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1 September 5, 2018

There are going to be biweekly homeworks, and a final writing project. The
goal of the course is to introduce you to the various aspects of computational
complexity theory. There will be four parts:

1. Turing machines, deterministic and non-deterministic, probabilistic algo-
rithms, reduction, NP-completeness

2. Undecidable problems, Hilbert’s 10th problem of solving diophantine equa-
tions

3. Computer models, continuous time systems, Blum—Smale-Shub model,
quantum computers

4. Geometric complexity theory, algebro-geometric and representation theo-
retic approach to P#£NP

We may consider the determinant as a point in ]P’(Sym"((C”Q)). There is this
conjecture that there is no constant ¢ > 1 such that for all large m,

GLp2e [(™ "™ perm,,] & GLyy2e [det,,2].

This implies P#NP.
When you do any kind of programming at home, you use discrete time and
discrete space. At the end, it really looks like

Tpy1 = f(og).

On the other hand, the continuous time and space analogue will be a differential
equation

Y = fy).

Differential analyzers and continuous neural networks are like this. On the
other hand, states in quantum computers lie in Hilbert spaces, and so they have
continuous space but discrete time.

1.1 Turing machines

This is going to be boring. Let ¥ be a finite set of alphabets, for instance,
¥ ={0,1} for modern computers. ¥* is the set of all words on X.

Definition 1.1. A language over ¥ is a subset of ¥*. A decision problem
encoded on ¥ is a partition

¥ = (yes) II (no) II (non).

(You get a yes or a no or an error.) The language associated to a decision
problem II is the “yes” part, and is denoted by L.

Definition 1.2. A deterministic Turing machine has a read-write had, a
bi-infinite tape, and a DTM program consisting of
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e Y a finite set of tape symbols, with b € 3 a blank symbol, and v C ¥ a
set of input symbols with b ¢ ~,

e a finite set @ of states with distinguished qq, gy, g of start, yes, no states,

e a transition function
0:(@\{av,an}) x ¥ = @ x ¥ x {1}

You should think of there being an infinite tape and a state-controller pointing
to a certain point on the tape. The state-controller reads the tape symbol at
that point, and plugs its own state and the tape symbol to §. The output will
be the new state of the state-controller, the symbol that will be written, and
where the read-write head will move next. The program ends when either gy
or ¢y is hit.

On some inputs, a deterministic Turing machine may never halt. In fact,
there is no “algorithm” that can determine whether a given deterministic Turing
machine halts on a certain input. We will prove this shortly.

Example 1.3. Consider the following Turing machine. Find what this does.

qg\o 0 1 b

0 | 00,1 | 01,1 | 1,b—1
T [ 2,6,—1 | 3,b,—1 | N,b,—1
2 | Y.b,—1 | N,b—1 | N,b,—1
3 N,b,—1 | N,b,—1 | N,b,—1

Definition 1.4. Let M be a deterministic Turing machine. The language rec-
ognized by M is
Ly ={x € 4" : M accepts z}.

So M solves the decision problem II if Ly, = II.

Definition 1.5. The time complexity of M is the function

Ty (n) = max(m : M halts on x in m steps),

z|=n

where a step is a movement of the head.
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Today we will talk about non-deterministic Turing machines.

2.1 Non-deterministic Turing machines

I will give two definitions, which are going to be equivalent. Recall that a
deterministic Turing machine is just a infinite tape with a read-write head. The
program really is the transition function § : Q \ {gy,qn} xT' = @ x T’ x {£1}.
In a non-deterministic Turing machine, the picture is the same, but there
are two transition functions dg and d;. At each computational step, the machine
makes an arbitrary choice between §y and 4.

Definition 2.1. A computation path is the sequence of choices the machine
makes. For instance, it looks like

(50(5150505151 .-+ or 010011 --- .

The length of the computation path is going to be the length of the compu-
tation.

Definition 2.2. M is said to run in time 7T'(n) if for every input = and every
computation path, the machine halts within T'(Jz|) steps. We say that M is a
polynomial time non-deterministic Turing machine if it runs in some polyno-
mial time.

We say that M accepts x if there exists a computation path that halts with
qy - Then we define the language accepted by M as

Ly ={xz € X" : M accepts ¢} C X*.
Then we define
NP ={L C X" : exists a polynomial nDTM M with Ly = L}.

It is clear that P = NP, because a DTM is always a nDTM. (P is the same
thing with DTM instead of nDTM.) Intuitively, NP means that you can check
an answer (computational path) in polynomial time.

Let me give an alternative definition of an nDTM. We now consider a two-
tape machine, and we consider a transition function

§:QxIxT = QxTxT x{£1} x{0,1}.

It also has a “guessing module”. On an input z on the first tape, the guessing
module writes an arbitrary guess y on second tape, of length bounded in poly-
nomial by the length of . Then the machine proceeds with the computation
deterministically.

Definition 2.3. We say that M runs in time T'(n) if on an input z and for any
guess, M halts in T'(|z|) steps.



Math 278 Notes 7

Using this, we can again define NP so that L is in NP if there exists a
language R (recognizable by a polynomial DTM) and a polynomial ¢ such that

L=A{z:3y,lyl < q(z), (x,y) € R}.
In this case, we say that y is a “witness” or a “certificate” for x.
Theorem 2.4. The two definitions are equivalent.

Proof. Let L be NP according to the first definition. Then you can use the
computation path as the guess. In particular, we can do something like

8(q,01,02) = (0261(01,9) + (1 — 02)d0(01,9), 1).
The other direction does it similarly. O

You can also define stuff like k-tape machines, but if you thing hard enough,
you will see that there is no difference.

Definition 2.5. We say that a problem II is reduced to IT’ if there is a (poly-
nomially) computable funciton

iy oy
such that « € L(II) if and only if f(z) € L(IT").

What do we mean by a computable function? The easiest way to define it is
by using a k-tape machine. This k-tape machine M has a dedicated input tape
and an output tape. We say that M computes f if on input x, the content of
the output tape is equal to f(z) when the machine halts.

Definition 2.6. A problem or language is said to be NP-hard if any NP
language can be polynomially reduced to it. It is said to be NP-complete if
it itself is in NP.

If you search on Wikipedia, you can find hundreds of examples of NP-

complete problems, mostly in discrete mathematics.

2.2 Encoding Turing machines

Now we want to encode a Turing machine, i.e., construct a map
€:{0,1}* — {Turing machines}.

We are going to make a Turing machine on {0,1,—} and @ = {0,1,2,...,1}.
We encode ¢ and the transition function from values §(o, ¢) as a binary word.
If any binary string does not come from this procedure, map it to some trivial
Turing machine. This defines e.
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Definition 2.7. There exists a DTM U such that for every (x, ),
U(z,a) = M, (z).

This is called the universal Turing machine. If M, halts on input = within
T steps, then I/ halts in (x, @) within CT logT steps.

Our personal computers are all like this. If you write a program, you can
run it. You can see at a high level how this will work. I was told that it is very
involved to actually construct this machine.
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We will only have 30 minutes of lecture because there is the Ahlfors lectures.

3.1 Uncomputable functions

If you want to show that uncomputable functions exists, this is easy because
there are countably many Turing machine, and uncountably many languages.
So we want a construction of a function that is not computable by any DTM.

Example 3.1. Recall that we had this encoding of a DTM given by
e: 3" = {DTMs}; aw— M,.

Now define
0 M, accepts a,
fla) = :
1 else.

Then we claim that f is not computable. Suppose that M = My~ computes f.
Then

My(0*)=1 & f(a*)=1 <« M,~ does not accept o™.
This is contradictory.

Example 3.2. Here is another example. Consider the problem of taking (a, x)
and outputing whether M, halts on input o. Suppose M; solves the Halting
problem HALT. We are then going to build a solution to the previous function
by using the universal Turing machine. You first plug in (o, &) to Mg, and if
it says no, just output 1. If it says yes, run & with a and «, and output the
answer. This shows that the halting problem is undecidable.

Example 3.3. Let us look at the Bounded Halting Problem for nDTMs, de-
noted BHPN. First note that nDTMs can be encoded,

€: 3" — {nDTMs},

and also that there is an efficient universal nDTMs. Now the input is (a, z, t),
and the problem is,

Does M, halt on = on t steps?

This problem is AP because we can use the universal machine. On the other
hand, it is N"P-hard as well. To see this, let L € AP and let M be the nDTM
that recognizes L. Then we can define

X=X e (a,z,T(|x])).

This reduces L to the Bounded Halting Problem. This shows that BHPN is
NP-complete.
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Last time we constructed an uncomputable function. The point was to give an
explicit construction. This was

0 M, accepts
fla) =
1 else.

Then we showed that HALT is uncomputable by reducing it to this function.
Then, we showed that BHNP is N"P-complete. This problem was defined by

{(a, z,t) : M, accepts x within = steps}.

Now we want a natural problem that is NP-complete.

4.1 Satisfiablity

Let T" be a finite set of variables. Then a literal is a variable z or a negation
of a variable —x. A clause is a finite set of literals. A truth assignment is a
map & : T'II -I" — {0, 1} such that {(—z) = 7&(x). An instance of the problem
SAT is a finite set I of clauses, and the problem is,

Does there exist a truth function ¢ satisfying all C' € I, where ¢
satisfies C' = {Uy,...,U;} means that £(U;) = 1 for some i?

Using the logical “and” A and “or” V, we can write it as finding a solution to

/\ (Uzl VU V-V le)
c,el

Theorem 4.1 (Cook, 1971). The problem SAT is N'P-complete.

Proof. Tt is easy to show that it is NP, because we can set the guess as the truth
function. Now let us show that it is A”P-hard. Suppose L € NP is recognized
by a nDTM M. Assume that the tape symbols are {0,1,—1 = blank}, and
states {0 = go,1 = ¢v,2 = qn,...,l}. Let the input be z, with n = |z|, and
assume the running time is p(n).

Now what we are going to do is the write down everything in the computation
and turn it into a single formula. Define the logic variables

0¢,4,; = at time ¢, the tape content in the ith square is j,
gi,s = at time ¢, state is s,
h¢; = at time ¢, head is at tape square 1.
Here, the number of variables is at most constant times p(n)?. Next we can

write down all the relations between the variables that we need for it to accept
the input. These are

® Jo,0,
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® dp(n),1»

® 00z, for 1 <i<n,

e 0g,—1 for i < —q(n) and ¢ > n + 1, (the squares between —¢(n) and 0 is
used to store the guess)

i \/z ht,
L _\htﬂ' V _'ht,j for ¢ # j,

b \/j Ot,i,5)
[ ] _‘Ut,i,j V _‘Ut,i,j/ fOI‘ allg # j/.

e equations encoding the transition functions like

=0tV ohes V Qs V Ot
=0tV o hes VQes V Orgti 0,

0tV Thei Vg s V o,
and equations stating that nothing else changes.

You can count the number of variables, and then you are going to see that the
number of equations is polynomial in n. O

4.2 Hilbert’s Nullstellensatz

Consider an algebraically closed k¥ = k. Here is a weak version of Hilbert’s
Nullstellensatz.

Theorem 4.2. If f1,..., fm € k[z1,..., ky], then

hi=f="=fm=0
has no solution if and only if there exist g; € klx] such that Y fig; = 1.

Now consider the problem HNj, which have instances fi, ..., fi, € k[z], and
ask,

Does f1 =+ = f,, = 0 have a common solution?

If we use Hilbert’s Nullstellensatz, we get a linear algebra problem by writing
down the coefficients. If we write f; = > ain2z® and g; = waﬁ, then we

are solving
1 v=0
2 diabis = {0 #0
a+pB=y v ’

But what is the size of the system?

Theorem 4.3 (Browawell, Kollar). We can further impose deg(g;) < O(d"™),
where d = max{3,deg(f;)}.
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In fact, we are going to show that HN is A"P-hard, and N P-complete over
a finite field. This is an important basis for security analysis in cryptography.

Theorem 4.4. HN is NP hard.
Proof. We will reduce SAT to HN. An instance looks like

/\(uﬂ VeV uisi),

and so we consider the system of polynomial equations

fo=1]#
for each C' € 1. O

4.3 Hilbert’s tenth problem
This is trying to solve Diophantine equations. A Diophantine equation is,
P(xl,l‘27...,1?n) =0

where P € Z[x1,...,2z,]. Then Hilbert’s question was to find an algorithm for
determining whether a given P = 0 has a solution in rational integers.

Definition 4.5. A set S C N” is said to be Diophantine if there exists a
(integer coefficient) polynomial P such that

S = {a € N" : there exists z € N™ such that P(a,z) = 0}.

For instance, {(a,b) : a > b} is {(a,b) : 3z,a = b+ =}, and so Diophantine.
The set of composites is

{a:3z,y,(a=(z+2)(y+2)}

The set of primes also happens to be prime, and this is a consequence of the
Hilbert’s tenth problem.
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To show the N'P-completeness of SAT, we assigned a bunch of variables to
decide the “configuration”. Then we encoded what it means to compute, as
relations between these variables. This gave a polynomial reduction of any NP
problem to SAT.

5.1 Decidable and semi-decidable sets

Then we defined Diophantine sets as sets S that can be expressed as
S = {a € N™ : there exists € N" such that P(a,z) = 0}

for some polynomial P(a,x). We saw the examples {(a,b) : a > b} and
{composites}. A more interesting example is {(x,y,n) : 2™ +y™ = z"}. In
fact, we are going to see that all sets that are algorithmically determinable are
Diophantine.

We say that Hilbert’s 10th problem is decidable (resp. undecidable) over R
if there is (resp. is not) an algorithm for deciding whether a given Diophantine
equation has a solution in R. Also, let us denote Hilbert’s 10th problem by H10.
Hilbert’s hope was that H10 is decidable over Z. Then it is also decidable over

Q.

Theorem 5.1 (Davis—Putnam-Robinson-Matiyasevich). The problem H10 is
undeciable over Z.

Definition 5.2. A set S is decidable if there is a deterministic Turing machine
that computes xs.

For example, L(HALT) is not a decidable set. But we can extend this a bit
further.

Definition 5.3. A set S is semi-decidable if it is the halting set of a deter-
ministic Turing machine.

Because L(HALT) is the halting set of the universal DTM, it is semi-decidable.
This is a really important ingredient in the proof of Hilbert’s 10th problem.

Definition 5.4. We say that S is recursively enumerable if there exists
a deterministic Turing machine M that outputs x#xo#x3# --- where S is
precisely the set S = {1, z2,...}. In other words, S is the range of a computable
function.

Proposition 5.5 (homework). Recursive enumerability is equivalent to semi-
decidability.

Theorem 5.6 (Davis—-Putnam-Robinson-Matiyasevich). A set is Diophantine
if and only if it is recursively enumerable.
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Proof. A Diophantine set is recursively enumerable, because we can try all the
possible solutions and test them in order. The other direction is hard, but here
is an overview. Let S be a recursively enumerable set. This means that S can
be enumerated by a deterministic Turing machine. Now I want to write down
a Diophantine equation such that it a tuple is being outputted if and only if it
is a solution.

o We first arithmetize register machines. A register machine is a machine
that is equivalent to a Turing machine. It has a register (which is like the
tape in a Turing machine) and command lines (which is like the transition
function in a Turing machine). We assign variables for each register and
line, and then write down the relations.

e Then we Diophantize these relations. Many of the relations are going to
be of the form
r=<s

which are called bit maskings. Here, r and s are binary numbers, and
we define r < s if r; < s; for all i. We are going to turn this into an
exponential relation, using Lucas’s theorem. (If you have done enough
problem solving in high school, this is a standard trick.) Then we are
going to show that this is a Diophantine relation.

So we turn a Turing machine into a Diophantine equation. O

5.2 Register machines

So let me define a register machine. There are finitely many registers, Ry, ..., R,
and they can store nonnegative integers, of arbitrary size. It comes with a finite
(command) lines Ly, Lo, ..., L;, where each L; looks like

L;: Rj — Rj +1 or
L;:GOTO L, or
L; : IF Rj > O(OT = 0) GOTO L.

We say that M computes y = f(x) if we have © = (21,...,2,) in the registers
at time ¢ = 0, and when the program ends, the values stored at the register are

f(l‘) = (fl(x)’vfn(x))

So let us try to arithmetize this register machine. Let us say that Ry,..., R,
are our registers, Lq, ..., L; are the lines, and x € N™ is the input, with s the
running time. First choose @ = 2 really big so that

Q Q
<=, I< =, < —=.
T+ s 9 5 Tt 5
This is going to be the possible range of the registers. Define the variables
;¢ = register value of R; at time ¢,
I {1 machine carries out L; at time ¢,
it =

0 otherwise.
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Then we define . .
Rlj] = Q" Ll =) 1i:Q"
t=0 t=0

to make the data into a single number. Now we have the parameters x,y and
variables s, @, R[1], ..., R[n], L[1],..., L[I].
What are now the relations?

e start and end: L1 = 1 and L; = Q°,
o =2t

e r+5<Q/2,1<Q/2, R; X (Q/2—1)I (this enforces r;; < Q)/2 because
rj+ moves by at most 1),

o I=(Q"' -1)/(Q-1),
e Li=TandY'_ L,=1I,

e execution commands: if L; : R; < R; £ 1, then QL; < L;;1, and other
commands.
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Last time we looked at register machines, which had registers Ry, ..., R, that
can store arbitrarily large integers, and lines Lq,...,L; that can change the
value of a register by 1 or transfer to another line.

Example 6.1. Suppose you want to compute f(z) = 2z, and let’s say that we
start with = in Ry and 0 in R;. Then the register machine

L1 If Ry =0 Goto Lg
L2 Ro+ Ry —1

L3 R+ R +1

L4 Ry + Ry +1

L5 Goto L

L6 End

computes this.
Consider the function
G(l) = max{output of a I-line machine with input Ry = 0}.

This is well-defined, because there are only finitely many machines with [ lines,
up to equivalence. Suppose M is a c¢-line machine that computes f(x). Then if
we put z lines saying Ry < R; + 1 and then 5 lines x — 2z and then c lines for
M, we can compute f(2x). So we get

f2z) <Gz +5+¢).
In particular, we can never compute G, because then G(2x) < G(z + 5+ ¢) is
a contradiction.
6.1 Register equations and their Diophantization

Given a register machine M, we want to find a polynomial P(z,y,...) = 0 which
has a solutions if and only if y = M (x). We started with these variables

s, Tie, i

as in the case of SAT. But then, the problem is that the number of variable
depends on s. So instead, we defined Q = 2V and

Rj = ertQt» L; = ZlitQt~

Then we had all these relations between Rj, L;,s,2,9,Q,I = > Q'. We could
also recover rj; and l;; by looking at the Q-ary expansion of R; and L;.

There were the universal equations, and the execution commands are the
following:
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e QL; = L;;1 for L; not containing Goto,

o QL; X Liy1+ Ly and QL; = Li+(IQ—2R;) (this requires some analysis),
if L; contains “If R; > 0 goto L;”,

e something like R; = QR;+>, Li—>_, Ly and R1 +yQ° = RiQ+>_, L; —
>; Li + x that encodes how the register values transform.

So the point is that all of them are of the form (up to Diophantine relations)
a=0b0ra=b.
For the bit masking relation, we use the following theorem.

Theorem 6.2 (Lucas). If p is a prime, we have

()=T1(7) Gmoan

K3
where r = >" ript and s = s;p" are the p-ary expansions.

As a consequence, s < r is equivalent to (%) being odd. Then this relation will
be Diophantine if and only if I can encode u = (:) as a Diophantine equation.

Theorem 6.3. The set {(u,r,s):u= (:)} s Diophantine.

Proof. We note that

(a+1)'r’ r—s n r—s—1 r r 1 1
A, + a 4+ + a4 =,
a® n—1 s s—1/a a®

But we note that if a > 27, then the terms involving é will sum to a number
smaller than 1. This shows that for any a > 2", then

[ £227])- ()

Note that the relation Rem(b,a) = r is Diophantine, and similarly the integer

part is also Diophantine. So we prove this theorem if we can encode the relation
b

a’ =c. O

So everything reduces to the exponential relation.
Theorem 6.4. The set {(a,b,c) : a = b} is Diophantine.

This uses Pell’s equations, and is rather involved. I will only give an overview
of how this works next time.
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Last time wrote down the register relations, universal ones and program-specific
ones. Many of them were bit-masking relations, and we reduced these to ex-
ponential relations. So we needed to know how we can encode the exponential
relation

{(a,b,c) : a® = ¢}.

This is what we are going to do today.

7.1 Diophantization of the exponential relation

Definition 7.1. For d = a®> — 1 and a an integer, Pell’s equation is the
equation
z? — dy? = 1.

The equation admit solutions of the form

za(n) + ya(n)Va2 —1=(a+ a2 —-1)".

Using this, we can prove that

{(a,b,n) : b=1z,(n)}
is Diophantine. In fact, the relation ¢ = y,(b) can be encoded by
d? — (a®> —1)c® =1,
o f2—(a®—-1)e? =1,
o i?— (> -1h%=1,
o c= (i+1)2c2,

e k=)

e h < 2c
To show this, let h = y,(r) for some . Then show b =r (mod 2¢) and r = +p
(mod 2¢), where ¢ = y,(p). Then we can show that b = p by using b < 2c.

Note that z,(n) and y,(n) grows exponentially in n. One can show that we

have
(2a —1)" <ys(n+1) < (2a)".

Theorem 7.2 (Robinson). For alln >0 and b > 0, we have

zq(n) — (a —b)ya(n) =" (mod 2ab — b* — 1).
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Proof. 1don’t have any intuition for this, but you can play around with numbers.
O

So if @ > y(n + 1) then we have
b" = Rem(z,(n) — (a — b)ya(n), 2ab — b* — 1).

This is because b" < 2ab — b — 1 since a is really big. This finally shows that
the exponential relation is Diophantine.

7.2 Finishing Hilbert’s tenth problem
Theorem 7.3. Hilbert’s tenth problem is undecidable.

Proof. Consider S = L(HALT), which is undecidable but semidecidable. (This
means that there is a register machine M such that S = {M (1), M(2),...}.)
Suppose the problem is decidable. Then associated to M, there is a Diophantine
equation such that

y=M(n) < 3% Py,n,x) =0.

So given y, we can test if P(y,—, —) = 0 has a solution by a register machine.
This determines whether y € S or not. This contradicts that S is not decidable.
O

Actually, we have a stronger statement. There exists a single (family of)
Diophantine equation whose solvability cannot be algorithmically decided.

This whole proof implies that all computable functions are polynomials. Let
me be more precise.

Proposition 7.4. Let y = f(x) be computable. Then there exists a polynomial
P(x,xg,21,...,T,) such that

{(z,y):y=f2)} ={(z,y) : Fxo,...,2n,y = P(x,20,...,2n)}

Proof. Because {y = f(z)} is Diophantine, there exists a polynomial Q(z,y, z1, . ..

such that y = f(z) if and only if Q(z,y,z1,...,z,) for some x;. This is then
equivalent to existence of zg,...,, such that

(o +1)(1 — Q(z, g, 21,...,2,)%) =y + 1.
This is called Putnam’s trick. O
Also, we see that there exists a universal Diophantine equation.
Theorem 7.5. Fizn € N. Then there exists a polynomial
Un(ay,...,an,k,y)
such that for any polynomial D(ay,...,an,y), there exists a kp such that

{a:3z,D(a,z) =0} = {a:3y,U(a,kp,y) = 0}.
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Proof. We note that the Diophantine sets are enumerable, so let S1,S55,... be
the sets. Let Mj, Ms, ... be the machines enumerating the solutions, i.e., S; =
{M;(1), M;(2),...}. Then we can construct a machine that enumerates

{(a,k) : a € Sk},

by using the machines. So this is semi-decidable. The Diophantine equation
associated to this is going to be the universal equation. O
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This was a guest lecture by Matthias Christandl. I will talk about quantum
mechanics, applied to computer science. This was developed in the early 20th
century, in order to overcome the difficulty of describing small particles. It
is a mathematical theory that was hugely successful in both predicting and
explaining new phenomena.

8.1 Crash course on quantum mechanics

There are some axioms.

e There is a complex Hilbert space H, with a Hermitian metric, the system
of the physics. Two systems H 4 and Hp combine to H4 @ Hp.

e The state of a system is given by a vector ¢ € H, normalized so that

[o] = 1.
e The time evolution is given by the Schrodinger equation
.0
i b(t) = H(OU(0),

where H(t) is the Hamiltonian (or energy) that is a Hermitian operator
on H.

e Measurement is given by { P; };¢r, a family of projection, such that ), P; =
1 and PP; = 0 for ¢ # j. If a measurement is carried out, you get the
outcome “¢” with probability

pi = (¥, Pi).
After the measurement, the state becomes 1; = \/%Pﬂ/).

Example 8.1. There is the qubit, or the spin—% system. This is the simplest
possible non-trivial example, H = C2. We put the inner product

(1, @) = Yoo + 11.

Let us look at the Hamiltonian

H(t)=H= (1;;0 1).

Then the time evolution of an arbitrary 1 will be
P hoeeg + re’len.

There is a resolution of the identity,

1 0 0 0
P():e()eg:(o O), P1:€1€11. (O 1)
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Now let us imagine that we have a different apparatus, given by a different
resolution of the identity

Qo = %(60 +e)(eote), Q= %(60 —e1)(eo —en).

%(eo + e1), then you always get QQ = 0 with probability
1. But if you measure it with P and then measure it with @Q, the result will be
@ = 0 with probability % and Q = 1 with probability %

If you take this state

This really is a generalization of the classical bit. You can also change the
first and second components by unitary operators.

Example 8.2. For the harmonic oscillator, we have

w2£2 ]52

2 Jr2m7

H=L*R), H=

where 21 (z) = z(z) and py(z) = —i% (z). Then

1
H= ;<n+ §>fnffl.
If we now have n qubits, the Hilbert space is
H=C*® - ®C>=C?.
The basis of given by

e, Ve, Qe .

If we write |eg) = [0) and |e;) = |1), we can write this vector as |i1ia -« iy).
Then we can have states like

1

V2

These are pretty hard to create in labs, for n pretty large. A quantum circuit
is basically applying unitary operations one after another.

P (00---0) 4 [11---1)).
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Today we will continue with classical boolean circuits. Then we will talk about
quantum circuits and the Grover search algorithm.

Let us fix notation
B={0,1}, B=C?

the state spaces for the classical and quantum bits. The two vector |0), |1) are
going to be orthonormal bases of the space B. Then in

B =C%’®---@C?
we can declare the vectors
17) = ldidz - dn) = |71) @ - ® |jn)

for j; € B to be orthonormal. Each “tensor factor” of B™ is called a single qubit.
Roughly, what a quantum computer can do is to

e perform unitary transformation operations, and

e perform measurements.

How can we use this to compute a boolean function, say something that an
ordinary computer can do? There is the Hadamard gate

50 )

n n ]'
HEMO™) = s > |a).
ze]Bn

and then we can take

Then when we measure, we get each |z) with probability 1/2™.
To compute f : B" — B™, we need to devise a unitary operator U such that
given z € B™,

(1) Ulz) =3 eyly),

(2) |cy|? is largest at y = f(x).

9.1 Grover search algorithm

Here is the problem. There is a hidden yy, € B™, and we need to find yy by
asking some “oracle” the question “Is y the hidden y?”. Classically, we need
to just guess N = 2" times and ask the queries. But in the context of quantum
computation, we can do this in v/N queries with high probability.

In the quantum world, this is a unitary matrix U, given by

Ulyo) = |yo), Ulx) = —|x) for = # yo.
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Define )
V=1-29 1= > ),

which is reflection with respect to hyperplane perpendicular to [£).
If you think about it, U is a linear combination of I and |yo){yo|- So the
operator VU is a rotation in the plane spanned by yo and £&. But here, note

that
1

sing = (€lyo) = TN

Here, you have to do some analysis. Each time we apply VU, the rotation is by
2¢. So when we do the rotation m times, to get

VU)o,

the rotation angle is m2/VN ~ Z.

But how would you implement this algorithm? We certainly can’t build a
machine for each unitary operator. So we want a relatively small set of unitary
operators, and simulate other operators using the basic ones. We will show that
any unitary operator can be approximated by a “circuit” over a finite set of
unitary operators.

9.2 Quantum circuits

Definition 9.1. A Boolean function is a map f : B® — B, and a boolean
circuit (over A) is a representation of a boolean function as a composition of
other boolean functions. It consists of

e variables x1,xo,..., 2y,
e auxiliary variables y1,v2, ..., Ym,
e assignments y; = f;(,y1,...,y;—1), where f; € A.

You can also think of it as an acyclic directed graph with input vertices with
in-degree 0 and output vertices with out-degree 0. There are gates G each with
out-degree 1 and a map G — A.

Theorem 9.2. Any boolean function can be computed by a circuit over
A={AV, -}

A quantum circuit is the same thing, but with input qubits, and gates
unitary operators.

Lemma 9.3. Let f : B® — B™ be computed by a (boolean) circuit of size L
over A. Then a map of the form

(,0") = (f(x), 9(x))

can be computed by a circuit of size O(L) over the set {hg : h € A} U {idg},
where this @ are the invertible maps

he(z,y) = (z,y @ h(z)).
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So we are introducing these ancilla qubits.

Theorem 9.4. Any unitary operator admits an exact realization over Gy 11 Go,
where G; is the set of all quantum gates with i qubit inputs.

This only says that any unitary matrix can be decomposed into 2 x 2 unitary
matrices.

Theorem 9.5. There is the approximate basis, called the standard quantum
basis

Q = {H’ Uw? Kil’ AJI? AQO—I}’
that generates a dense subgroup of U(B3).



Math 278 Notes 26

10 October 17, 2018

Recall that we set B = {0,1} and B = C?. A quantum gate is just a unitary
transformation, and a quantum circuit is just the same as a boolean circuit but
with qubit input and quantum gates. We saw the example of the Grover search
algorithm, which is just finding an answer by quering the oracle. It turned out
that only ~ 2"/2 queries are needed to find the answer.

10.1 Circuit for the Grover search algorithm

Definition 10.1. Let U be a quantum gate, i.e., U : B®" — B®". Then we
can define

lagay - - - an) if ag =0,

AU : B2+ B®("+1); lagay -« - an) — )
lag) @ Ulay -+ apn) if ag = 1.

We are going to use the circuit diagram

|ao) i |ao)
|a1 - U

an) 0

to represent this.

Now we can use this to build a quantum circuit for the Grover search algo-
rithm. It suffices to build a quantum circuit for V' = I — 2|£)(£|, because the
gate U is already given to us. But then, we just have |£) = H®". So it really
suffices to build the circuit for

I—2]0™)(0™|.
Define the function
F:B"™ = B (ag,...,an) = (a0 @ (=(a1 V-V ay)),a1,...,a,).
Note that F' is a permutation.

Proposition 10.2. Any permutation can be realized as a circuit over {—, Ag}
using ancillas.

Corollary 10.3. For any permutation F, its associated quantum gate F can be
realized as a circuit over {*, Ag} using ancillas.

Here, the quantum analogues = and f\@ are just o, and A%0,. So they are
in our set of standard quantum gates.

Let this circuit (with ancillas) be Z. Now consider the circuit in Figure
Then if we feed in |0,0",0'), we get

Z|0,0",0") = |F(0,0™),G) = [1,0",G),
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and then o, will turn it into
- | 17 0n7 G>7

and so applying Z again will give
Z(—[1,0",G)) = —|0,0™,0").

So this does exactly what we wanted it to do.

—_— m —_—
10 NG
o) —{ Hen — Z A
[0) | |

Figure 1: The quantum circuit for Grover’s search algorithm

10.2 Quantum Fourier transform

Classical fast Fourier transform takes O(n2"), but the quantum Fourier trans-
form only takes O(n?) time.

Definition 10.4. The discrete Fourier transform is the linear map

1,
(20, an_1) € CN = (yo, .. yn_1); Yk = ﬁe%wk/%j,

If we do this naively, we are doing multiplication and addition O(N?) times.
In fast Fourier transform, we employ divide and conquer to bring it down to
O(Nlog N) operations. If N is even, we divide

Ze2ﬂijk/ij — Ze2ﬂi(2m,)k/Nm2m + Z 62ﬂi(2m+1)k/N.Z'2m+1.

So we don’t have to compute them twice.

Definition 10.5. The quantum Fourier transform is defined as
N-1

1 g
) = == 3 TR,
VNS

(Note that this is a unitary operator!) We interpret
7)) = L1z - jn)

with the encryption j = 12" '+ -+j,_22+7,. We can also write 0.5172 - - - jn =
27",
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We know that B®" has a standard orthonormal basis
{10),11),...,IN = 1)}
where N = 2™,

Proposition 10.6. Actually, the quantum Fourier transform is equivalent to

. 710.5 7i0.7 j LT S - 1
1) = ([0)+€*70I [1)@(|0) +-* I =1I 1)) @- @ (|0)+€™0.51 2 - 1)) 5775 -

2n/2
Proof. Note that |j) — >, w”|k). But here,
wF k) = wh 2" k1) @ -+ @ wn k)
and note that
2 |0) ks=0
(€27 0-dn—s119n)|1) Ky = 0.
Then the formula follows. O

So how will we make this into a circuit? We have H, and we will use the

gates
1 0
Ry = <0 e27ri/2k>

for each k. (If you really want to do over the standard gates, you approximate.)
First we note that we can conveniently write

L
V2

This is nice, because it is what we needed. For the next thing, we look at the
following circuit:

H|j1) = —=(10) + €*™071[1)).

(0)——(Ry)

|71) (H) f

|j2) +

Then we first get
1

V2

after H, and then we will get

(10) + €™ [1)) | j2)

1 I )
—5(10) + 0P R 1)]jo)
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Last time we talked about the quantum Fourier transform

1 N-1
eszgk/N|k
N k=0

There was a product representation

1) = 272(|0) + €2700n 1)) - .. (|0) 4 2701 In

1),

and it turned out that this made it easy to construct a quantum circuit for the
problem. At the end, we get a quantum circuit of size ©(n?).

11.1 Phase estimation

Given a unitary operator U and an eigenvector |u), this question is about finding
a ¢ such that Ulu) = ¢*™?|u). Using this, we can do “order finding” pretty
efficiently. This is about, given a composite N and 1 < a < N, finding a smallest
positive r such that a” =1 (mod N).

Going back to phase estimation, consider a unitary operator U and |u) an
eigenvector U. Assume that

(1) we have a quantum computer that can set a register at |u), (this is not
really obvious; this state |u) can be a complicated superposition)

(2) we can compute /\U2j7

(3) the eigenvalue takes the form of ¢ = 0.p1p2 - - - ;.

So here is the circuit in Figure [2}

)
()
\H)
() .
\H)
w———— A | Hw

Figure 2: Quantum circuit for phase estimation

What does this do? Note that

U? = (eQWiO-wl---sot)Zs‘w — 627fi0~@s+1-~w|u>.
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So if we do /\U2t717 we get something like

1 .
—(|0) + €202 |1))|u).
\/5(\ ) 1))
If we analyze the what the other parts are doing, we see that end result is going
to be
(quantum Fourier transform of |p))|u).

Now we take the first qubits, and then apply the inverse Fourier transform.
(This can be done by just reversing the circuit for the Fourier transform.) Then
we recover |p).

11.2 Order finding

Let N = H§=1 pjo-” be a composite number, assume that we are given 1 < x < N.
We want to find an r such that 2" =1 (mod N). The idea is to sample enough
points, apply quantum Fourier transform, and observe.

We will sample ¢ points, where N2 < ¢ < 2N2. Let us assume that there is
an efficient quantum circuit for computing

F:|a,0) — |a,z% mod N).

There is a classical algorithm that does this in pretty efficient time, about
O((log, N)?). So this also can be done using a quantum algorithm, using ancilla
bits.

Now here is what we do. We start with |0,0), and first apply quantum
Fourier transform to the first register, so that we get

\7;\k,0>.

Now we apply F' to this state and get

a-
Zk 2" mod N).
k:

But then we see that this second component is periodic with period r. So when
observe that the second state is. Then the state collapses to something like

q/r—1

Z ljr + s)(@]2*))

for some s.

Now we take the quantum Fourier transform and measure the state. We
expect this to give something like multiples of ¢/r. In fact, with high probability
we will get a k such that
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So we can just use continued fractions for £ to recover r. Here, there is a
problem if b happens cancel out a lot of factors of . But b is chosen randomly
modulo r, so if we do this enough times (say q/¢(q) = O(loglogq) times) then
we will get in a situation where ged(b,r) = 1. Then we exactly get .

This can be used to do integer factorization. We input y > 1 a positive
integer and want to factorize y. Here is the classical algorithm:

(1) If y is even, just output 2.

(2) Check whether y = m*, and if yes, output m. (You try for k up to log, y.)

(3) Randomly choose a € {0,--- ,y — 1} and compute ged(a,y) =b. If b > 1,
output b.

(4) Compute n = ordy(a), and if r is odd, output that it is prime.

(5) Compute d = ged(a”/? — 1,y), and if d > 1 output d and if p = 1 output
prime.

You can show that

Pr(algorithm returns prime | y composite) <

DN =

So repeating the algorithm gives an accurate result.
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Last time we looked at quantum phase estimations, which was finding the eigen-
value of
Ulu) = e*™%|u).

We also looked at how to find the order of an element 1 < x < N modulo N.
We first make this state ﬁ > la,z*), and then measure to collapse the state.
Then we take the quantum Fourier transform to extract the period.

We had an algorithm of factorizing an integer, if we know how to find the
order.

(1-3) Checks if a given integer y is even or a perfect power. Then chooses a
random a and computes d = ged(a, y).
(4) Computes m = ord,(a) and if m is odd, returns “prime”.
(5) Computes ged(a™/? —1,y) = b and if b = 1, returns “prime”.
This algorithm is correct with positive probability because of the following fact.

Lemma 12.1. Let y = []; p?j and let m; = Ordp;"j (a) = 2%7r;. Then the
algorithm returns “prime” if and only if s = -+ = si.

So the probability that the algorithm returns “prime” when n is not prime
is equal to the probability that s; = --- = s;. You can estimate this, and it
is smaller than % This means that we can run the algorithm repeatedly many

times and get this.

12.1 Complexity class BQP

I’ve been conflating quantum algorithms and quantum circuits. So we can just
define complexity using this.

Definition 12.2. We define the complexity of a quantum algorithm as the
quantum circuit size. (Here, we assume that every gate computes in unit cost.)

Suppose we want to compute
f B — B
What does it mean for a quantum algorithm to compute f, where B* = [ B™.

Definition 12.3. A quantum algorithm for computing f is a Turing machine
M that returns on input n, a quantum circuit Z,, that computes f|gn.

We view quantum algorithms as a discrete time model, but with continuous
space. Then we define the quantum complexity of M as the complexity of
M as a Turing machine. Here, “returns” means that it describes all the circuit
diagram and all the entries of the gates (with given precision) and so on. So the
quantum complexity already encodes the circuit size of the output.

Definition 12.4. A language L is said to be BQP if there is a quantum algo-
rithm M for L with polynomial complexity.
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12.2 The Blum—Shub—Smale model

Computation on {0,1} is good for formal logic, but it is not suitable for mathe-
matical analysis. So we want a model more suitable for complexity of numerical
analysis. Roughly, a Blum—Shub—Smale machine is a machine with registers that
can store arbitrary real numbers and can perform basic arithmetic operations,
and also branch according to register values.

Example 12.5. A nice example is Newton’s method. We are given f and ¢, a
function and precision. Given an input z, we iterate

G
f'(2)

24+ Ny(z) ==z

until we get | f(2)] <.
Definition 12.6. A Blum—Shub—Smale machine consists of
(1) a finite directed connected labeled graph with five types of nodes:

e an input node (unique),
e an output node,
e a computation node (with one subsequent nodes),
e a branch node (with two subsequent nodes, with edges labeled + and
-
e a shift node (with one subsequent nodes),
(2) the input space Zy;, the output state Oy, and the state space Spr, where
the computation occurs,

(3) associations to each nodes a (polynomial) map

input -1 Ty — SM,

output - O : Spr — Oy,

computation - f : Sy — S,

shift - 07,0, : Sy — Sw,
branch - h : Sy — R for some ring R (like R or C or Fy).

What the machine does is just to follow the flowchart. Define

ROO:HRn, ROO:{(...70,,1,0,0,0,1,...)Z(LZ'GR}.

We can take Zpy = Op = R*® and Sy = Rs. (The computation power
comes from the fact that state spaces are infinite.) Given z € Sy, we compute
I(x) € Spy. If it is a computation node, just do the computation, update the
state, and move to the next node.
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So a BSS machine was a finite directed labaled graph with nodes input, out-
put, computation, branch, shift, spaces Zp;, O, Spr, and polynomial maps
indicating the computation.

13.1 Examples of Blum—Shub—Smale machines

We used the spaces
ROOZURH, Roo:{(...,a_l,ao,al,...)}.
Usually, I and O are usually the linear maps

I:(z1,...;2zn)— (..,0,1,.... 1 a; =x1,...,2,,0,...),
O:(...,x_1,20,21,.-.) = (T1,...,2])
because otherwise we need to know where the input ends. Also, the branch an
computation maps are polynomials (that is, each entry is a polynomial). Here,
we only allow polynomials to have finite dimension and degree. This means

that if we write
g:("'»gOagla"'):Roo_)Roov

then we have
gi(x) =x; fori <0andi>n-+1.

The dimension is this n, and the degree is the supremum of the degrees of g;.
To use the negatively graded numbers, we use shift maps.

Definition 13.1. We define oy, 0, : Sy — Spr as
oi(x)=(...,x1,a1 = x0,71,...), 0p(x) = (..., 21,01 = T2, 3,...).
Definition 13.2. If M is a BSS machine, we define

Ky = dimension of M = max{dim 7 : n a computation node},

Dy = degree of M = max{degn : 7 a computation node}.

We can give an interpretation of the BSS machine that is similar to the
Turing machine. Let A/ be the set of nodes, and let us denote & = Sy;. Then
we can define the computing endomorphism as

H(n,&) = (By> gn(£))s

where , is the next node. This function has complete information of the
computation of M on xz. We can also consider this as a dynamical system.

Definition 13.3. A dynamical system is an action of a monoid G on X.
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We can now define the computation path as the sequence

Yo = {n*(2) = e H (2, 1(2))}

of nodes, and similarly the state trajectory as the sequence

{¢"(2) = nsH" (2, I(2))}.

We say that M halts on z if the output node some n” (x). Then the complexity
of M can be written as

T (z) = min{T : n”(z) is the output node}.

Example 13.4. Turing machines are BSS machines. A Turing machine has
symbols {0, 1, blank} with states {1 = gno, 2 = qves,3 = 90,4, ..., N}. We can
take R = F3 = {0,1,—1} where we consider —1 as a separator. The graph is
going be one node of each kind, input, computation plus shift, branch, output.
Then we define

I(xlvu-;xn) = ("'3037171n7713qm*13x17x27"-7:1771307"')'

and do something.

13.2 Decidability for BSS machines

We define
Dy(T) = {xz €T : M halts on z in time T},

and then define the halting set of M as
Dy = | Du(T).
T=1
Then we can define the computation function as a partial function
OrrIar — Opr; x € Dy(T) = O(qF (2)).

Then for any f a partial function on Z,;, we say that M computes f if Dy, O
Domain(f) and ®s(z) = f(z) for all z € Domain(f).

Definition 13.5. We say that S C R™ is decidable if there exists a BSS machine
M over R that computes xgs.

This is really the motivation for Blum—Shub—Smale to come up with this
machine. The Mandelbrot set is defined as the set

{ceC:c,c+c (c+c?)? +e,... is bounded}.

Theorem 13.6. The Mandelbrot set is not decidable over C.



Math 278 Notes 36

This follows from the analysis of the boundary of the Mandelbrot set. Still,
the complement of the Mandelbrot set is semi-decidable.

Definition 13.7. A set S C R" is said to be basic semi-algebraic if it is
defined by finitely many polynomial equations and inequalities. Then a semi-
algebraic set set is a finite union of basic semi-algebraic sets.

Theorem 13.8 (path decomposition). Let M be a finite BSS machine over R.
Then for any T > 0, the set Dy (T) is a countable union of semi-algebraic sets.
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We stated the path decomposition theorem last time.

Theorem 14.1 (path decomposition). Let M be a finite-dimensional machine.
Then Qp = {x € Iy : M halts on z} is a countable union of semi-algebraic
sets.

If you think about this, if we fix a computation path, the states are deter-
mined as polynomials, and the condition that the computation really does follow
this path is given by a bunch of inequalities. So this is a basic semi-algebraic
set, and then we are taking the union over all computation paths. Now it can
be shown that the boundary of the Mandelbrot set has Hausdorff dimension 2,
and this shows that it cannot be written as a union of countable semi-algebraic
sets.

14.1 The class NP over rings

A language L in this context is going to be a subset of Z,;. A structured decision

problem is a tower
Xyes - X - IMa

where there are some “no” instances X \ Xyes, and some “non” instances Zps \ X.
We can define the running time of a BSS machine, so we can define

P/r = {(X, Xyes) : exists polynomial BSS over R deciding Xyes}.
Similarly, we can define

exists polynomial BSS over R taking two inputs
NP/R = < (X, Xyes) @ such that x € Xy if and only if there is y with
y < poly(|z|) and M accepting (z,y)

Here are some N P-problems.

e Hilbert’s Nullstellensatz (HN): given fi,..., f; € R[z1,...,x,], decide if
there exists a common zero in R".

e 4—FEAS : given a single deg4 polynomial f in R[zy,...,z,], decide if
there exists a zero of f in R™.

Note that if we have HN, we can always reduce it to all the polynomials into
quadratic polynomials. Then instead of asking if there is a zero for f1,..., fi,
we can ask for the solution of f =Y, f2. This is why 4—FEAS is a reasonable
problem to consider.

e SA — FEAS : given a semi-algebraic system (this is a formula like \/((¢;1 >
/ =/ <0)A--)) decide if it has a solution in R".

e QA — FEAS : in the case when the ring is not ordered, replace > by #.
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Theorem 14.2. The problem SA — FEAS is N'P-complete over R.

Proof. Let Xyes € X be in NP. We need a map ¢ : X — SF computable
by a polynomial BSS machine. Consider M the polynomial BSS machine over
R, taking two inputs, (z,y) that solves the NP-problem. Now we are going
to encode this using register equations. Let N' = {1,..., N} be the nodes,
with 1 the input and N the output. Let us assume that this uses coordinates
G—m, - -.,0m. Then we can set variables a;; as nonzero if M is at node 7 at time
t, and denote the registers as ¢ = (¢*,,,,...,q%,) at time t. Then we can down
the equations

e ajo=1and ¢ =I(z) =...020... for initialization,

e ay, = 1 for halting,

e (ag(j),t+1 = 1) A (a;+ = 1) for moving computation nodes,

e a;a; ;=0 forall j # j', for all ¢, for uniqueness of the node,

(aje =1) A((h(g") > 0 Aag(jy,e+1 = 1) A ) for branch nodes,

(¢ = G;(q")) A(aj = 1) for input and computation and output nodes,
where G; is the polynomial determined by the polynomials.

So this becomes a semi-algebraic system, and this is what we wanted. O
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Last time we showed that SA — FEAS is A"P-hard over R. It is easy to see that
the problem itself is NP is NP, so it is N'P-complete. This is because we can
use the guess as a possible solution.

Proposition 15.1. Over Z, we have P # NP.

Proof. By the DPRM theorem, HALT is Diophantine. So this is NP over Z.
But this is not decidable over Z, and so it is clearly not P. This shows that
P £NP. 0

Also, universal BSS machine exists. This can be constructed in a manner
similar to the classical one.

e Encode the BSS machine as a sequence of sequences (1, £y, g,) in some
way.

e Divide the state space into two components, one for storing the input and
the other for the “workspace”.

e Now design a universal polynomial evaluator, which reads a polynomial
and a state and then computes the result.

e Copy the state input into the workspace.

e Using the universal evaluator, simulate the input BSS machine, and only
use the workspace to store the state data.

15.1 Continuous time systems

We have seen Turing machines, BSS machines, quantum computers. These are
all discrete-time systems; computation is done step-by-step. A continuous
time system is a system associated with a continuous dynamical system. The
most important ones are

o differential analyzers (Bush, 1931),
e GPAC, general purpose analog computer (Shannon, 1941).

One of the reasons these are important are there are neural networks and natural
computation or so on. There is no unified theory of these computations.

This GPAC consists of families of circuits with constants, adders, multipli-
ers, and integrators. In theory, GPACs are much more powerful than Turing
machines. Turing machines can compute only polynomials (this was the DPRM
theorem plus Putnam’s trick). But in theory, GPAC can generate exponential
functions, logarithmic functions, trigonometric functions, and so on.

Theorem 15.2. A GPAC can compute f(t) if and only if it is “differentiably
algebraic”, i.e., it satisfies an ODE of the form

plt, fo f o f™) =0

for p a polynomial.
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So let us use a general ordinary differential equation

y' = fty), w(0)=yo,
where y can possibly be a vector.

Theorem 15.3. Any Turing machine can be written down as an ordinary dif-
ferential equation.

Let us write by v as a transition function of a deterministic Turing machine
M. We first need to encode the state of the machine. If the machine is like

...bba_l...a_laoal...apbb... s
where ag is the head position, define
y1 =ag+10ay + -+ 10Pa,, y2 =10""ay +---+10'a;, ys=g¢

where ¢ is the machine state. Now we want to construct an ordinary differential
equation y' = f(t,y) whose solution ¥(t) = (y1,y2,ys) is the machine at time
teN.

Lemma 15.4. Given 0 < € < %, and a map ¥ : L — L for some L C N3, there

exists an analytic extension hy; such that
w-zlw<e = @) - @) <e
for allx € L and j € N. (U] is the jth iteration.)
The proof is really complicated. But using this, we can prove the following.
Theorem 15.5. There is an analytic map
pu R RS

and a constant go € R™ such that for all zo € N3, the solution z(t) to

/

2 =pu(t,z), 2(0)=(xo,y0)

satisfies ‘
121(5) = 9P (o) e < €
for all j € N, where z = (21, 22).

Proof. Let us write

21 = (h(r(22)) — 2101 (t), 25 = (r(z1) — 22)°2(8),

where 7 is a smooth map approximating r(z) = |z + %J and ¢ and ¢, are
approximating ¢; = > x 1. and @9 = > %, 1 .. Then if ¢ is between
[”7"""5] n [7L—§,n]

0 and %, then 2] = 0 and so we are solving something like

y = c(b—y)’o(t).
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Then we can solve this as

dy 9 1
=co(t)dt, (b—y)” < .
(b—y)? cf¢
So zo — y around t = % Then in the next time interval, we get z; — har(y),

and then after that, 2o — has(y), and then z; — h3,(y), and so on. So you
keep applying hj,. U
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Last time we talked about this universal polynomial evaluation map (f,z) —
f(z). We first fix a degree d and the number of variables n, then we can
compute the polynomial from the input and the coefficients. This is because
the output is a polynomial in terms of the input and the coefficients. But this
is not necessarily true. In this case, we can use something like

(n,z) = (n,z,2) = (n—1,z,2%) = (n — 2,2,2%) — - (1,2, 2").

Using this universal polynomial evaluation (UPE) module, we can effectively
determine if x € R"™ satisfies a given semi-algebraic system. This shows that
SA — FEAS € N'P over R.

We were also talking about continuous time systems, given by ordinary dif-
ferential equations y' = f(¢,y). The claim was that Turing machines can be
made into continuous time systems. To do this, we encode the machine in three
numbers,

y1 =ag+10a; + -+ 10%a,, yr=a_;+10a_s+ - +10"ra_,11, q.

Now we used this proposition that ¢) admits an analytic extension ¢ : R? — R3.
Then we were looking at differential equations like

2 = c(b— 2)%p(t).
If we solve this, we get

dz

PE =co(t)dt, z(1)=~b

if ¢ is large enough. So we couple these equations and get
2 =c(f(r(n1) = 20)°b1, 2z = c(r(21) — 22)° o

where ¢y is like Y X{nt1/2,n41) and ¢ is like Y X[ nt1/2]- So what ends up
happening is that zo copies z; and z; computes f(z2).

16.1 Simulating Turing machines over a polynomial ODE

This is clearly not analytic, since there are completely flat regions. So here, ¢;
and ¢ should be analytic, so they are not entirely zero on this half-intervals,
but we will bring ¢, and ¢4 very close to zero.

Lemma 16.1. Suppose that 2’ = c(b(t) — 2)3¢(t) + €(t). If

I6(t) —bllew < p, BB <5, > (292 [ ¢)7,

we can define
2= —c(z—bF p)3p(t) £ 6
and look at its solution. Then z_(t) < z(t) < 24 (t) for allt € R.



Math 278 Notes 43

So if we have this, we can prove something like
b—ze(3) <v+p+ 16

To get an analytic ordinary differential equation simulating 1, we use the
functions

s(t) = %(sirﬂ (2mt) + sin(27t)), la(z,y) = % arctan(4y(z — %)) + %

The reason we are using them is because they can be written as polynomial
partial differential equations.

Definition 16.2. A function f : R — R is called a polynomial initial value
problem if there is a polynomial ordinary differential equation such that

g/ :p(tag)7 y<0) = Yo Gan
such that the first component of the solution is f.

All these functions we wrote above are PIVPs, for instance, f(t) = sint can
be solved by y; = y2 and y = —y;. Now we can write down

f(r(z2)) — 21)°d1(t, 21, 22) + €1 (1),
r(21) — 22)°ha(t, 21, 22) + €2(t),
¢1 = ZQ(T _t)v %(Zl - f(T(Zz)))4 + % + 10)7

2 = a(r(t), 22 (22 — r(21))* + 22 +10).

Z;Z/\l

—~

Zé:>\2

—~

Let me just quickly sketch why this does the job. In the interval [0, %], we have
|s(—t)] < & and so

1
bls(=t) ) < .
¥
Then we see that
. < Lz (272

O = Nl @ D) = A

This implies that
Il < Aallr(en) = 22l 3 llr = 227 <

By assumption, we have that ||z2(0) — zo||eo < €, and so we have something like
l22(t) = zolloo < ll22(t) = 22(0)I| + [|22(0) — @oll < 57+ 50 +e.

This means that z; is almost kept constant. If we now look at the equation
for z{, we see that this almost looks like the lemma we had about perturbed
differential equations. So we get

I21(3) = ¥ (@o)|| <e.
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Theorem 16.3. If ' = f(t,z) for z(0) = z¢ is a initial value problem, and
f R S R is a composition of polynomial initial value problems functions,
then there exists a polynomial p : R — R™ and yo € R™ such that the
solution (y1(t), ..., ym(t)) to

y =p(t,y), y(0) =y €R™

satisfies (Y1, - yYn) = (T1,...,Ty).

This is quite complicated to prove, but here is a demonstration. If we want

to solve

xy =sin®xy, xh = e,

we can write 1 = (sinzz)? and write z3 = sinza, so z5 = (coszz2)zh, so you
introduce new variables x4 = cosx,. If you do this enough, you will see that

/ 2 / / ! / 2
Ty = T3, Ty = IT5, T3 = Ty4Ts5, Ty = —T3T5, Ty = T5T3.

This shows that Turing machines can be simulated by analogue machines.
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Today we will talk about arithmetic circuits, due to Valiant.

17.1 Arithmetic circuits
This was an approach to prove P # NP, but this approach actually fails.
Definition 17.1. An arithmetic circuit consists of

e a variable set X = {z1,...,z,},
e an operator set O = {+, x},

e a finite directed acyclic graph G with two kinds of vertices, input vertices
Vo of in-degree 0, output vertices V5 with in-degree 2, and a unique output
gate with out-degree 0,

e a labeling Vj - CU X and V5, — O.
The size of the circuit is the number of edges.

Definition 17.2. For a sequence (f,) € Clz1,...,Zm(n)ldm) of polynomials,
with d a polynomial in n, we say that (f,) is in VP if there is a circuit (C},)
such that C,, computes f,, and the size of C,, is polynomial in n.

For example, Gaussian elimination suggests that (det,(z)) is in VP. By
dety, (), we really mean the determinant of the n x n matrix (z;;), as a polyno-
mial in the variables z;;. We can’t really use Gaussian elimination here, because
we aren’t allowed to switch things.

Here is how you compute the determinant. We know that A* can be com-
puted effectively, so tr(A¥) can be computed effectively as well. Here, note that
tr(A*) are the sum of the eigenvalues Y A\F. To write the determinant in terms
of these, we define

ety An) = > Njy Ny, en = det A
JC{1,...n}|J|=l
Here, we can show that

P1 1 0 0
P2 p1 2 0
1 .
a=y det : p2 p1 3
bi—1 - 0 P2 P1

Then the determinant of this nearly-lower-triangular matrix can be computed

in O(13).
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Definition 17.3. We say that (f,) is in VA/P if there exists a sequence

gn(xay) S (C[.’l?]_, ey Ty Y1y e e 7ym(n)} eVvp
such that

@)= > galz,y).

y€{0,1}""<">
Here is an example. The permanent
perm,,(z) = Z T16(1) " Tno(n) € VNP
ocS,

is in VN'P. This is because we can define

gn (2, y) = un (2, y)on(2,y),
un(z,y) = ]___[ (1 — yayjm) H(Z yij), Un(2,y) = H Z%‘ij
(i=7)«(I#m) 4 J (]

Here, u,(x,y) is just picking up 1 exactly when y;; form a permutation matrix.
Then v, (x,y) computes the other thing.

Theorem 17.4. The permanent (perm,,) is universal.

17.2 Universality

This means that you get any polynomial as an affine projection of the permanent
matrix.

Definition 17.5. We say that p(z) € Clz1,...,2,] is an affine linear pro-
jection of q(y) € Cly1,...,Ym| if there is an affine linear map C™* — C™ such
that such that p(z) = q(y(zx)).

Definition 17.6. The determinantal complexity dc(p) of p(z) is the small-
est n such that p is an affine linear projection of det, (y).

Here are some facts:

e For any polynomial p, we have dc(p) < oo. (This is the universality of the
determinant.)

e For any polynomial p, de(p) is at least the circuit complexity of p.

e We have 2™ — 1 > dc(perm,,,) > %

Here is another way to formulate this. Consider an acyclic graph G (with
unique source and target) with each edge labeled by a variable or a constant.
For each path 7, define

wt(r) = H wt(e),

ecm

and then define

val(G) = Y wi(m).

Tis—1
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Lemma 17.7. If f is a formula (circuit with underlying graph being a tree) of
size e, then there exists a graph G with

[V(G)| <e+3, |[E(G)<e+1
such that val(G) = f.
Proof. You can induct on e. O

Let us now prove universality of the permanent. Given a graph G, you can
define a new graph I'(G), given by

V(@) =V(G)/(s ~ 1), EI(G)) = E(G)U{l, :v#[s]},

where £, is a loop at the vertex v. Now choose an ordering of V(I'(G)) and then
write down the adjacency matrix M (G) with weight

w(i — j) if i — j is the image of an edge from G
(M(G))zj = 1 if (Z — j = Z) = éi,

0 otherwise.

Theorem 17.8. We have perm(M(G)) = val(G).

Proof. Look at the cycle decomposition of the elements of S,, and see which
ones can have nonzero contribution. O

Theorem 17.9. (perm,,) is VN'P-hard.
This follows from the following proposition.

Proposition 17.10. Let g € Clz,y]. If g has a formula of size e, then f(x) =
>, 9(z,y) can be realized as an affine linear projection of permg,.

So the strategy is, start with an efficient graph that computes G. Add some
components to G to construct a graph G’ such that perm(M(G’)) = f.
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Last time we talked about circuits, or straight-line programs. A formula is a
circuit such that the graph looks like a tree, and a weakly-skewed circuit is a
circuit such that given a multiplication node, the two sub-circuits are disjoint.

Example 18.1. The polynomials (22") is not in VP, because even are com-
putable in linear time, they don’t satisfy the condition that the degree is bounded
by a polynomial in n.

Definition 18.2. VP, is the family of polynomials computable by weakly-
skew circuits of polynomial size.

Proposition 18.3. We have that (det,) is VPgyw-complete, and also the com-
plezity of det,, is O(n’).

Of course, completeness is defined as affine linear projections, which corre-
sponds to reduction of languages in classical complexity theory. Whether (det,,)
is VP-complete is open. On the other hand, (perm,,) is VA'P-complete.

VPyws C VP C VNP
Conjecture 18.4. Is VPys = VN'P? (This implies VP = VN'P.)

Let me explain what this bar is.

18.1 Geometric interpretation

Consider the vector spaces

5 2
C™ ' = C(@uvs Di<uwem, C" = Clyijhicij<n-

Lemma 18.5. perm,,(z) is an affine linear projection of det,,(y) if and only if
there is a linear inclusion
L:CmH o o

such that £"~™ perm,, (z) € Ende(C™) - dety (y).

This really is writing the definition of an affine linear projection in a com-
plicated way. The /£ is there to homogenize the degree.

Conjecture 18.6 (Mulmuley—Sohoni). There is no ¢ > 0 such that
(™ "™ perm,, (z) € End(C"*) det,,
for every m > 0.

Here we consider this det,, as a point in

N : n rn?
Az, N =dimSym"C" .
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So we may consider the orbit of det,, and the take the closure. Now let us write
Det,, = GL,,2 - det,,.

Naturally, GL,,2 acts on Det,,, and then it also acts on the ideal cutting it out,
I(Dety,). Then GL,2 also acts on the coordinate ring

C[Det,] = Cly]/I(Det,,).

If it were true that

Perm,, = GL,2 -£"=™ perm,,, C Det,,

then we would have a containment of the ideals, and then a surjection of coor-
dinate rings
C[Det,| — C[Permyy].

Now the goal is to show that this surjection does not occur. The natural
thing to do, then is to look at both as GL-representations, and compare the list
of irreducible representation appearing. The good thing is that GL is reductive,
so that any finite-dimensional representation breaks up into a direct sum of
irreducible representations. So we can instead ask, if there is a surjection

€D 5940 = Dty > ClPerm] = @D s

of GL-modules.

Conjecture 18.7 (Mulmuley—Sohoni). For every c, there are infinitely many
m such that pa(m) > 0 and pq(w) = 0.

But this is actually false! (Biirgisser-Tkenmeyer—Panova, 2019) It turns out
that actually C[Det,] contains all the irreducible representations. The program
is not completely dead, since we can still try to find © with pa(7) > pq (), but
it has gotten less attractive.

18.2 Cook versus Valiant
It is known that

Prooty NP jpoly  —s VP £ VNP,

Let us work this out before

Definition 18.8. We say that (¢,) is in C/po1y if there are (¢,) € C and an
“advance function”

a:N=X*  Ja(n)] < t(n) = O(poly(n))

such that ¢, (z) = ¥, ((x, a(n))).
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Then
c c C/poly

but P01y contains undecidable languages.
For ¢, : {0,1}" — {0,1}™(™ given by

T (¢7L,1(x); ) ¢n,m(n) (Z‘)),

we are going to conflate this with
n
Gn(x) =D Pni(x)27".
i=1

Definition 18.9. We say that (¢,) = #P if there is a deterministic Turing
machine M taking two inputs x and y such that

on(x) = #{y : ly| < p(|z]), M accepts (z,y)},

for some polynomial p.

We see that P C #P because given any computable function, we can make
this counting function to accept y if and only if y < ¢(x).
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Recall that we defined #P as the class of problems ¢ such that ¢(z) is the
number of witnesses for x for some polynomial nDTM. For a general class C, we
defined

C/poly = {fn(x) = ¢n(<xaa(n)>) : (¢n) € Ca (a ‘N — {0’ 1}poly(n))}

the non-uniform complexity class. So today we are going to show that VP =
VNP implies (P = N'P) /po1y- We are going to show

(1) #P/poly - BP(VNP)7
(2) BP(VP) C FP poly-

Here, BP(VP/VN'P) are the Boolean parts of the classes, and FP is the class of
all string functions {0,1}* — {0,1}* computable by a polynomial DTM. Then
we will get

NP ooty € #Ppoty € BP(VNP) = BP(VP) C FP polys

and we also have NP 501, N FP jpoty = Prpoly-

19.1 The first inclusion
Let us prove (1) first, which says that #P /.1, € BP(VN'P).

Definition 19.1. A family of functions (f,,) € VAP is said to have a Boolean
part if there exists a polynomial ¢(n) such that f,, maps {0,1}" to N with

fn({0,1}7) < 210V,

so that the binary encoding has length at most ¢(n). Then we define BP(f,,) =
fn|{0,1}"-

Let (¢n) € #P/poty- This means that there exist (1,,) € #P and a polyno-
mial advice function a : N — {0, 1}* with |a(n)| < #(n), such that

On (@) = Yn((2, a(n))).

If we can show that #P C VAP, then we get

Yo () = Z gn(,y)

ye{0,1}m ()

for some g, € VP. Then we can write
¢n (.13) = Z 9on+2+42t(n) (<$, CL(’I’L)>, y)

and this shows that #P /.1, € BP(VNP).
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So how do we show #P C BP(VN'P)? Let (1,) € #P, so that
Y () = #(witnesses for x with respect to a nDTM M).

Then Cook’s theorem tells us that (M,x) can be thought of as an instance of
3—SAT. Once we turn this into C7; A --- A C; where C; = u Vv V w, we can
construct a polynomial that looks like [, fc,(x,y). (« are the variables coming
from the input, and y are the variables coming from the machine.) Then M
accepts (z,y) if and only if [] fe, (z,y) = 1. This just means that

f:’(/}n(x) = Z HfCi(x7y)
ye{0,1}1(n)

and so f has to be in VA/P.

19.2 The second inclusion

Let us now show the other inclusion, BP(VP) C FP 1y Assuming the Rie-
mann hypothesis, we have

v dy 1
w(x) = +O(z'?log z:).
@ =] ool )

The extended Riemann hypothesis states that if K is a number field and

we define .
(k(s) = Z (Na)57

aCOxk

then (x has nontrivial zeros on R(s) = 3. This implies that
*d
i (x) = #{p primes with Np < z} = / % + O(z'/? log(Az?)).
2

In any case, we have the following theorem.

Theorem 19.2. Let S be an algebraic system of polynomials in n variables of
deg < d and wt < w (thg is the sum of the absolute values of the coefficients)
that has a solution over Q. Define

ws(x) = #{p < x: S has a solution modulo p}.
Then assuming the extended Riemann hypothesis, we have

() gl

log(wx).

Now let us prove the inclusion. Take (¢,,) € BP(VP) so that ¢, (z) = fn(x)
for f, € VP and |f,(z)| < 2"). Then there exist circuits T, of size n®)
and depth O(log?n) that compute f, on input xi,zs,...,2, and constants
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Yy, ... ,y;(n) € C. Let F,(z,y) be the output of I',, with y} replaced by the
indeterminate y;. We can now consider the system of equations

Fn(eay) - fn(e) =0

for each € € {0,1}". These are 2" polynomials in m(n) variables, y1, ..., Ym(n)-
Now they have a solution (y7, ... ,y:‘n(n)) and so the extended Riemann hypoth-
esis implies

c (2"
ms(2") > d(O(n)) — /2 log(wz).

Here, the degree of F), is at most 24ePth — 20008’ n) and similarly wtF, <
20(log” ") because we don’t have any constants. The conclusion is that for large
enough ¢, we have

ﬂ-S(QnC) 2 2t(n) 2 |fn(x)|

So we choose a prime p,, for each n, for which S,, has a solution.
Now S,, has a solution y(n) € F;n(n) and then

n

Fu(e,y(n)) = fule)  (mod py)

for all € € {0,1}"™. Then F,, can be done in polynomial time, and also we can
get rid of (mod p,,) since we can choose p,, to be much larger than the size of
the output.
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We showed last time that #P/poly g BP(VNP) and also that BP(VP) g
FP jpoly- So this shows that VP = VAP implies
#P/poly = FP poly-

This implies that P01, = NP /poly, because any function counting the number
of witnesses can solve AP problems.

20.1 Geometric complexity theory
Let us return to geometry complexity theory. This aims to show VP # VNP,

Definition 20.1. (f,,) is a p-affine linear projection of (g,) if there exists
a polynomially bounded ¢ : N — N and ng such that f, is an affine linear
projection of g,y for all n > ng. In this case, we write (fn) =<, (gn)-

It is clear that if (f,) <, (gn) then (f,,) € VP. Here is what we have so far:
e (dety,) is VPys-complete.
e (perm,,) is VN'Pys = VA'P-complete.

So for instance, (perm,,) %, (det,) implies that VA'P # VP. Geometrically,
we can write (perm,,) <, (det,,) equivalently as

lfl(")_” perm,, € GLy(y,)2 - det,
t(n)

and then we get a surjection on the coordinate rings,

CIGLy(n)2 -d(eg] — C[GLy(n)2 L= perm, ).
t(n

Since G = GLy(,)2 is reductive, each of these break in to irreducible representa-
tions, and moreover the map on coordinate rings is going to be G-equivariant.
So we can decompose each coordinate ring into a direct sum of representations,
and then try to determine if there is a surjection of representations. Then you
can say something like VPys = VNP if and only if there is a surjection of
representations.

First, we need to talk about the orbits. If we consider det € A”z, then we
can think about the stabilizer H = Stabgy, ,(det) and then

C[GL,: /H] = C[CGL,]".
Also, we are going to use the following fact from representation theory.

Theorem 20.2 (algberaic Peter—Weyl). If G is reductive then

Cla] = @ @ Vy
AeA+

as representations of G.
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Then H acts on the right of C[G] and then we can decompose
(C[G]H _ @ V)\@ dim(Vf)H
as left representations of G. Then by Schur—Weyl duality, we get

(CGan det @ @ S (C” @ Skn | an

deZ mdn

where Skjj. 4o = dim(Vy)# we had before.

20.2 Representation theory of S, and GL,
Definition 20.3. A partition of n is a

)\Z(/\(fl,...,/\zk), Aiz/\i+1>07 Zai)\,‘:n.

A Young diagram corresponds to partition, and is given by the subset
N ={(a,b)€Z*:1<b<k1<a<M ps1}
A tableau t) of A is a bijective map
th: [N = {1,2,...,n}.
Given a tableau, we can define
Riy = {0 € Su: o(ta(a, ) € tA({y = b))}

the permutations fixing the rows, and similarly we can define the column version
Ct,. Then we define the Young symmetrizer

he, = Z sgn(c)rc € CS,,.

7'6Rt>\ ,CECt,)\

For instance, we have

= Z o for A = (n) the one-row diagram,
ht, = ngn(a)a for A = (1"™) the one-column diagram.

Here are the main theorems that we won'’t really prove. Let us write A =
CS,.

e We have that Ah;, is an irreducible S,-module, called the Specht mod-
ule.
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e The Specht module Ah;, only depends on the Young diagram, not on the
tableau.

e The Specht modules Ah;, are distinct for different Young diagrams, and
they form a complete set of irreducible S,-modules.

So how do we get all the representations of GL,,?

Definition 20.4. If we have V = @, V' ) for Vy distinct irreducible repre-

)

sentations, then we call each Vf * an isotypic component.

Definition 20.5. An R-module is called semisimple if it is a direct sum of
irreducibles. A finite-dimensional C-algebra is semisimple if it is so as an
R-module.

An algebra being semisimple is equivalent to every R-module being semisim-
ple.

Theorem 20.6 (Artin-Wedderburn). A finite-dimensional C-algebra R is semisim-

ple if and only if
k

R =[] Endc(Vi).
i=1
In this case, you can further show that V; form a complete set of irreducible
R-modules.

Theorem 20.7. Let G be reductive, and V' be a G-module that as finite dimen-
sion. Then

(1) A=Endg(V) is semisimple.

(2) The isotypic components of V as a G-module and those of V' as an A-
module coincide. So if U is a isotypic component of V, we have

U=A®B, A=Homu(B,V), B=Homg(A,V)
for some A and B.

Here are some proofs. For instance, assume that A is an irreducible G-
module and take its isotypic component Homg (A, V). We claim that this is an
irreducible A-module. To show that it suffices to show that if s, € Homg (A, V)
are nonzero, there exists a ¢ € A = Endg(V) such that ¢t = ¢s. Here, by
irreducibility of A, the images sA,tA C V are isomorphic to V. Now we can
first try to map

-1
tA L A2 sA

and then we try to extend this to V' — V. This is possible because G reductive

implies that there is a decomposition V = tA @ tA¢ = sA @ sA° and also tA°

and sA€ are isomorphic. Now let U be the isotypic component of A. Then there
is a natural isomorphism

U= A®Homg(A,V)

of G-modules.
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We wanted to study C[GL,,: - det], and to do this, we want the algebraic Peter—
Weyl theorem

ClGl =P avy.
We had the following result.

Theorem 21.1. Let G be a reductive group and let V be finite-dimensional
G-module with A = Endg(V). Then V = @ A® B where A is the irreducible
G-modules and B are irreducible A-modules. Moreover, they are related by
A =Homyu(B,V) and B =Homg(A,V).

Here, the argument goes through if the irreducibles A are finite-dimensional.
So even if V is not finite-dimensional, we can use it if V' breaks into finite-
dimensional irreducibles.

We are going to try and apply this to C[GL,]. We know that C[GL,] =
Clz11, - - -y Tnn, detfl].

21.1 Polynomial representations

Proposition 21.2. Let G be a linear algebraic group acting on an affine variety
X. Then C[X] is a union of finite-dimensional G-submodules. In particular,
every irreducible submodule is finite-dimensional.

Proof. Since there is a map G x X — X, we get a map
C[X] — ClG] ® C[X].

Write for f € C[X], that it maps to 2221 a; ® f;. Then any G-translate of f is
given by

g-fzzjai(g)fi.

So the subspace spanned by g- f is a G-module and is contained in span(f1, ..., fi),
which is finite-dimensional. O

We can apply this to X = G with left translation. Then we get a decompo-
sition
C[G] = @ Va @ Home(Vy, C[G)).
Now we want to show that Homg(Vy,C[G]) = V. This can be see by the
identifications

Vi — Homg(Va,C[G]);  aw (v (g alg™'v)),
Homeg (Vy,C[G]) = VY5 (¢ : Vi = C[G]) = ag(v) = ¢(v)(e).
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We can also look at there coordinate ring of the orbits. If we take H = G, C
G then we claim that C[G - z] = C[G]¥. Here is the reason it is true. First, we
note that
G[G - z] C C[G]®

because any function on G - x is fixed by H. For the other direction, we can
show that any f € C[G] that is fixed by H actually descends to C[G], because
G — G -z is surjective and G - z is smooth. (This is a general fact in algebraic
geometry.)
Using this, we can try to identify C[GL,2-det]. We first can show that
stabilizer is
Gaet = SL,, ® SL,, /(pn, X Z/27.),

where j1,, acts as (A, \711).

21.2 Irreducible modules of GL,

Let us first look at Schur—Weyl duality. Consider V' any vector space. There
are natural actions of Sq and GL(V) on V®¢ and they commute.

Theorem 21.3 (Schur-Weyl duality). As a Sq ® GL(V)-module, we have

Vel = P A, ® 8.V,
T=d

where A = CS,,, Ahy is the Specht module, and S,V = Hom4(Ah,,V®9).
These S,V are called the Schur modules.
Proof. Given the theorem from before, it suffice to show that
Ends, (V) = A(V. d)

where A(V, d) C End(V®9) is the subalgebra spanned by GL(V). Then GL(V)-
submodules will just be the same as a A(V, d)-submodule.
Here, we have

Endg, (V®?) = (End(V®))% = Sym?(End(V)).

Here, you can show that in general, Sym? W is spanned by things of the form
w® -+ @ w. Therefore the diagonal image of GL(V') is a dense open subset of
some spanning set. On the other hand, &/ (V,d) the subalgebra generated by
A(GL(n)) is closed since it is a vector subspace. O

Here are some examples. For m = (d) F d, we have Ah, = C. So we get
S,V = Homg, (C,V®) = Sym? V.
For m = (1¢) I d, we had the alternating representation, so we have
S,V = Homg, (Ah,, V&) = AV,

In particular, if d = dim V', we get the determinant representations.
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Corollary 21.4. The homogeneous (of degree d) representations of GL(V') has
{S:V : 7k d} as a complete set of irreducibles.

Proof. By definition, a degree d homogeneous representation W is a map
GL(V) = GL(W);  (45) = (i;),

such that each matrix entries in GL(W) is a degree d polynomial in the matrix
entries in GL(V). We will continue next time. O
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We proved the algebraic Peter—Weyl theorem and then Schur—Weyl duality to
construct a lot of representations of GL(V'). I forgot to mention, but for any
irreducible module V), we have a map V) ® V¥ — C[G] and so every module
indeed appears inside the coordinate ring. Schur-Weyl duality was decomposing

Vel = P Ahy @ S\V.

Let p: GL(V) — GL(M) be a homogeneous degree d representation, so that
we have

plg) = Z yij(9)ei;-

Then we have y;; are homogeneous degree d polynomials in the z,. Then we
can consider this as

yi;(z) € Sym*(V* @ V)*) = Endg, (VEd)* = A(V,d)*.
This shows that we may consider this as
p € A(V,d)" ® End(M).

This gives us a A(V, d)-module structure on M.
We wanted to show that {S\V}i-q forms a complete set of irreducible
A(V,d)-modules. We can decompose

A(V,d) = Endg, (V®?) = Endg, (DAhy ® S\V) = @D End(S\V).

This shows that it is a complete set of irreducibles. So homogeneous polynomial
representations of GL(V) really corresponds to some SyV C V®¢. Moreover, all
polynomials representations can be broken up into homogeneous parts, because
representations C* = Z(GL(V')) break into weight spaces @ oy Ma.

We can also have rational representations, where the representation looks
like

p(g) = Z Yij(9)ei

where y;; are all rational functions that are regular on GL(V). Then these
polynomials should really look like (poly) det™™. We can even write

S)\V ® det™ = S()\l+m,..4,)\k+m,m"_k)v

where n = dim V.

Any GL,-representation can be restricted to a SL,-representation, and con-
versely any SL,-representation actually comes from a GL,-representation. So
{S\V} form a complete set of irreuducibles.

Consider

T = {diagonals} C B = {upper triangulars} C GL,, .
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Then for M a GL,,-representation, we can think of its highest weight vector
ro € M, that satisfies

Bxy C Cxy, or equivalently b zy = 0.

Every irreducible module actually has a unique highest vector, and we can look
at its weight, that is how T" acts on it. This weight is called the highest weight.

Proposition 22.1. For GL,, and SL,,, the highest weight completely determines
the irreducible module.

For the Schur modules, we have the following.

Theorem 22.2. Ouver SL,,, the module S\V corresponds to the highest weight
MLy + - ALy

Here is an example. Consider A = (d), so that we have S\V = Sym® V. This
has highest weight vector e, and then the weight is dL;.
22.1 Kronecker coefficients

This basically gives you the multiplicity of S,V in C[GLdet]. We have the
Peter—Weyl decomposition

C[GL,2] = P SaV @ SpV™.
On the other hand, we have that
C[GL,2 - det,,] = C[GL,2]5*P.
We can work out the stabilizer, and it can be seen to be
SL,, x SLy, /pn } Z/2Z.

The action of u, is given by ¢ — (cI,c1I), and then Z/27Z acts as the trans-
position. Now we can write
)Stab

(C[Gan . detn] = @S)\V ® (S)\V*)Stab — @(SAV)(lim(SAV*

Now we want to compute this dimension. We need to examine the H-module
structure of S\V*, where we write V = E®E. Note that we can simply compute
the 7-invariance and then SL(E) x SL(E)-invariants, since H is generated by
those components. Also, we have

S\V* = Homs, (Ahy, (V*)*?) = (D Homs, (Aha, Ah, ® Ah,) ® S, E © S,E

sV

since we have E®? = @ Ah, ® S, E. Then taking the T-components give

(SA\VH)T = @Homgd (Ahy, Sym? Ah,) ® Sme(SME).
m
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Then we want to take the SL(E)-invariants. Here, we note that (S, E)S(®) is
taking the invariants of an irreducible module, so its dimension is 1 if and only
if 4 = (mY™E) for some m. So the multiplicity of S,V is given by

Z dim Homg, (Ahy, Symz(Ah(mn))).

These are called the Kronecker coefficients.
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