scheme has no closed points.

Proposition 6.10. A quasicompact scheme has a closed point.

Proof. Use the finite intersection property. You can prove that if V is closed
and has at least two points, then there exists a proper closed subset W ⊆ V .
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Recall that quasicompact schemes have closed points. In fact, schemes of finite
type over k have a dense set of closed points. (This should be some form of
Nullstellensatz.)

7.1 Affine communication lemma

We were defining basic properties of schemes. We wish the property P be such
that the following are equivalent:

(1) P holds for any affine open subset of X.

(2) P holds for some affine open cover of X.

Lemma 7.1. Suppose P is a property of affine opens in X. Suppose:

(1) If SpecA ⊆ X has property P, then SpecAf ⊂ X has property P.

(2) If SpecA ⊆ X if affine open and has a basic open cover {SpecAfi} each
of one having property P, then SpecA has property P.

Then if there exists an open affine cover of X having P, every affine has P.

Proof. I need to check that SpecB has P. We have an open cover {SpecB ∩
SpecAi} of SpecB. You can see that it suffices to show that SpecA ∩ SpecB
can be covered by sets that are basic open in both.

So let us prove this. For any p ∈ SpecA ∩ SpecB, we want to find a
neighborhood of p that is basic open in both SpecA and SpecB. Let p ∈
SpecAf ⊆ SpecA ∩ SpecB and let p ∈ SpecBg ⊆ SpecAf . Then we get
a restriction map B → Af , and so the image of g gives a g̃ ∈ Af . Then
SpecBg = Spec(Af )g̃.

Example 7.2. Being reduced is an example of P. Being Noetherian is has
this property. If A is Noetherian, then Af is Noetherian. Suppose Afi are
Noetherian. Take any ascending chain I1 ⊆ I2 ⊆ · · · . Then in Afi it stabilizes,
and so after the maximum of the place they stabilizer, Ii stabilizes.

Definition 7.3. A scheme X is locally Noetherian if it satisfies the following
equivalent two conditions:

(i) there exists an affine open cover by Noetherian affines.

(ii) every affine open is Noetherian.

Definition 7.4. A topological space X is Noetherian is it satisfies the de-
scending chain condition for closed sets.

So if A is Noetherian, then SpecA is Noetherian. The reason we care about
this is because there is Noetherian induction, which is quite useful. We want
Noetherian schemes to have this property. So we need some more finite condition
that being locally Noetherian. This is why we have “locally”.



Math 233a Notes 22

Definition 7.5. A scheme X is Noetherian if it is locally Noetherian and
quasicompact.

We can do it with other P.

Definition 7.6. A scheme X is locally of finite type over R if there exists
an open affine cover by finitely generated R-algebras. It is called of finite type
over R if it is locally of finite type over R and quasicompact.

7.2 Properties of morphisms

We don’t definite more properties of schemes. This is mostly the influence of
Grothendieck: only define properties of morphisms. Then how can we talk about
properties of schemes? Every scheme X comes with a map like X → Spec k, or
at least X → SpecZ. This is called the structure map. Note that SpecZ is
the terminal object in the category of schemes. So this makes sense.

But why? Let us think in the category of topological spaces. When is a map
compact? This means that the inverse image of compact sets is compact. Then
a space X is compact if and only if X → ∗ is a compact map, trivially.

Definition 7.7. A morphism π : X → Y is quasicompact if it satisfies the
following equivalent conditions:

(i) the inverse image of some affine open cover is quasicompact.

(ii) the inverse image of any affine open is quasicompact.

(iii) the inverse image of any open quasicompact is quasicompact.

Definition 7.8. A scheme X is quasi-separated if the intersection of any two
affine opens is quasicompact.

Note that if X is quasicompact and quasi-separated, then there exists a
finite affine open cover {SpecAi}i∈I of X such that each pairwise intersection
SpecAi∩SpecAj has a finite open cover by {SpecAijk} that are both basic and
open in both Ai and Aj .

The reason this is important is because the products in the sheaf condition

1→ Γ(X,OX)→
∏

Ai ⇒
∏

Aijk

are finite.

Definition 7.9. A morphism π : X → Y is quasi-separated if it satisfies the
following equivalent conditions:

(i) the inverse image of any affine open is quasi-separated.

(ii) the inverse image of some affine open cover is quasi-separated.

Definition 7.10. A morphism π : X → Y is affine if satisfies the following
equivalent conditions:
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(i) the inverse image of any affine open is affine.

(ii) the inverse image of some affine open is quasi-separated.

Proof. Let P to be “affine preimage”. The first condition of the affine com-
munication is easy. The second condition is hard. You want to show that
X → Γ(X,OX) is an isomorphism. You need to use the fact that isomorphisms
can be checked affine locally. Look at the diagram

SpecBi X

Spec Γ(X,OX)π̂(fi) Spec Γ(X,OX)

SpecAfi SpecA.

η

π̂

We want to check that Γ(X,OX)π̂(fi) → Bi is an isomorphism. The diagram
means that the locus in X of where π̂(fi) doesn’t vanish is SpecBi. Then
Γ(SpecBi,OX) = Γ(X,OX)π̂(fi). (This works because X is quasicompact and
quasi-separated.)



Math 233a Notes 24

8 February 16, 2017

We were defining properties of morphisms. We certainly want the property to
be target-space local.

8.1 Affineness is affine local

We were trying to show that if π : X → SpecA is a morphism, SpecA has an
open cover SpecAfi , and the inverse image of SpecAfi is SpecBi, then X is
affine. We factored π to X → Spec Γ(X,OX) and π̂ : Spec Γ(X,OX)→ SpecA.
The inverse image of SpecAfi under π̂ is

π̂−1(SpecAfi) = Spec Γ(X,O)π̂(fi).

We claim that isomorphisms can be checked locally:

Proposition 8.1. If f : X → Y is a morphism of schemes such that {Uα} is
an open cover of Y and f−1(Uα) → Uα is an isomorphism for all α, then f is
an isomorphism.

So we can just check that SpecB → Spec Γ(X,OX)f is an isomorphism. But
we really need to know what B is. We see that

B = Γ(X ×SpecA SpecAf = Xf ,OX).

Here Xf is the open subscheme of where f does not vanish on X, where f is
considered as in Γ(SpecA,OSpecA). So what we are trying to show is that

Γ(X,OX)f → Γ(Xf ,OX)

is an isomorphism.
This is now a general question. When is this map an isomorphism? We

have to use the sheaf condition. Cover the X by affines {SpecRα}. Cover the
intersections SpecRα ∩ SpecRβ by affines SpecRαβγ that are affine in both
affines. Then we have

Γ(X,OX) = equalizer
(∏

Rα ⇒
∏

Rαβγ

)
.

Localizations commutes with finite products. So assuming that all stuff are
finite, we get that

(Γ(X,OX))f = equalizer
((∏

Rα

)
f
⇒
(∏

Rαβγ

)
f

)
,

Γ(Xf ,OX) = equalizer
(∏

(Rα)f ⇒
∏

(Rαβγ)f

)
.

So this is true if X is quasicompact and quasi-separated.
Now is X quasicompact and quasi-separated? These notions are local, and

there is an affine cover of SpecA with affine (and thus quasicompact and quasi-
separated) preimage. So we see that the inverse image of SpecA, which is X is
quasicompact and quasi-separated.
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8.2 Quasicoherent sheaves

We want to talk about closed embeddings. This is not just a topological prop-
erty, because there is something happening at the structure sheaf. There is a
map SpecA/I ↪→ SpecA. This is not determined by the underlying set. But
for a general scheme X, how do we talk about its ideals?

Let us talk about modules. This is something of the philosophy that if you
want to look at groups, then you look at representations, if you want to look at
rings R, then you look at R-modules on which R act on. It’s somehow easier
to look at linear structures. In the case of schemes, we might want to look at
sheaves of modules.

Definition 8.2. Let X be a topological space and OX be a sheaf of rings on
X. We define the category

OX−Mod = {category of sheaves of modules for OX},

which are the sheaves F , such that for any open U ⊆ X, F(U) is naturally a
module over OX(U) such that the structure morphisms OX(U)×F(U)→ F(U)
commute with restriction. For X a scheme, we define OX−Mod as above.

Let M be a A-module. This gives a OSpecA-module M̃ , define by

M̃(SpecAf ) = Mf = M ⊗A Af .

We need to check the sheaf condition, but that is the same as checking the sheaf
condition for rings. So we get a functor

FA : A-Mod→ OSpecA-Mod.

This is not essentially surjective. Take A1 \ {0} = Gm, and extend this sheaf by
zero as j!(OA1\{0}), because the global section is 0.

Definition 8.3. For X a scheme, a quasicoherent sheaf F is a sheaf of
OX -modules such that the following equivalent conditions hold:

(i) There exists an affine open cover such that on any SpecA, F|SpecA is in
the essential image of FA.

(ii) For any affine open SpecA, the restriction is in the essential image of FA.
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We were talking about quasicoherent sheaves, which form an abelian category
QCoh(X). These are just locally modules over the rings over open affine sets.
Then what are coherent sheaves? Coherent sheaves are supposed to be an
analogue of finitely presented modules. A finitely generated module is something
like An →M → 0. Sometimes you want the kernel also to be finitely generated,
and this is Am → An → M → 0, which is also called finitely presented. But
this does not glue well.

Definition 9.1. A coherent sheaf on X is

(1) a quasicoherent sheaf locally modeled on finitely generated modules on
Noetherian schemes. (This is then automatically finitely presented.)

(2) There is a general definition, but we don’t care.

The abelian category is denoted by Coh(X).

We have QCoh(X) ⊆ OX−Mod, and you can check that both are abelian,
i.e., closed under direct sum, kernel, cokernel, and image. The functor FA :
A−Mod→ QCoh(SpecA) is exact, i.e.,

0→ k̃er→ M̃ → Ñ → c̃oker→ 0.

Tensor products exist. In general, F ⊗ G needs to be sheafified. But you can

check that M̃ ⊗ Ñ ∼= M̃ ⊗A N and so nothing terrible happen.
In general, there is a Hom-set of sheaves. We define the sheaf Hom

(H om(F ,G ))(U) = Hom(F |U ,G |U ).

This can be checked to be a sheaf. On quasicoherent sheaves, you can check

that H om(M̃, Ñ) = ˜HomA(M,N).
If you want to do talk about derived functors, there is the problem of whether

there are enough projectives or enough injectives. For instance, you might want
to take the derived functor of Γ, which is left-exact. This gives rise to the notion
of sheaf cohomology:

0→ Γ(F )→ Γ(G )→ Γ(H )→ H1(F )→ H1(G )→ · · · .

9.1 Geometry of quasicoherent sheaves

I am going to talk about sheaves again. I have some topological space, and
there is are some sections over open sets. The most motivating example is the
sheaves of functions (not necessarily in the context of algebraic geometry). Let’s
generalize this example. I can look at sheaves of maps to some other object. We
can define a sheaf defined by Γ(U,F ) = Mor(U, Y ). Here is a slightly bigger
example. Suppose we have some X → X. Then we can think of the sheaf of
sections: Γ(U,F ) = Sect(π−1(U) → U). This is indeed good enough, as any
sheaf is of this form. (Look up the espace étalé construction.)
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Example 9.2. If X is a scheme with structure OX , consider O⊕nX . This is a free
sheaf. In the context of other geometry, this is like the sections of X×Rn → X.
This is quite boring.

Example 9.3. We can twist this trivial bundle and think about rank n vector
bundles. In C∞ manifolds, a vector bundle V on a manifold X is a morphism
π : V → X such that there exists an open cover (Uα) of X such that on each Uα
the restriction π−1(Uα) is isomorphic to Uα × Rn. These correspond to locally
free shaves.

Definition 9.4. A vector bundle of rank n on a scheme X is a sheaf F such
that there exists an open affine cover Uα of X such that F |Uα ∼= O⊕nUα . This is
the same thing as a locally free sheaf .

It is clear that vector bundles are quasicoherent sheaves. Given a locally
free sheaf, you can actually recover the total space of the vector bundle by
taking the sheafy symmetric algebra and then taking the Spec and gluing them:
Tot(F ) = S pec(S ymF∨).

What are vector bundles on affine schemes? They are quasicoherent sheaves
so they correspond to A-modules. Let us all these {M}. Then clearly Mp

need to be free. Over local Noetherian rings, finitely generated and flat is
equivalent to free, and is equivalent to finitely generated and projective. Since
being projective and being flat are both local properties, we get that M is
globally projective and flat. So over a Noetherian scheme, these are just finitely
generated projective modules.

Theorem 9.5 (Serre–Swan). In C∞-manifolds, the category of vector bundles
is equivalent to the finitely generated projective C∞(M)-modules.

Let us go back to general quasicoherent sheaves. Here is a general intuition.
Suppose F is a sheaf. Coherent sheaves for me are going to be vector bundles
on some stratification. On the other side, there is are skyscraper sheaves. Let
us try to make this precise.

9.2 Generic freeness

Theorem 9.6 (Generic freeness, Grothendieck). If M is a finitely generated
module on a Noetherian integral domain A, then there exists f 6= 0 such that
Mf is a free Af -module.

Proof. Let us go to the generic point of A. Then we have M⊗AK(A) is free over
K(A) of let’s say dimension n. Pick n basis elements m1/a1, . . . ,mn/an. Pick
f = a1 · · · an and look at Af . Now in Mf all these elements make sense. This
gives us a map Anf → Mf . Tensoring with K(A) with yield the isomorphism
K(A)n →M ⊗K(A). Let

0→ N1 → Anf →Mf → N2 → 0.
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Localizing gives N1 ⊗ K(A) = N2 ⊗ K(A) = 0. Now N1 and N2 are finitely
generated by the Noetherian hypothesis, and they are torsion elements. Since
there are a finite number of them, you can enlarge f sufficiently large so that
they all die out.

Corollary 9.7. For F ∈ Coh(X) where X is Noetherian and integral, there
exists a U1, U2, . . . , Un where U1 is dense in X, U2 dense in X \ U1, . . . , Un =
X \ U1 \ · · · \ Un−1, such that F |Ui is a vector bundle.

There is something called mirror symmetry. Given two varities X and Y ,
the algebraic geometric properties of X match the symplectic geometry of Y in
a very nontrivial way. The coherent sheaves of X match the Lagrangians on Y .
For instance, for Y = T 2 we have X an elliptic curve.

Because the theorem is due to Grothendieck, there is going to be a ridiculous
generalization:

Theorem 9.8. If M is a finitely generated algebra B over a Notherian integral
domain A, then there exists a f 6= 0 ∈ A such that Mf is a free Af -module.
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We were talking about quasicoherent sheaves and generic freeness.

Theorem 10.1 (Grothendieck generic freeness). If M is a finite module over
B and B is a finitely generated algebra over A, and A is a Noetherian domain,
then there exists an f 6= 0 in A such that Mf is a free Af -module.

Proof. We start reducing the problem. We have a surjection A[x1, . . . , xn]→ B.
M is a module over B, and so we can consider M as a finitely generated module
over A[x1, . . . , xn]. That is, we may assume B = A[x1, . . . , xn] without loss of
generality.

You can also check that it suffices to check for B = A[x], because we can
use induction to get more generators.

Now we need some new ideas. Let M be a finite module over A[x], we want
to show that there exists a f ∈ A such that Mf is a free Af module. What
we did last time actually use the fact that M is finite over A. So the idea is to
break M up (using the x-action) into pieces that are finite over A.

Suppose M is generated by m1, . . . ,mn as a module over A[x]. Let M1 ⊆M
be the A-submodule generated by m1, . . . ,mn. Define Mi as the A-submodule
of M given by Mi = Mi−1 + xMi−1. By definition, M =

⋃∞
i=1Mi. Look at the

successive Mi/Mi−1 (with M0 = 0). These are all finite as A-modules, because
they are generated by ximj .

We claim that {Mi/Mi−1}∞i=1 stabilizes. We have maps

Mi−1/Mi−2 →Mi/Mi−1

that are surjective. Since A is Noetherian and they are abelian, this must
eventually must isomorphisms.

Now by the theorem we proved last time, there exists a f 6= 0 such that all
(Mi/Mi−1)f are finite and free over Af . We have exact sequences

0→Mi−1 →Mi →Mi/Mi−1 → 0,

and so eachMi are (non-canonically) isomorphic to Ani . Then taking the colimit
presents M as a free module.

10.1 Chevalley’s theorem

This has some consequences. Let us work in C, and suppose I want to un-
derstand set defined by polynomial equations. This is of interest to logicians.
We are trying to describe the subset of Cn that satisfies some equations. For
instance, take

S = {(x1, x2) ∈ C2 : x2
1 + x2

2 = 3}.

This is boring, and we’ve done this when dealing with varieties. But consider

S = {(x1, x2) ∈ C2 : ∃y, x1y + x2
2 + x1x2y

2 = 0}.
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As an algebraic geometer, I would consider it as a projection of something in
C3. Then this can be thought of as the question, What are the images of “nice”
morphisms of varieties? The answer is that they are the finite (disjoint) union
of locally sets. These are called constructible sets.

Proposition 10.2. For X a topological space and S ⊆ X, the following are
equivalent:

(i) S ⊆ S is open.

(ii) S = U ∩ C for a open U and closed C.

(iii) S is open inside a closed set.

(iv) S is closed inside and open set.

In this case, we say that S is locally closed.

Theorem 10.3 (Chevalley). Suppose π : X → Y is a finite type morphism of
Noetherian schemes. Then π sends constructible sets to constructible sets.

Proof. Let us first do some reduction. Clearly we can just check that the image
of a locally closed set is constructible. Then we can just assume that X is that
locally closed set and so we can just show that imπ is constructible. Since Y
is quasicompact, we may assume that the base Y is affine. Again by quasicom-
pactness of π (or equivalently X in this situation), we may assume that X is
also affine.

So we want to show that if B is finitely generated over A then the image
of π : SpecB → SpecA is constructible. We are actually interested in the
“support” of B as an A-module. Considering B as a module over itself, we can
attempt to apply generic freeness. But we need A to be a domain to apply
generic freeness.

We may assume that A is reduced, and this is because we are talking about
topological properties. So replace A with A/N(A), and also replace B by B⊗A
A/N(A). Also, without loss of generality, we can assume that A is irreducible.
This is taking the quotient by minimal primes. (There are a finite number of
them since A is Noetherian.)

Now we can actually apply generic freeness. Then Bf is free as an Af
module. Then the map SpecBf → SpecAf is surjective or Bf = 0, and you can
check this. This means that imπ either contains SpecAf or is disjoint from it.
Now go to A \ SpecAf . Then we can do the same thing again. By Noetherian
induction, this has to stop after finitely many steps.

We can prove Nullstellensatz.

Theorem 10.4. Suppose K/k is finitely generated as an algebra. Then K/k is
finite as a module.

Proof. Pick generators x1, . . . , xn of K over k as an algebra. We want to show
that any ring generated over k in K by each xi is finitely generated as a k-
module. Suppose k[xi]→ K has zero kernel. Then

SpecK → Spec k[xi]
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is a morphism, that is of finite type. The image is the generic point. Then
Chevalley implies that the generic point in Spec k[x] is constructible. Then the
generic point is closed inside A1

k is an open set. The complement is all the
irreducible polynomials of k[x]. Then there is some f 6= 0 ∈ k[x] that divides
all irreducible polynomials. This is clearly impossible, by Euclid’s theorem.
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We showed Chevalley’s theorem, that says that if π : X → Y is a finite type
morphism of Noetherian scheme, then the image of a constructible set is con-
structible. To prove this, we first reduced to the case when X and Y are affine,
and using generic freeness, showed that Bf is a free Af -module.

We didn’t show last time that SpecB → SpecA is surjective, if B is a free
A-module. For a point p ∈ SpecA, the fiber is given by

SpecB ×SpecA (point p) = Spec(B ⊗A k(p)).

Now the prime ideals of B ⊗A k(p) exist because the ring is nonzero (unless
B = 0).

Corollary 11.1. If π : X → Y is a morphism of finite type schemes over k,
then π is surjective if and only if it is surjective on closed points.

Proof. By Chevalley’s theorem, imπ is constructible and contains all closed
points. You have to use the following lemma. If you have this lemma, use
induction on the height of the prime.

Lemma 11.2. A constructible subset of a Noetherian scheme is closed if and
only if it is closed under specialization.

Proof. Let C =
⋃n
i=1 Ci with Ci locally closed. We want to show Ci ⊆ C so

that C =
⋃
Ci.

We have that Ci is dense open in Ci. Because Ci is Noetherian, it breaks into
finitely many irreducible components. So we may assume that Ci is irreducible.
Then Ci contains the generic point of Ci. Furthermore, every point of Ci is a
specialization of the general point. So Ci is contained in C.

11.1 Closed embeddings

A closed embedding is not just a closed subset. If the closed subset is V (I) ⊆
SpecA, then there is an obvious scheme structure SpecA/I. But this is not
well-defined because Spec k[x]/(x) and Spec k[x]/(x2) are the same sets.

Definition 11.3. A closed embedding ι : X ↪→ Y is defined by (the following
are equivalent)

(i) there exists an affine open cover {SpecA} of Y such that ι|SpecA
∼=

(SpecA/I → SpecA).

(ii) for affine open SpecA ⊆ Y , the same thing.

This is just a quasicoherent sheaf of ideals in OY , just by definition.
There is another possible definition you can give. Recall that affine mor-

phisms to Y is just the quasicoherent sheaf of algebras on Y . Closed em-
beddings are affine, and so this is a quasicoherent sheaf of algebras. Because
0→ I → A→ A/I → 0 is an exact sequence, we have

0→ IX/Y → OY → π∗OX → 0.
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Here IX/Y denotes the ideal sheaf.

Definition 11.4. A locally closed embedding Z → X is defined by the
composition of a closed Z ↪→ Y and an open Y ↪→ X. (You shouldn’t compose
the other way round.)

For example, Spec k[y]x into A2 is a locally closed embedding.
Given two closed subschemes, like k[x, y]/(y − x2) and k[x, y]/(y), what

should be the scheme-theoretic intersection? It has to be a fat point in the
direction of the x-axis. That is, it should be k[x, y]/(x2, y).

Roughly, the intersection of SpecA/I1 and SpecA/I2 are going to correspond
to the sum of the two ideals, and the union has to correspond to the intersection
of ideals. Here, the intersection should be I1 ∩ I2 instead of I1I2, because we
don’t want the union of k[x]/(x) and k[x]/(x) to be k[x]/(x2).

Definition 11.5. If X1 and X2 are two closed subsets cut out by I1 and I2,
then the union of given by I1 ∩I2 and the intersection is given by I1 + I2.

So closed subschemes are quasicoherent sheaves of ideals. Now closed sub-
sets correspond to ideals. Here, I1, I2 ⊆ A give the same closed subset if and
only if

√
I1 =

√
I2. So given a closed subset of a scheme, can you give it a

closed subscheme structure? There is a canonical choice for each affine open
chart, namely the radical ideal. This means that there is a canonical reduced
induced closed subscheme structure.

Example 11.6. Apply this construction to the entirety of a scheme X. Then we
get a reduction of X, calledXred. For example, the reduction of Spec k[x, y]/(xy, y2)
is Spec k[x]/(x).
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12.1 Fiber products

I started talking about this last time. Forget about fiber for a moment and let’s
talk about products first. For schemes X and Y , does X×Y exists? We first try
the case X = SpecA and Y = SpecB. The maps S → SpecA and S → SpecB
is the same thing as maps A → Γ(S,OS) and B → Γ(S,OS). This is the same
thing as a map A ⊗ B → Γ(S,OS), which is the data of S → SpecA ⊗ B. So
we get

SpecA× SpecB ∼= Spec(A⊗B).

By the same reasoning, we see that the fiber product of SpecA → SpecC ←
SpecB is going to be

SpecA⊗C B SpecB

SpecA SpecC.

In general, we can ask if X ×Z Y exists? The answer is yes, and we can do
this by gluing affines over affines. But what is the motivation for doing this?
Suppose we really do care about the morphism X → Y . If we know how to
construct X ×Y R for some random R, then we can “reduce” studying the map
X → Y to studying X ×Y R→ R.

For example, consider a parameter space X of curves over Y = A1. We can
look at something like

X = Spec k[x, y, t]/(y2 − x3 + x2 + t)→ Spec k[t] = Y.

If we want to look at the curve over p ∈ Y , we can consider the fiber product

X ×Y Specκ(p) X

Specκ(p) Y.

Definition 12.1. The fiber of a morphism of schemes X → Y at p 3 Y is
X ×Y Specκ(p).

Or maybe something hot is happening over around [0] ∈ A1. Then you might
want to pull back along the map A1 → A1 given by t 7→ t2. Also suppose that
you have something like X = SpecR[x, y]/(x2 + y2 + 1) → SpecR. But you
don’t know non-algebraically closed fields and want to work in C. Then you can
pull back along SpecC→ SpecR.

One other nice fact of fiber products is that lots of properties of morphisms
are preserved under under pullbacks. When I say that X → Y is finite, it
roughly means that all the fibers are finite and they somehow glue nicely and
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are uniform. So any reasonable property of a morphism should be preserved
under pullback. Also, if I have a “good” cover of Y and app pullbacks satisfies
some property P, then the original f : X → Y should also satisfy P .

Theorem 12.2. Fiber products exist.

Ravi has a proof in his notes, but I don’t remember and I will give another
proof.

“Proof”. Alright, it works locally, and then patch. If we have f : X → Z
and g : Y → Z then write Z =

⋃
SpecCα and write f−1(Cα) =

⋃
SpecAαβ

and g−1(Cα) =
⋃

SpecBαγ . Then you should be able to glue them with the
ridiculous amount of gluing data. But this is going to be horrible. This makes
us sad.

Here is the way I would do it.

12.2 Functor of points

There is a fully faithful embedding Sch → Funct(Schop,Set), given by X 7→
(hX : Y 7→ Mor(Y,X)). Given a functor, we are going to call it representable
if it is in the essential image. We are first going to show that X ×Z Y exists in
the functor category and after that it is representable. In other words, we are
going to show that hX ×hZ hY is representable.

But how do we show that a functor is representable? The idea is that local
representability should suffice. Suppose I have a functor h, and we secretly want
h = hX . If we have an open cover hα of h, (which secretly correspond to the
open cover Uα of X) with each hα representable, then we can glue the schemes
representing hα to get X.

Definition 12.3. A functor F : Schop → Set is an open subfunctor of G :
Schop → Set (with a map F → G) if for any hX → G, the pullback F ×G hX →
hX is isomorphic to hU → hX for some open subscheme U .

F ×G hX F

hX G.

We can likewise define an open cover in a similar way: a collection is an
open cover if any pullback along a representable functor form an open cover.

Theorem 12.4. If h ∈ Funct(Schop,Set) is a Zariski sheaf and has an open
cover by representable subfunctors {hα}, then h is representable.

Definition 12.5. A functor h : Schop → Set is a Zariski sheaf if for nay
Zariski open cover Sα of S there is the exact sequence of sets:

• → h(S)→
∏

h(Sα) ⇒
∏

h(Sαβ).



Math 233a Notes 36

Proof. Each hα is representable by Uα. To patch, I need for each α, β ∈ I, I
need (1) an open subschemes Uαβ ⊆ Uα, (2) isomorphisms ϕαβ : Uαβ → Uβα
that satisfies the cocycle condition.

We want Uαβ = Uα ×X Uβ . So we define hαβ = hα ×h hβ . This is repre-
sentable since hβ are open embeddings.

By the Zariski sheaf condition, the glued one should be the scheme repre-
senting h.

This gives us an easy way to prove Theorem 12.2. It is easy to show that
hX ×hZ hY is a Zariski sheaf and we have an open cover by hAαβ ⊗hCα hBαγ .
So it must be representable.

These ideas are used in moduli space problems. For instance, there is a
Hilbert scheme Hilb(X), which is the moduli space of closed subschemes of X.
You first define a functor S mapping to the set of closed subschemes of S ×X.
You then somehow show that this is representable.
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13.1 Properties of fiber products

We defied fiber products. The maxim is that properties should be preserved.

Proposition 13.1. Pullback of an open embedding is an open embedding.

Proof. The inverse image of an open subscheme should be an open subscheme.
I claim that this is the fiber product. This is because there is a pullback square

SpecBg(f) SpecAf

SpecB SpecA.

So you can glue them. Alternatively, you can directly check this categorically.

Proposition 13.2. Pullbacks of affine morphisms are affine.

Proposition 13.3. Pullbacks of closed embeddings are closed embeddings.

Proof. You can pullback the sheaf of ideals and that should cut out the fiber
product.

If some X → Y has connected fibers, then is it true that any pullback have
connected fibers? This is false in general, because SpecC ⊗R C is two SpecC.
This is because SpecC is like a double cover of SpecR.

If X → Y has irreducible fibers, then does any pullback X ′ → Y ′ have
irreducible fibers? This is clearly false by the previous example.

Definition 13.4. A scheme X over k is geometrically connected if X×Spec k

Spec k̄ is connected.

Proposition 13.5. If all fibers are geometrically connected, then any pullback
have geometric connected.

Definition 13.6. A schemeX over k is geometrically irreducible ifX×Spec k

Spec k̄ is connected.

The same thing is false for irreducibility. Consider the variety

X = SpecR[x, y]/(x2 + y2).

Then X is irreducible but X×RC is connected but not irreducible. The intuition
is that X is like the quotient by Gal(k̄/k) of X ×k k̄.
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13.2 Separated morphisms

We want the notion of Hausdorff and compactness. But we have a retarded
topology, and so notions that most geometers are interested in are going to be
very hard to define. In the future we would want to define stuff like π1, H∗, H∗.

Let us first look at Hausdorff. We don’t want sequences to have two different
limits, like A1

00 with the double origin. Here is a weird way of saying it. If
(x1, x1), (x2, x2), . . . converges to (x, x′), then x = x′. So this is the same as
saying that the diagonal ∆ ⊆ X ×X is closed.

Definition 13.7. A morphism f : X → Y is separated if ∆f : X → X ×Y X
is a closed embedding.

X

X ×Y X X

X Y.

∆f
id

id

f

f

Being separated over Z does not imply that X is Hausdorff as a set. This is
because X ×X as a topological space is not the same as the square of X as a
topological space. They are not even the same as sets.

Example 13.8. The affine line with double origin A1
00 over k is not separated.

We that A1
00×kA1

00 is going to be the affine plane A2 with double x-axis, double
y-axis, and four origins. The diagonal has two of those origins. You can check
topologically that the closure of any neighborhood of the origins on the diagonal
contains all four origins.

Proposition 13.9. (1) Affine morphisms are separated, and separatedness can
be checked target-space locally.
(2) Open embeddings are separated.
(3) Pullbacks and compositions of separated are separated.

Proof. (1) Let us first check target locality. You can check this categorically by
pulling back the whole diagram along Uα.

Now to show that affine morphisms are separated, you now need to show
that SpecB → SpecA is separated. This is because B ⊗A B → B is surjective.

(2) The map U → U ×X U is just an isomorphism.
(3) We are going to check this next time.

Definition 13.10. A variety is a finite type reduced separated scheme over a
field k.
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Proposition 14.1. If K/k is a finite Galois extension, then K⊗kK ∼= K [K:k].

Proof. In particular, K/k separable and so K = k(α). So if f(α) is the minimal
polynomial then K ∼= k[α]/f(α). Then

K ⊗k K ∼= K[α]/(f(α)).

But f(α) splits completely in K with distinct roots. By the Chinese remainder
theorem, we get the result.

A better way of writing this is Spec(K⊗kK) ∼= Gal(K/k)×SpecK with an
Galois-equivariant isomorphism. These kind of stuff is a big deal in algebraic
geometry. SpecK → Spec k is like a topological cover, and there should be a
analogue of “Galois extension” for rings and schemes. This is called an étale
cover or and étale extension. For instance, take like Gm → Gm given by z 7→ z2.
If you have a sheaf over Gm with a Z/2 action, then you should be able to
descend to a sheaf over Gm.

Let us finish up separatedness.

Proposition 14.2. Pullbacks of separated morphisms are separated, and com-
positions of separated morphisms are separated.

Proof. We claim that

X ′ X

X ′ ×Y ′ X ′ X ×Y X

Y ′ Y

is a pullback. You can check this categorically. For composition, we have a
pullback diagram

X ×Y X X ×Z X

Y Y ×Z Y.

So we get a composition of closed embeddings.

If X is separated (i.e., X → Spec k is separated), and if U, V are affine open
in X, then U ∩ V is affine. This is because we have a pullback diagram

U ∩ V U × V

X X ×X.∆

Then U ∩ V → U × V is an closed embedding, which is affine.
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14.1 Proper morphisms

This is the algebraic geometer’s way of saying compact Hausdorff. We are going
to assume separatedness and finite type. In topology, if f : X → Y is proper,
it should be a closed map, assuming some stuff. But this is not enough because
g : A1 → k is a closed map since the topology on k is stupid. But this is not
universally closed, i.e., pullbacks are not always closed. We have

A2 A1

A1 k

and A2 → A1 is just the projection. The projection of xy = 1 is going to be
A1 \ 0, which is not closed.

Definition 14.3. A morphism f : X → Y is proper if it is separated, finite
type, and universally closed.

Theorem 14.4. Pn is proper.

This is going to be hard. You need to actually go into the algebra. We are
probably going to spend most of next class doing this.

Proposition 14.5. Closed embeddings are proper.

Proof. We know that is is separated. Finite type is also easy because A/I is
finitely generated over A. We now need to show that if f : X → Y is a closed
embedding, then any pullback f ′ : X ′ → Y ′ is a closed map. We have checked
that f ′ : X ′ → Y ′ is a closed embedding, and closed embeddings are closed
maps.

Definition 14.6. A morphism f : X → Y is finite if the following equivalent
conditions hold:

(1) For any affine open SpecA ⊆ Y its inverse image is f−1(SpecA) ∼= SpecB
with B finite as an A-module.

(2) The above holds for some affine cover.

This property is target-space local and preserved under pullback and com-
position.

Proposition 14.7. Finite morphisms have finite fibers and finite geometric
fibers. (Having finite fibers is also called quasifinite.)

Open embeddings are quasifinite but not finite. For instance, k[t, t−1] is not
finite as a k[t]-module. We are going prove that finite morphisms are proper.

Theorem 14.8. Finite is equivalent to proper and quasifinite.

This is a very deep theorem and we won’t be able to prove this in this course.
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Proposition 14.9. Finite morphisms are proper.

Proof. Finite morphisms are affine and thus separated. Finite morphisms are
also of finite type. Pullbacks of finite morphisms are finite morphisms, so we
only need to show that finite morphisms are closed maps.

Let Z ⊆ X be a closed set. Recall that there is a reduced induced closed
subscheme structure. So Z → X can be thought of as a closed embedding.
Because closed embeddings are finite, we’ve now reduced to showing that finite
morphisms have closed image.

This is true in general, but we are going to do it under the Noetherian
hypotheses. Apply Chevalley. Then the image is a constructible set. We want
to show that f(x) is closed under specialization. Let us assume X = SpecB and
Y = SpecA using target space locality. Now being closed under specialization
is just a restatement of the going-up theorem.
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We defined proper.

Definition 15.1. A morphism f : X → Y is proper if it is separated, of finite
type, and universally closed.

15.1 Projective space is proper

Theorem 15.2. Pn is proper.

Recall that we have built Pn by patching together a bunch of AnA. This
comes with a structure morphism PnA → A. In fact, we have a pullback

PnA PnZ

SpecA SpecZ.

So what we are claiming is PnZ → SpecZ is proper.
Finite type is obvious. We want to show that PnZ → SpecZ is universally

closed. We need to show that Pn×X → X is a closed map. This can be checked
locally on the base, and so it suffices to show that PnA → SpecA is a closed map.

Let Z ⊆ PnA be a closed set. We want to show that π(Z) is closed, where
π : PnA → SpecA. Closed sets in PnA are cut out by homogeneous ideals. Suppose
(f1, f2, . . .) ⊆ A[x0, . . . , xn] is a homogeneous ideal that cuts out Z ⊆ PnA.

As an aside, Pn can be viewed as coming with a fibration An+1 \ {0} → Pn.
The charts are given as

A[x0/xi, . . . , xn/xi]→ A[x0, . . . , xn, x
−1
i ] (= open subset of An+1),

and they can be glued together. So we can think of Pn ∼= (An+1\{0})/Gm). This
is probably something you already know from algebraic topology of geometry.

Anyways, we need to see when p ∈ SpecA is in the image of Z. One
trick we can use is to take the fiber Pnκ(p), and the ideal (f1, f2, . . .) gives and

homogeneous ideal (f̄1, f̄2, . . .) over κ(p). We are asking if the subset of Pnκ(p)

cut out by (f̄1, f̄2, . . .) empty or nonempty. In projective space, this is tricky.
Essentially this question is whether (f̄1, . . .) is just the ideal that cuts out the
origin in An+1 or not.

To make this rigorous, recall that

Pn =

n⋃
i=0

Ui, where Ui = Specκ(p)[x0/xi, . . . , xn/xi].

When does Ī = (f̄1, . . . , f̄n) have empty intersection with all Ui? Empty in-

tersection with Ui means that
√
Ī(xi) is the unit ideal, and this means that

xi ∈
√
Ī. So empty intersection with all Ui means that

(x0, x1, . . . , xn) =
√
Ī .
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So for p ∈ SpecA, we have that p ∈ π(Z) if and only if
√
Ī ( (x0, . . . , xn).

This means that
(x0, x1, . . . , xn)N ( Ī

for every N . Let us denote SN = (x0, x1, . . . , xn)N the finite dimensional κ(p)-
vector space. Continuing on, p ∈ π(Z) is then equivalent to⊕

α

SN−deg fα → SN ; (si) 7→
∑

sifi

not being surjective. Now there is a matrix MN representing this map, with SN
many rows and a lot of columns. Our equivalence continues as the rank being
less than dimSN . This is then equivalent to all dimSN ×dimSN minors of MN

having zero determinant, for all N .
All of these are happening over κ(p). But note I can form these matrices

MN over A for all N . Then the determinants of SN minors of MN yields a
bunch of elements of A. Then p ∈ π(Z) is equivalent to p containing all these
bunch of elements in A. If we call J the ideal they generate in A, we can say
that p ∈ π(Z) if and only if J ⊆ p. This locus is going to be closed.

Okay, we showed universally closed. Now let us show that it is separated.
We want to show that PnZ → PnZ×PnZ is a closed embedding. This can be checked
locally. We have a charge Pn =

⋃n
i=0 Ui. We need to check that Ui∩Uj → Ui×Uj

is closed embeddings. For i = j this is clear because affines are separated.
Without loss of generality let i = 0 and j = 1. We have

U0 ∩ U1 = SpecZ[x1, . . . , xn, x
−1
1 ].

This maps to

U0 × U1 = SpecZ[x−1
1 , x2, . . . , xn]× SpecZ[x1, x2, . . . , xn].

This is clearly surjective.
But this is a boring proof. How else can we check that Pn → Pn × Pn is a

closed embedding?

Definition 15.3. A projective scheme over k is a closed subscheme of a
projective space, Z ↪→ PNk . More generally, f : X → Y is projective if it

factors as X ↪→ Y × Pn π−→ Y .

There is something called a Segre embedding

Pn1 × Pn2 → P(n1+1)(n2+1)−1

given by the map

k[x0, . . . , xn1 ]⊗ k[y0, . . . , yn2 ]← k[z0,0, . . . , zn1,n2 ]; zi,j 7→ xi ⊗ yj .

This is going to be a closed embedding. Also there is an almost second Veronese
embedding Pn → Pn2+2n that is closed. Then we get a commutative diagram.

Pn Pn × Pn

Pn2+2n

∆

Ver.
Seg.
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Proposition 15.4. Let f : Y → Z and g : X → Y .

(1) If f ◦ g and f are closed embeddings, then g is a closed embedding.

(2) If f ◦ g is proper and f is separated, then g is separated.

(3) . . .

There is a general framework for these properties.

Proposition 15.5. If P is a property stable under composition and pullback,
and f ◦ g ∈ P and ∆f ∈ P , then g ∈ P .

Proof. We have a pullback diagram

X Y

X ×Z Y Y ×Z Y

X Y.

Γ ∆f

This Γ is called the graph of f . Now g factors into Γ and the projection X ×Z
Y → Y . Both are in P and so their composition g is also in P .

Definition 15.6. A quasiprojective morphism is an open embedding in a
projective morphism.

Quasiprojective implies separated.
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Definition 16.1. A morphism is it is proper if it is separated, finite type, and
universally closed.

Theorem 16.2. The projective space PnA is closed over SpecA.

To show that PnA → SpecA is separated, we used the following lemma:

Lemma 16.3 (Cancellation). If P is a property stable under pullback and com-
position, and f ◦ g,∆f ∈ P , then g ∈ P .

For any f : X → Y , the diagonal ∆f : X → X ×Y X is a locally closed
embedding. f : X → Y being separated is ∆f being a closed embedding,
and f being a categorical monomorphism is ∆f being an isomorphism. In
particular, locally closed embeddings are monomorphisms. This is because open
embeddings, and closed embeddings are monomorphisms since

Z(S) = {f ∈ X(S) : f∗IZ = 0}.

As an aside, if f : X → Y is a map of schemes, there are

f∗ : QCoh(X)→ QCoh(Y ), f∗ : QCoh(Y )→ QCoh(X),

locally modeled on f∗ forgetful and f∗ tensoring up. These are adjoint functors.

16.1 Properties of proper morphisms

Why is this the right definition of proper? I won’t prove this, but here is a
remark. Consider the finite type schemes over C. These are actually cut out by
polynomials in some Cn. There is a forgetful functor

F : Var/C→ CplxAnalSpaces→ Top

giving the analytic topology. Then

(1) X is separated if and only if F (X) is Hausdorff,

(2) X is proper if and only if F (X) is compact Hausdorff.

Let us now actually prove stuff. Let X be proper over k. We would expect
Γ(X,OX) = k, as an analogue of the maximum principle. But there are some
things that can happen. First of all ifX is not connected, then we can have many
copies of k. So we will assume that X is connected. Note that Spec k[ε]/ε2 is
proper over Spec k, because nothing much changes. So we want X to be reduced.
Finally, we don’t want something like SpecC → SpecR and so we assume k is
algebraically closed.

Theorem 16.4 (Maximum principle). Let X be a connected reduced proper
scheme over k, where k is algebraically closed. Then Γ(X,OX) = k.
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Proof. A global function f ∈ Γ(X,OX) is a map f : X → A1
k. Since X → k is

proper and A1
k → k is separated, we conclude by the cancellation lemma that

X → A1 is proper.
Now we can compose X → A1 → P1, and this is also going to be proper by

the same argument over k.

X

A1 P1

f
f̄

Then f̄ is closed, but its image lies in A1. Thus it has finite many points and
so the image of f also is a finite number of points. By connectedness, it has to
be a single point. Let it be k[t]/(t− a).

We want to check that f : X → A1 factors through ∗ ↪→ A1. We can check
this on open affines {SpecA} of X. We want to show that (t−a) is in the kernel
of k[t]→ A. By the condition, for any prime p ⊆ A, its inverse is (t− a). Then
f−1(

⋂
p) = (t− a) but

⋂
p is the nilradical, which is 0.

What sort of schemes over k are both proper and affine? In complex analytic
spaces, proper corresponds to compact and affine corresponds to Stein spaces.
Suppose SpecR → Spec k is proper. Forget about the maximal principle for
now. How did we show that A1 is not proper? We made a base change to A1

and the hyperbola in A2 did not project down to a closed set.
Let us do a similar thing. Make a base change to Spec k[t] and consider the

image of the closed subscheme Z = SpecR[t]/(rt − 1) = SpecRr in SpecR[t].
Recall that p ∈ A1 in the image π(Z) if and only if R[t]/(rt−1)⊗k[t] κ(p) is not
the zero ring. If p = (t− a), then this ring is R/(ar− 1). In particular, [0] ∈ A1

is always not in the image.
Let us think about when the generic point η ∈ A1 is in the image. This is

asking if R[t]/(rt− 1)⊗k[t] k(t) = 0, which is the same thing as asking if rt− 1
is a unit in R⊗k k(t). The ring R⊗k k(t) consists of something in R[t] divided
by something in k[t]. Suppose∑

rit
i(rt− 1) =

∑
kit

i,

where we can assume k0 = 1. If you work though, this turns out to be the
condition that r is integral over k. This shows that in order for SpecR to be
proper, every element need to be integral, i.e., R is integral over k.

Theorem 16.5. Universally closed and affine is equivalent to integral.
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17.1 Proper, finite, integral

The main theorem we want to prove is

Theorem 17.1. Proper and affine is equivalent to finite.

Mostly proper stuff are going to be projective. Here is a way of constructive a
proper but non-projective scheme. Take two curves C,C ′ ∈ P3 that intersect at
two points. We can look at the blowup BlC′ BlC P3, and look at the other blowup
BlC BlC′ P3. These two are going to look the same away from the intersection.
So take a scheme that looks like one at one intersection point, and the other at
the other intersection.

Last time we had this discussion that affine over a field and universally closed
implies integral.

Definition 17.2. An integral morphism of rings is a morphism φ : A→ B
such that B is integral over φ(A).

Definition 17.3. An integral morphism of scheme is an affine morphism
such that locally for SpecB → SpecA, B is integral over A.

Theorem 17.4. Universally closed and affine is equivalent to integral.

The reason this is relevant is that integral is almost finite.

Proposition 17.5. If A ↪→ B is an injective morphism of rings, b ∈ B is
integral over A if there exists a subalgebra b ∈ B′ ⊆ B such that B′ is finite as
an A-module.

Proof. One direction is easy. For the other direction, consider generatorsm1, . . . ,mn

of B′ as an A-module. Let us write bmi =
∑
aijmj for some aij . Then we get

a matrix equation

(bI −A)

m1

...
mn

 = 0.

Now recall that there is something called adj(M), that satisfies adj(M)M =
det(M)I. Let M = bI −A. Multiplying adj(M) on the left gives

(detM)

m1

...
mn

 = 0.

But m1, . . . ,mn has 1 ∈ B as a linear A-combination. So detM = 0.

Proposition 17.6. Finite is the same as integral and finite type. (This is both
for rings and schemes.)
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Proof. We showed that finite implies integral. So the forward direction is proved.
For the other direction, let b1, . . . , bn be generators as an algebra. Take N

such that bNi ∈ A〈1, bi, . . . , b
N−1
i 〉. Then

∏
i b
li
i for li < N generates B as an

A-module.

Proof of affine + univ. closed ⇒ integral. We can immediately reduce every-
thing to rings. So we want to prove that if A → B is a morphism of rings
such that SpecB → SpecA is universally closed, then B is integral over A.

We are again going to use the hyperbola trick. Base change and look at the
hyperbola SpecB[t]/(bt− 1).

SpecB[t]/(bt− 1) SpecB[t] SpecB

SpecA[t] SpecA

Before doing this, we can simply factor φ : A → B as A → A/ kerφ → B.
If SpecB → SpecA is universally closed, then SpecB → SpecA/ kerφ is also
universally closed. In other words, we can restrict our attention to this map
and assume that φ is an injection of rings.

Here is a remark. We know what it means for A → B to be surjective in
terms of SpecB → SpecA. It is just a closed embedding. Now what does it
mean for A → B to be injective. Roughly it would mean something like being
surjective. Assume that A and B are both domains. Then φ being injective is
φ−1(0) = 0. This means that the generic point in SpecB maps to the generic
point in SpecA. This is equivalent to the image of SpecB → SpecA being
dense.

Let’s move on. We have A ↪→ B is universally closed.

Lemma 17.7. If A ↪→ B is closed, then f : SpecB → SpecA is surjective on
sets.

Proof. Suppose otherwise, and suppose im f = SpecA/I as a set. Recall that,
in general, f−1(V (I)) = V (I · B). Then f−1(V (I)) is the whole thing, i.e.,
IB ⊆ N(B). Then I ⊆ N(A) and so V (I) = SpecA.

Corollary 17.8. φ−1(B×) = A×

Proof. Suppose a ∈ A such that (a)B = B. If we take I = (a) then f−1(V (I)) =
∅ and V (I) = ∅. Then (a) ⊆ A is the unit ideal and so a ∈ A×.

Let us now actually look at the hyperbola. We can factor

SpecB[t]/(ft− 1) SpecB[t]

Z = SpecA[t]/I SpecA[t].
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Here I is the kernel of ξ : A[t]→ B[t]/(ft− 1). Then A[t]/I ↪→ B[t]/(ft− 1) =
Bf satisfies the hypotheses of the lemma and the corollary. By the corollary,
t ∈ (A[t]/I) is invertible.

Then we can write

t

n∑
i=0

ait
i = 1

in A[t]/I, and so for sufficiently large n,

(tf)

n∑
i=0

ait
ifn = fn+1.

Because tf = 1, we have

fn+1 =

n∑
i=0

aif
n−i

in B. This shows that f is integral over A.

Proof of integral ⇒ universally closed. Integrality is closed under base change.
So we just have to worry about closed. Next we only have to consider integral
extensions, because closed embeddings are closed.

Lemma 17.9 (Lying over). Let A ↪→ B is an integral extension. Then SpecB →
SpecA is surjective.

Proof. Consider the map Ap ↪→ Bp. This is still an integral extension. Take
any maximal m in Bp. We want to show that it restricts to pAp. That is, we
want to show that m ∩Ap = pAp. Note that Ap/(m ∩Ap)→ Bp/m is again an
integral extension.

So we have reduced things to showing that if A ↪→ B is integral and B is a
field then A is a field. Consider a ∈ A \ {0}. There exists a b ∈ B such that
ab = 1 but bn + an−1b

n−1 + · · · + a0 = 0. Multiply by an−1 and we get that
b ∈ A.

This finishes the proof.

Corollary 17.10. Finite is equivalent to affine and proper.

Proof. Integral is equal to affine and universally closed, and finite is equal to
integral and finite type. Also affine implies separated anyways.
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Last time we finished showing that proper plus affine is equal to finite.

Theorem 18.1. Proper + affine = finite.

What are the finite schemes over k? In other words, which k-algebras have
finite dimension as k-vector spaces? There can be finitely many points, with
finite fatness, which are finite field extensions of k.

Theorem 18.2. Suppose A is a reduced k-algebra which is finite over k. Then
A is a finite direct sum of finite field extensions of k.

Proof. We apply the Chinese remainder theorem, which says that if Iα is a finite
set of ideals of A such that Iα + Iβ = (1) then

A
/ ⋂
α∈S

Iα →
⊕
α

A/Iα

is an isomorphism.
We apply this to the set of maximal ideals. The coprimality condition is

automatically satisfied. Also A/mα are finite field extensions of k.
In this situation, all primes are maximal. Suppose p ∈ SpecA. Then A/p

is a integral domain that is finite over k. By the following lemma, it has to be
a field. Then the intersection of the maximal ideals is the nilradical, which is
(0).

Lemma 18.3. A integral domain A that is integral over k is a field.

Proof. Suppose a ∈ A \ {0}. There is a relation

an + cn−1a
n−1 + · · ·+ c0 = 0.

Then we can assume that c0 6= 0 and then assume that c0 = −1 since it is in the
ground field. Then an−1 + cn−2a

n−2 + · · ·+ c1 is the obvious inverse of a.

18.1 Nakayama’s lemma

Proposition 18.4 (Nakayama’s lemma). Let I ⊆ A be an ideal and M be finite
over A. If M = IM then there exists a a ≡ 1 (mod I) such that aM = 0.

Proof. Pick generators m1, . . . ,mn for M . For each i = 1, . . . , n, write

mi =
∑

iijmj

for some iij ∈ I. Now look at the matrix I = (iij). Then Id−I acts on (mi)
trivially, i.e., (mi) is in the kernel. The determinant of Id−I is 1 mod I.

Corollary 18.5. Suppose M = IM and M is finite over A, where I ⊆
⋂

m∈mSpecAm.
Then M = 0.
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Proof. There exists a a ≡ 1 (mod I) such that aM = 0. Then a is not in any
maximal ideal and so a is a unit. Then M = 0.

Corollary 18.6. Let M be finite over A and let A be a local ring. If M = mM
then M = 0.

Corollary 18.7. Suppose M is finite over A and N ⊆M , with A a local ring.
If M = mM +N then M = N .

Proof. Apply the previous statement to M/N .

Corollary 18.8. Let M be finite over (A,m) a local ring. If m̄1, . . . , m̄n span
M/mM , then any lifts m1, . . . ,mn will generate M .

Proof. Apply the previous statement to N = A〈m1, . . . ,mn〉 ⊆M .

Corollary 18.9. Let F ∈ Coh(X), and p is a closed point of X. Then gener-
ators of the fiber F |p lifts to generators of F in a neighborhood of p.

Here is a quick recap. If F ∈ Shv(X) and p ∈ X, then the stalk is roughly
Fp = F ⊗ OX,p and the fiber is roughly F |p = F ⊗ κ(p).

If F ∈ Coh(X), locally given by a module M on SpecA ⊆ X, then the stalk
is Mp and the fiber is Mp/pMp.

18.2 Dimension

In other parts of geometry, dimension is intrinsic in the definition. Well it is
not obvious that a ball in Rn and a ball in Rm is not homeomorphic if n 6= m,
but this can be shown.

Definition 18.10. For A a commutative ring, we define its Krull dimension
as

dimA = max{n : p0 ( p1 ( · · · ( pn}.

Example 18.11. For A = k a field, dimA = 0. We have dimZ = 1 and
dim k[x] = 1. Localization and completion doesn’t change dimension that much.
For example dimZ(5) = 1 and dim k[[x]] = 1.

Example 18.12. If the scheme is not irreducible, it might not work nicely. For
example, the dimension of k[x, y, z]/(xz, yz), which is a union of a plane and a
line, is going to be 2.

It is really hard to compute the dimension. For instance, we can show
that dimZ[x] ≥ 2, by exhibiting (0) ⊆ (x) ⊆ (2, x). But how do we know
that the dimension is exactly 2? Likewise we want dimAn = n, and we have
(0) ⊆ (x1) ⊆ (x1, x2) ⊆ · · · . But it is hard to actually show this.

Definition 18.13. Let X be a scheme. We define its dimension as

dimX = max{n : Z0 ⊆ Z1 ⊆ · · · ⊆ Zn irreducible closed}.
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Definition 18.14. Let X be a scheme and p ∈ X be a point. We define the
local dimension as

loc dimpX = dim OX,p = max{dim. of irr. comp. containing p}.

Proposition 18.15. If X =
⋃

SpecAα then dimX = max dimAα.

Proof. We claim that n = dimAα ≤ dimX. Then there is a chain of irreducible
closed sets Z0 ( · · · ( Zn ⊆ SpecAα. You can check that Z0 ( · · · ( Zn ⊆
SpecAα are irreducible closed sets.

To show the other direction, take p ∈ Z0 ( Z1 ( · · · ( Zn. Consider
p ∈ SpecAα. Then taking the intersection with SpecAα gives the chain of
closed sets in SpecAα.

Proposition 18.16. If A ⊆ B is an integral extension, then dimB = dimA.

Proof. We know that the map SpecB → SpecA is surjective, by the lying over
theorem. If p0 ( p1 ( · · · ( pn, we can lift each prime pi to qi ∈ SpecB
starting from q0, one by one, using surjectivity. (This is the going-up theorem.)
So dimB ≥ dimA.

To show that dimA ≥ dimB, it suffices to show that if q ⊆ q′ ∈ SpecB
maps to p ∈ SpecA then q = q′. We localize and quotient as Bq′/q, over the
field Ap/p. This is integral domain which is integral over a field, and so it is a
field. That is, q = q′.

Here is why this dimension makes sense.

Theorem 18.17. If A is a finitely generated domain over k, then dimA is the
transcendence degree of κ(A) over k.

Theorem 18.18 (Noether normalization). Let A be a finitely generated domain
over k. Then dimA = n if and only if there is a finite map A→ Ank .
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We had the notion of a Krull dimension of a ring/scheme as the length of the
maximal chain of primes/closed irreducible sets. We proved some random fact.

Proposition 19.1. If A ⊆ B is an integral extension, then dimA = dimB.

For A a domain, consider the normalization Norm(A), the integral clo-
sure of A in Frac(A). What does this look like geometrically? The map
Spec Norm(A)→ SpecA has to be a finite surjection, and it has to have degree
1 because the field of fraction does not change. That is, it is birational. Also
there cannot be something like this over it.

Example 19.2. Since k[t] consider A = k[t2, t3] ∼= k[x, y]/(y2 − x3). Then
Spec Norm(A)→ SpecA is A1 mapping down to the cuspidal cubic.

Definition 19.3. Let Z ⊆ X be an irreducible closed subset in an irreducible
scheme X. The codimension is defined as

codim(Z/X) = max{n : Z = Z0 ( · · · ( Zn = X}.

Of course, the same definition works for commutative rings. For a domain
A and a prime ideal p ∈ SpecA,

codimV (p)/ SpecA = (length of maximal chain between (0) and p)

= dimAp = htp .

Proposition 19.4. A prime ideal p ⊆ A is principal if and only if it is height
1 (if A is a UFD).

Definition 19.5. A hypersurface is a codimension 1 space of An or Pn.

The proposition shows that these are in one-to-one correspondence with
irreducible (homogeneous) polynomials.

Proof. Let’s first show that if (f) is prime, i.e., f is an irreducible element, then
it is of height 1. Assume that A is a UFD. Suppose (0) ⊆ p ⊆ (f). What is
p? If it is nonzero, it contains some fng, where f - g and n ≥ 1. If f /∈ p then
g ∈ p and we get a contradiction. So f ∈ p.

Now suppose that p is of height 1. We want to show that it is principal.
Because p 6= (0), consider some p 6= 0 ∈ p. Write p =

∏
feii , and suppose

p ⊇ (fi) ) (0). Then p = (fi).

19.1 Noether normalization

Theorem 19.6 (transcendnce = Krull). Let A be a finitely generated domain
over k,

dimA = trdegk Frac(A).
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Theorem 19.7 (Noether normalization). Let A be a finitely generated domain
over k, and trdegk Frac(A) = n. Then there exist a1, . . . , an ∈ A such that A is
integral over k[a1, . . . , an], and then SpecA→ An is finite surjective.

Corollary 19.8. For A a finitely generated domain over k, the following are
equivalent:

(i) trdegk Frac(A) = n,

(ii) dimA = n,

(iii) there exists a finite surjection SpecA→ An.

Note that A finitely generated is crucial. This is because you can do stupid
things like removing all closed points of A1 and get k(t). Nullstellensatz is an
immediate corollary of all this.

Before we start, let’s talk about transcendence degree of field extensions.
Let us put an equivalence relation on field extension of k: F ∼ F ′ if and only if
FF ′ is integral over F and over F ′.

Definition 19.9. A field extension F/k has transcendence degree n if there
exist algebraically independent elements f1, . . . , fn ∈ F such that F ∼ 〈f1, . . . , fn〉.

Well-definedness of the degree can be shown as in linear algebra. If you have
two “bases” you can substitute one with the other by switching one elements at
a time.

Proof of Noether normalization. Because A is a finitely generated domain over
k, there exists a closed embedding SpecA ↪→ AN . Let’s induct down on N . We
will show that given a finite map SpecA → AN , if N > n then we can find a
finite map SpecA → AN−1. Our hope is that we can achieve this by taking a
generic projection.

The map SpecA→ AN is the same thing as a map k[x1, . . . , xN ]→ A, and A
is a finite module over the image. This is the same as elements a1, . . . , aN ∈ A.
Because the transcendence degree is n, which is smaller than N , there is a
polynomial f ∈ k[x1, . . . , xN ] such that

f(a1, . . . , aN ) = 0.

Our hope is to pick N − 1 new elements of A such that A is finite over the
algebra they generate. The suggestion by the projecting process is to use

a′1 = a1 − c1aN , . . . , a′N−1 = aN−1 − cN−1aN ,

where ci ∈ k. Because A is a finite module over k〈a1, . . . , aN 〉, it suffices to
make aN integral over k〈a1, . . . , aN−1〉.

Now we have our n-variable polynomial f . We have

0 = f(a′1 + c1aN , a
′
2 + c2aN , . . . , a

′
N−1 + cN−1aN , aN ).
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If we expand this, we get

(some nonzero polynomial in c1, . . . , cN−1)a�N + (· · · )a�−1
N + · · · = 0.

We are after some choice c1, . . . , cN−1, this is going to be nonzero, if k is infinite.
If k is finite, you can use a′1 = a1− ar1N and stuff to make the leading coefficient
nonzero.

So we get some finite map SpecA → An. There cannot be any algebraic
relations between a1, . . . , an because if there is, we can again do the same thing
and get a finite SpecA→ An−1. This contradicts the transcendence degree.

Proof of trdeg = dim. If trdegA = n, then there exists a finite surjection A →
An. But from the proposition we proved last time, we know dimA = dimAn.
So we only need to show that dimAn.

Let’s do this by induction on n. We have certainly done the base case.
Suppose we have some chain of prime ideals. Consider the maximal chain

(0) ⊆ (f) ⊆ · · · ⊆ m.

This first prime is a principal ideal because k[x1, . . . , xn] is a UFD. Now we want
to show that V (f) = k[x1, . . . , xn]/(f) has dimension n − 1. But this is what
we have been doing so far. So the transcendence degree of k[x1, . . . , xn]/(f) is
n−1 by the random projection thing. This implies that dim k[x1, . . . , xn]/(f) =
n− 1.
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We define dimension and proved these big theorems.

Theorem 20.1. For A a finitely generated domain over k, the following are
equivalent:

(i) trdegk Frac(A) = n,

(ii) dimA = n,

(iii) there exists a finite surjective SpecA→ An.

Why do we care about dimension? We define curves, surfaces, threefolds,
. . . . Then we can try to classifies curves. The other things is that, it is a good
way to tell if stuff exists. If dimX ≥ 0 then X 6= ∅. On a K3-surface, we want
to look at rational curves on the surface. Do they exist? One thing we can try
to do is set up a moduli space of P1 inside K3,M(P1,K3). But this is hard. So
we consider the K3 as a degree 4 hypersurface of P3, and then consider

M(P1,K3) ⊆M(P1,P3) = Gr(2, 4)/PGL(4).

Then we hope that if we analyze the dimension, then you can show that this
is nonempty. This is what people like Joe Harris does all the time. For some
X → Y , a generic fiber F satisfies

dimY = dimX − dimF.

Theorem 20.2. Let X,Y be irreducible and finite type over k. Then dim(X ×
Y ) = dimX + dimY .

For non-finite type, there is a counterexample X = k(x) and Y = k(y). You
can check that dim k(x)⊗k k(y) = 1.

Proof. We showed

dimX = max
SpecA⊆X

dim SpecA = max
SpecA⊆X

trdegk Frac(A) = trdegk OX,η.

One remark from this is that we always have

dimX = trdegk OX,η = trdegk OU,η = dimU

for open U ⊆ X, if X is irreducible and finite type. So dimension can be
computed on any open.

Let us denote OX,η = κ(X). Then I claim that

OX×Y,gen = κ(X)⊗k κ(Y ).

Let’s just assume that k = k. Then you can show that if X and Y are irreducible
then X × Y is irreducible. Then for affine open SpecA ⊆ X and SpecB ⊆ Y ,
then SpecA⊗k B ⊆ X ×k Y . Then A⊗k B is still a domain (by k = k) and so

Frac(A⊗k B) = κ(A)⊗k κ(B).

Then trdegk(κ(X)⊗k κ(Y )) = trdegk κ(X) + trdegk κ(Y ).
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What if k is not algebraically closed? If X is irreducible and finite type over
k and K/k is a finite extension, we can consider the extension of scalars XK =
X ×k SpecK. Then I claim that the dimension of any irreducible component of
XK is equal to dimkX. I don’t remember the best way to prove this, but you
can prove this for purely transcendental extensions (this shouldn’t be too hard)
and for algebraic extension, in which case the Galois group has to act on the
irreducible components.

20.1 Codimension

I also defined codimension. They are useful for the same reason.

Theorem 20.3. Let Y ⊆ X be a closed subscheme, where both are irreducible
and finite type over k. Then dimY + codimY/X = dimX.

Proof. Suppose codimY/X = n. Then there exists a chain of closed sets

Z0 = Z ( Z1 ( · · · ( Zn−1 ( Zn = X.

Then it suffices to show that if Z ( X is a maximal irreducible closed subset,
then dimZ = dimX − 1.

Take SpecA ⊆ X is a dense open set. Consider the intersection SpecA/I ⊆
Z. Then SpecA/I ⊆ SpecA is again a maximal closed irreducible. So we can
suppose that everyone is affine.

Let n = dimX and we want to show that dimZ = n − 1. There exists a
finite surjective map f : X → An.

Z

f−1(f(Z)) X

f(Z) An.

f

Then we know that f−1(f(Z))→ f(Z) is a finite surjection because this is a base
change of a finite surjection, and f−1(f(Z) → X is separated and Z → X is a
closed embedding and so Z → f−1(f(Z)) is a closed embedding by factorization.
Then Z → f(Z) is a finite surjection. So dimZ = dim f(Z).

Now we want to show that dim f(Z) = n − 1. But we see that f(Z) is
irreducible, and it is a maximal irreducible closed set. Then Z corresponds to
some height 1 prime ideal of k[x1, . . . , xn]. This is has to be a principal ideal
p = (f), and then we have shown last time that dimV (f) = n− 1.

So in particular, if A is a finitely generated domain over k, then all maximal
chains of ideals have the same length.

Theorem 20.4 (Hauptidealsatz). Let X be locally Noetherian over k and f ∈
Γ(X,OX). Then codimV (f)/X is zero or one.
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This is actually quite hard to prove, because we don’t have access to the
transcendence degree. Dimension theory should be true in greater generality.

In the beginning of the semester, we have shown that for U = A2 \ (x, y),
the sections is Γ(U,OU ) = k[x, y], which is the global sections of A2.

Theorem 20.5 (Hartog’s lemma). Let A be an integrally closed Noetherian
domain. Then

A =
⋂

ht p=1

Ap

inside Frac(A).

Why is this Hartog’s lemma? κ(A) are the meromorphic functions on SpecA =
X. Then Ap are the rational functions who are well-defined on p = V (p). So if
you’re defined on except for a codimension 2 set, then it is well-defined on any
codimension 1 set.
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Theorem 21.1. For X irreducible and finite type over k, and Y ↪→ X an
irreducible closed subscheme, dimY + codimY/X = dimX.

Proof. We reduced to the affine case, and then were were claiming that if Z is
maximal then f(Z) is an hypersurface. To do this, we had to show that f(Z) is
also maximal in An, which we skipped last time. Suppose that f(Z) ( C ( An,
and we want to show that it pulls back to f−1(f(Z)) ( f−1(C) ( X. This
needs some going-up/down.

Theorem 21.2 (Going-up/down). Let A ⊆ B be an integral extension of rings
with A normal. If p ( p′ ⊆ A and q′ ⊆ B sitting inside p′, then there exist
q ( q′ ⊆ B sitting over p ( p′.

Corollary 21.3. All maximal chains of prime ideals in domains finitely gener-
ated over k have the same length.

Theorem 21.4 (Hauptidealsatz). If X is finite type over k (more generally,
locally Noetherian), f1, . . . , fr ∈ Γ(X,OX), and Y = V (f1) ∩ · · · ∩ V (fr) is a
closed subscheme of X, then codimY/X ≤ r.

Proof. Immediate from previous methods.

Theorem 21.5 (algebraic Hartog’s lemma). If A is integrally closed and Noethe-
rian. Then

A =
⋂

ht p=1

Ap ⊆ Frac(A).

Definition 21.6. If f ∈ Frac(A) and A is a domain, we call f a rational
function or a meromorphic function on SpecA. We define the polar locus
of f as

P (f) = {p ∈ SpecA : f /∈ Ap}.

I just made up this definition, but P (f) is probably closed for reasonable
A. An analogous definition should make sense for quasicompact quasiseparated
schemes. Now if P (f) = ∅, we probably want f ∈ A.

Lemma 21.7. For A a domain, A =
⋂
p

Ap.

Proof. We further claim that A is the intersection over Am for maximal m.
Suppose f ∈ Frac(A). Define the ideal of denominators of f ,

Df = {a ∈ A : af ∈ A}.

If f ∈ Am, then there exists some a /∈ m such that af ∈ A. That is, Df 6⊆ m for
any maximal ideal m. This shows that Df = (1).
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Proof of Hartog’s lemma. Fix f and let I be the ideal of denominators. Suppose
q is a minimal that contains I. We localize at q by replacing A with Aq. (Here,
(Df )q = D(fq).) Now q is the unique maximal ideal in the local ring A, and so
is the unique prime that contains I.

Note that
√
I =

⋂
p⊇I p = q. Because

√
I is finitely generated as ideals,

say by q1, . . . , qd, there exists some n1, . . . , nd such that qnii ∈ I. Then picking
n =

∑
ni, if q ∈ q then qn ∈ I. Take n minimal so that qn ⊆ I. We have

q ⊇ q2 ⊇ · · · ⊇ qn−1 ⊇ qn.

Choose a ∈ qn−1 \ I, which exists because n is minimal. Consider Daf . This
is not the unit ideal because a /∈ I. But Daf ⊇ q because aq ⊆ qn ⊆ I. Now if
we write x = af , then Dx = q.

The next question is what is xq ⊆ q. Because q is the maximal ideal, either
xq = A or xq ⊆ q. Suppose xq ⊆ q. Then we can again use the determinant
trick and then

xn − tr(aij)x
n−1 + · · · = 0.

Then x ∈ A by integrally closed and so afinDf and so a ∈ Df . This is a
contradiction.

So xq = A and so x−1 ∈ q and q = (x−1). This is principal, and it should
probably be of height 1. So I is in a prime ideal of height 1.

Proposition 21.8. Principal prime ideals in domains are of height 1.

We will prove this later.

21.1 Regularity

Smoothness and regularity are not quite the same. Now we are starting dif-
ferential geometry. Because we are doing algebra, we are going to need some
notion of a differential algebra(?).

Definition 21.9. Let X is a scheme and p ∈ X. The Zariski cotangent
space is defined as

T∨X,p = mX,p/m
2
X,p

where mX,p ⊆ OX,p is the local ring. This is a vector space over OX,p/mX,p =
κ(p). The tangent space is its dual

TX,p = (m/m2)∨.

Example 21.10. Let X = An, k[x1, . . . , xn]. Let us look at the cotangent
space at the origin, T∨X,0. The local ring and the maximal ideal are

OX,p = k[x1, . . . , xn](x1,...,xn), mX,p = (x1, . . . , xn)k[x1, . . . , xn](x1,...,xn).

Then
mX,p/m

2
X,p = k〈x1, . . . , xn〉.
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What have I done here? The geometric interpretation is that OX,p is the
germs of functions near the origin. mX,p is the germs of functions vanishing at
p to order 1, and mX,p is the germs of functions vanishing at p to order 2.

Proposition 21.11. If X be irreducible and finite type over k and p ∈ X, then

dimκ(p) T
∨
X,p ≥ dimX.

Proof. We can only look at the affine case, because the cotangent space clearly
cares about the local behavior, and also dimX can be computed on an open
affine chart. Let n = dimAp/mp mp/m

2
p. Pick a basis m1, . . . ,mn a basis for

m/m2. If we pick any lifts m̃1, . . . , m̃n ∈ m, by Nakayama, they still generate
the ideal m.

Now consider
κ(p) = A/(m̃1, . . . , m̃n).

This has dimension 0 because it is a field, but it is cut out by n equations and so
must have dimension at least dimA− n. (This is the Hauptidealsatz business.)
So 0 ≥ dimA− n and dimA ≤ n.

Example 21.12. Consider Spec k[x, y]/(y2 − x3) = X and TX,0. The maximal
ideal is going to be m = (x, y)k[x, y](x,y)/(y

2−x3) and then m2 = (x2, xy, y2)k[x, y](x,y)/(y
2−

x3). This implies that

m/m2 = (x, y)k[x, y](x,y)/(x
2, xy, y2),

which is just the cotangent space of A2. So dimTX,0 = 2 > dimX = 1.

Definition 21.13. A scheme X is regular if dimTX,p = dimX for all p ∈ X.

Proposition 21.14. If p ⊆ A is a principal prime ideal inside a finitely type
domain A over k, then ht p = 1.

Proof. We want to show that dimAp = 1. We have

dimAp ≤ dimA/p p/p
2.

But I can pick the generator f as a spanning set of p/p2. So dimT∨X,p ≤ 1 and
so ht p ≤ 1.

Example 21.15. Consider the map k[t2, t3] ↪→ k[t]. This is the map of A1 to
the cuspidal curve. This is actually a homeomorphism of topological spaces.
But if we write x = t2 and y = t3, then y/x is a rational function that has no
singularities. This is a counterexample to Hartog’s lemma.
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I have discussed regularity last time. I defined it as dimk m/m
2 = dimX.

But whatever smoothness is, we should be able to construct tangent/cotangent
bundles and we should be able to differentiate functions.

Here is a regular scheme that is not smooth. Consider SpecFp[t1/p] over
SpecFp[t]. Differentiation is then a bit awkward. Let us write Fp[t] = R and
Fp[t1/p] = R[u]/(up − t). Given a f ∈ R[u], we would expect there to be some
df . Now we have dt = d(up) = pup−1du = 0.

22.1 Cotangent bundle

We have defined the cotangent space T∨X,p. We would need the cotangent bundle
to be a quasicoherent sheaf. We would also want a notion of relative cotangent
bundles.

Let us go to the affine case. Consider SpecB → SpecA. Let us define the
sheaf of differentials ΩB/A. This is going to be a B-module, with elements
like db for b ∈ B. We define it as

ΩB/A =

〈
db, b ∈ B :

d(b1 + b2) = db1 + db2
d(b1b2) = b1db2 + b2db1

da = 0

〉
.

Here is another idea. For any M a B-module, define the derivations as

DerA(B,M) =

{
(f : B →M) :

f is A-linear
f(b1b2) = b1f(b2) + b2f(b1)

}
.

You can show that the map M 7→ DerA(B,M) is corepresentable by ΩB/A, i.e.,
for any B-module M ,

HomB(ΩB/A,M) ∼= DerA(B,M).

Example 22.1. Consider B = k[x1, . . . , xn] and A = k. What is the sheaf of
differentials? For some intuition, we can compute

d(x2
1x2 + x3

3 + 1) = 2x1x2dx1 + x2
1dx2 + 3x2

3dx3.

So we are going to have

Ωk[x1,...,xn] = 〈dx1, . . . , dxn〉.

So ΩB/A is going to be the free module of rank n overB generated by dx1, . . . , dxn.

Example 22.2. Take B = k[x, y, z]/(x2 + y2 + 2z) and A = k. What is ΩB/A?
This is still going to be generated by dx, dy, dz, but there will be more relations,
like

0 = d(x2 + y2 + 2z) = 2xdx+ 2ydy + 2dz.

I claim that

ΩB/A = B〈dx, dy, dz〉/(2xdx+ 2ydy + 2dz) = 0.
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In fact, you can show that if B = k[x1, . . . , xn]/(f1, . . . , fr) then ΩB/A is the
cokernel of the Jacobian matrix.

Proposition 22.3. Let X → k be a finite type scheme, and let p ∈ X be a
closed k-rational point (the residue field is k). Then ΩX/k|p ∼= mp/m

2
p.

I haven’t actually defined ΩX/Y in general. You can show that ΩB/A localizes
well, and then show that they can be glued well by some cocycle condition.

Proof. We can reduce this to the affine case. Let SpecB → Spec k. The point
will correspond to some maximal ideal m ⊆ B so that B/m = k. We then want
to show that

ΩB/k ⊗B B/m ∼= m/m2.

Instead, we check that we have a canonical isomorphism

HomB/m(ΩB/k ⊗B B/m, k) ∼= HomB/m(m/m2, k).

the left hand side is HomB(ΩB/k, k). This is the same as Derk(B, k) by the
universal property. So the problem is to give an isomorphism Derk(B, k) ∼=
Hom(m/m2, k).

Given a derivation f : B → k, we can restrict it to f |2m. Then f(m1m2) =
m1f(m2) +m2f(m1) = 0 because m1,m2 ∈ m send anything to 0. So we get a
map m/m2 → k. The other direction is also easy. Now I have a f : m→ k with
m2 → 0. We want to lift this to f̃ : B → k. We have a short exact sequence

0→ m→ B → B/m = k → 0,

but we have a section k → B because B was already a k-algebra. So we get a
projection B → m and we can compose this with m→ k.

In the general case, you can deal it with a trick. Suppose you have the map
X → SpecE corresponding to the point, for some extension E/k. Then we can
make a base change to XE → SpecE, and this is going to satisfy the condition
we needed.

Definition 22.4. For C a proper regular curve over k, we can define its genus
as

g = dim Γ(C,ΩC/k).

22.2 Smoothness

The ramification locus of X → Y (finite or quasifinite morphism) is like
the places we have branching, as supp ΩX/Y . Consider the map z 7→ z2. We
are going to expect something to happen at z = 0. We can actually compute
Ωk[ε]/ε2 = B〈dε〉/(2εdε), which is nonzero. In fact, you can define étale maps as
maps with vanishing ΩX/Y .

Let K be a number field, a finite extension of Q. Then there is a finite map
SpecOK → SpecZ, and then ΩOK/Z is called the different ideal. Then the
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ramification locus becomes the discriminant ideal. In number theory, there is a
theorem that says that the discriminant is always greater than 1. This can be
thought of as πét

1 SpecZ = ∗. I also think πét
1 Z[i] = ∗.

We have a B-module morphism B → ΩB/A given by b 7→ db. This patches
together to give a morphism d : OX → ΩX/Y .

Definition 22.5. A morphism X → Y is smooth if ΩX/Y is a vector bundle.

In this case, we can define ΩiX/Y =
∧
iΩX/Y , which is the sheaf of i-forms.

We can extend the d map to

0→ k → OX
d−→ Ω1

X/k
d−→ Ω2

X/k
d−→ · · · d−→ ΩnX/k → 0

and get a chain complex.

Proposition 22.6 (algberaic de Rham). If X is smooth and proper over k,
then this complex is exact.

This is a resolution of the constant sheaf C. The cohomology of X then is
going to be

H∗(X;C) ∼= H∗(X, {ΩiX/k}).

On the other hand, H∗(X;C) algebraically is H∗(X;C) topologically. (I think
you need to go through GAGA to see this.) Now then there is a spectral sequence
Ep,q2 = Hq(X,ΩpX/k). The claim is that this collapses on the E2 page. Then we

get a decomposition

Hn(X;C) =
⊕
p+q=n

Hq(X,ΩpX/k) =
⊕
p+q=n

Hp,q(X).

This is now Hodge theory. Here, these two match because ΩpX/k is like the

holomorphic p-forms and some complex geometry nonsense suggests that Hq

can be computed by anti-holomorphic stuff.
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