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1 January 22, 2018

1.1 Arithmetic surfaces

Let A be a 1-dimensional Dedekind domain, and S = SpecA.

Definition 1.1. An arithmetic surface is a pair (X, π) where X is an integral
scheme and π : X→ S is a flat proper relative curve of finite type.

In particular, the generic fiber Xη is a projective integral curve over K =
Frac(A). Also, dimX = 2.

Definition 1.2. We say that (X, π) is normal (regular) if X is. (So it’s not
relative.)

If X is regular (or normal) then Xη is smooth. However, Xs for s ∈ S a
closed point can be singular or non-reduced or reducible.

So given an arithmetic surface, we get a good curve over the fractional field
of A. But we might want to do the other way round. Suppose we have a curve
X/K (projective smooth finite type and connected). Does there exist a “nice”
algebraic surface (X, π) with Xη ∼= X? If “nice” means normal, we can do this
by spreading out. Take the equations cutting out X in projective space, and
clear out the denominators. For “nice” equals regular, this is Lichtenbaum’s
theorem.

Theorem 1.3. If (X, π) is regular, then π is projective.

Here are the ideas. We have good intersection theory for Divs(X)×Div(X)→
Z. This is defined by first looking at Div(X) as a sheaf, considering the nor-
malization of Divs(X), and pull back the sheaf. This is going to be sheaf on a
nice projective variety, so we can define degree well. Then construct an effective
divisor D on X satisfying

• supp(D) contains no fiber component,

• D meets every fiber component.

Now note that D|X• is ample, and deduce that D is ample for π.

Theorem 1.4. Let X/K be a “nice curve”.

(1) There is a regular integral model X for X.

(2) We can take X to be minimal.

(3) If g(X) ≥ 1, then the “minimal” model of (2) is unique.

Definition 1.5. If (X, π) is “minimal” among the regular models, it is called
relatively minimal. If it is unique, then it is called minimal.
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2 January 24, 2018

Last time we discussed some motivations. Our setting is A a Dedekind domain
(of dimension 1), S = SpecA, and K = FracA. An arithmetic surface is a pair
(X, π) where π : X→ S is proper, integral, flat, finite-type, and a relative curve.
We are going to assume some conditions on this: one is normality and another
one is regularity. Last time we sketched the proof of the following:

Theorem 2.1 (Litchenbaum). Regular arithmetic surfaces are projective.

Definition 2.2. Let X/K be a smooth projective integral curve. An integral
model for X is an arithmetic surface (X, π) with an isomorphism φ : Xη ∼= X.

Under which conditions is there a “nice” model? First of all, models exist
by a spreading-out argument. Secondly, normal model exist by taking normal-
ization. Regular models also exist. The idea is blow up at the singular locus,
normalize, blow up, and repeat. That this stabilizes is due to Lipman, but we
won’t prove it.

2.1 Minimal models

Definition 2.3. A regular model (X, π) for X/k is relatively minimal if for
every proper birational S-morphism f : X → Y of regular models for X, we
have that f is an isomorphism.

All tools like Castelnuovo are available, so a relatively minimal model is one
obtained by blowing down if there is an exceptional divisor.

Definition 2.4. We say that (X, π) is a minimal model of X, if it is relatively
minimal and all relatively minimal models are isomorphic.

Example 2.5. Consider X = P1
K and X = P1

S . Here, all the fibers have self-
intersection number 0, and it can be shown that X is minimal. Take a point on
the fiber F , and blow-up at a point on F . Then we get an exceptional divisor
E and the fiber F̃ . Then F̃ has self-intersection −1, and then we can contract
it to get a different model.

Now let us define the intersection number. Let (X, π) be any arithmetic
surface an s ∈ S a closed point. Let C be a projective curve over a field k with
a closed immersion i : C → X. Let F = i(C). Then F is considered in a fiber,
and say F ⊆ Xs. Let D be a divisor on X. Then we define

is,k(F,D) = degC/k i
∗OX(D) ∈ Z.

This is well-defined because C is projective.
We can then define a pairing. Let F be the reduced fiber component at s,

and let ν : C → F be the normalization, and take k = xs. Then we get

is : Divs(X)×Div(X)→ Z.

There is another interesting choice. Take k = H0(F,OF ) = H0(C,OC).
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Theorem 2.6 (Castelnuovo–Lischtenbaum). Let X be a regular arithmetic sur-
face over S. A prime divisor E on X is contractible (i.e., there is a proper
birational S-morphism X → Y with Y regular, mapping E to a point, and iso-
morphism away from E) if and only if the following holds:

(i) E is fibered, say, in Xs for s ∈ S closed.

(ii) H1(E,OE) = 0.

(iii) is,k(E,E) = −1 where k = H0(E,OE).

In this case, we get a k-isomorphism E ∼= P1
k.

In (iii), the field k has to be chosen carefully, because we want to say that
something is a blow-down even when the residue fields decrease.

Theorem 2.7. Let X/K be a smooth projective curve. Assume that K is alge-
braically closed in K(X). Then:

(1) If X/S and X′/S are regular integral models for X, then there exists an-
other regular integral model Y/S for X such that there exist φ, φ′ : Y →
X,X′ proper and birational S-morphisms of models for X.

(2) Given X/S a regular model for X, make a sequence X(0) → X(1) → X(2) →
· · · of contractions of exceptional curves. Then the sequence stabilizes on
some regular integral model for X.

(3) Relatively minimal models exist.

(4) If g(X) ≥ 1 then minimal models exist.

Proof. (1), (2), (3) are similar (up to technical steps) as in the theory of complex
surfaces. For (4), we may as well assume that A is a DVR, because we can do
everything fiberwise. Now the point of the argument is to show that the order of
blowing down doesn’t matter. This is delicate because there can be a problem
if two exceptional divisors meet, they can mess up the order. But the point is
that if E 6= C are exception on a regular model X, then E and C don’t meet.

How do we show this? Suppose they meet, and contract at E. Then the
blow-down X→ Y sends E to p and C to some D. If we write f∗D = C +mE,
then

is,ks(D,D) = [k1 : k2](is,k1(C,C) +mis,k1(C,E)) ≥ is,k1(C,C) + 1 = 0.

Now D is in a fiber, so the intersection theory on the fiber shows that this is
negative semi-definite. So the self-intersection number of D is 0, and nD = Ys.
If I is the ideal sheaf of D, with s = (π), we have πOY = I n.

Now
H1(Y,I r/I r+1) = H1(D, (ν∗I )⊗r) = 0

because degD/k2 ν
∗I is the self-intersection number, which is 0. The exact

sequence 0→ I r/I n+1 → OY/I r+1 → OY/I r → 0 induces

H1(Y,OY)
π−→ H1(Y,OY)→ H1(Y,I r/I r+1) = 0
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and so H1(Y,OY) is torsion. But this cannot happen, because then the fiber
over the generic point is then zero. This is precisely the genus condition g(X) ≥
1 prevents.
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3 January 26, 2018

Let me do this computation, because this seems to be not clear.

Proposition 3.1 (Mumford?). Let X/S be a regular arithmetic surface. Sup-
pose that for s ∈ S, the special fiber Xs is connected. Then is : Divs(X) ×
Divs(X) → Z is negative semidefinite, and given D ∈ Divs(X), D2 = 0 if and
only if D = λXs for some λ ∈ Q.

Proof. Assume that A is a DVR and $ is the uniformizer. Let us write Xs =∑
jmjCj where Cj are components with multiplicities mj . For all j, Cj ·Xs = 0,

and so

mjC
2
j = −

∑
i6=j

mjCi · Cj

for all j.
Now consider a general divisor D ∈ Divs(X), and write D =

∑
j ajmjCj for

aj ∈ Q. We have

D2 =
∑
j

a2
jm

2
jC

2
j +

∑
i 6=j

aiajmimjCi · Cj

= −1

2

∑
i 6=j

(ai − aj)2mimjCi · Cj ≤ 0.

So this is semi-definite, and it is an equality if and only if ai are all equal. (Here,
we’re using that the fiber is connected.)

We have focused on good properties in an absolute sense, not in a relative
sense. This is one issue, and another issue is base changing. For instance,
consider A[x, y]/(xy −$) where A is a DVR and π is a uniformizer. This is a
regular ring, but the special fiber is not nice. Also, suppose we’re going to base
change to B = A[$1/r]. Then we get B[x, y]/(xy − λr), which is singular for
r ≥ 2. This will motivate the discussion on semi-stable models.

3.1 Semi-stable models

From now on, all residue fields are perfect.

Definition 3.2. Let k = kalg and C/k be a 1-dimensional connected projective
k-scheme. We say that

(1) C has normal crossings if if is reduced and the only singularities or
nodes. Completely locally, these look like k[[x, y]]/(xy).

(2) C is semi-stable if it has normal crossings and every component isomor-
phic to P1 has at least 2 intersection points with other components.

Definition 3.3. Let X/S be an arithmetic surface, and s ∈ S.
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(1) Xs has normal crossings if Xs ⊗ks kalg
s is.

(2) Xs is semi-stable if Xs ⊗ks kalg
s is.

(3) X has normal crossings/is semi-stable if Xs is for all s ∈ S.

Lemma 3.4. Take X/S an arithmetic surface with smooth geometric fiber X/K,
and K = H0(X,OX). (This implies that all fibers are geometrically connected.) why?why?
Assume that X has normal crossings. Then

(1) X is normal.

(2) Let L/K be finite and B ⊆ L be the integral closure of A. Let T = SpecB.
Then XT /T is an arithmetic surface with normal crossings.

(3) The same holds for “semi-stable” instead of “normal crossings”.

Proof. (1) is some commutative algebra verification. (2) is trivial because we
are base changing to the algebraic closure to verify the conditions.

Theorem 3.5. Let X/S be an arithmetic surface with smooth generic fiber
X/K, and assume that K = H0(X,OX). Also assume that X has normal
crossings. There is a finite extension K0/K such that for all L/K0 finite, if
B ⊆ L is the integral closure of A and T = SpecB, then the following holds for
the normal crossings surface Y = XT : if s ∈ T with uniformizer $, then the
only singularities of XT above s are ordinary double points of the form

ÔY,y
∼= B̂[[X,Y ]]/(XY −$n)

for some n ≥ 2. The same holds for “semi-stable” instead.

To resolve these singularities, we can just blow up repeatedly. This replaces
to singular point y by a chain of n − 1 (−2)-curves isomorphic to P1

ks
. In the

normal crossing case, this is all written up in detail in Liu. For the semi-stable,
you can do this by just getting you hands dirty and tracking all the P1s.
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4 January 29, 2018

Last time we introduced the notion of stability. The basic claim here is that
normal crossing singularities on the fiber lifts to a completed local ring of the
form B̂[[x, y]]/(xy−$n). If we pass to a field where we can see the singularities
and the components passing through the singularity, we get a local description.
Then it is just an exercise to resolve the singularity.

Let k = κs and k = κalg
s . We then base change to the Witt vectors W (k),

and consider X⊗AW (k)→ X. (Technically A can be ramified, so we should base

change to R = (OX,x̄)ˆ∼= (Os.h.
X,x)ˆ.) Then we now all the flat Â[[x, y, z]]]/(xy −

z)→ R. ??????

Theorem 4.1. Let X/K be a smooth projective curve, with K = H0(X,OX),
with gX ≥ 1. Assume there exists a semi-stable model X/A. Then there is a
regular semi-stable model for X/A, call it X′, obtained by blow-up of singular
points with a proper birational map p : X′ → X whose connected fibers are chains
of (−2)-curves, and X′ is minimal regular.

We can resolve the singularity by blowing up and normalizing. Now here,
we’re stating that it can be down only with blow-ups.

Proof. In the result last time, the extension K0/K just needs “long enough
residue extension”. This can be achieved by an unramified extension K0/K.
(We’re working locally over a DVR.) Now we can take the integral closure B =
Ã ⊆ K0, and then XB → X is étale.

Now suppose X′ is not minimal regular. Then there exists some C ⊆ X′s
with C ∼= P1

k where k = H0(C,OC), and is,k(C,C) = −1. Base change so that
k = κs. (This is étale.) Then

0 = is(C,X
′
s) = is(C,C) + is(C,X

′
s − C).

But then is(C,S
′ − C) = 1, which is impossible because X′ is semi-stable.

4.1 Duality

Assume that everything is Noetherian.

Definition 4.2. Let n ≥ 0 be an integer, and let X → Y be a morphism.
Assume f is proper of relative dimension n. An n-relative dualizing sheaf
is a pair (ω, t) where ω is a quasi-coherent OX -module and

t : Rnf∗ω → OY

is a map such that for every quasi-coherent OX -module F , t induces an isomor-
phism

f∗H omOX (F , ω) ∼= H omOY (Rnf∗F ,OY ).
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In our case, we have Y = S = SpecA, and n = 1. So the trace is

t : H1(X,ω)→ A,

and the condition translate to

HomOX (F , ω) ∼= HomA(H1(X,F ), A)

But the left hand side is H0(X,ω ⊗OY F∨).
The question is existence of the dualizing sheaf ω.

Definition 4.3. Let f : X → Y be of finite type. We say that f is l.c.i. if for
all x ∈ X, there exists a neighborhood x ∈ U such that there exist a smooth
p : Z → Y and i : U → Z a regular immersion such that f |U = p ◦ i.

In this setting, one has the duality theory developed by Kleiman. Here are
some ways of checking lci:

• If f : X → Y is of finite type and Y ′ → Y is faithfully flat, then f is lci if
and only if X ×Y Y ′ → Y ′ is.

• If f : X → Y is flat and of finite type, f is lci if and only if all fibers are.

It will turn out that all semi-stable arithmetic surfaces are lci, after playing
around with these properties.
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5 January 31, 2018

Last time, the two key points were the definition of a relative dualizing sheaf,
and the notion of a lci morphism. We don’t yet have existence of a relative
dualizing sheaf. Also, we want our dualizing sheaf to be invertible.

Example 5.1. Consider f : PnY → Y . In this case, ωf exists and is invertible.
Explicitly, it is the determinant of ωf = det Ω1

f = ΩnPnY /Y
.

Here is one of the possible statements for existence.

Theorem 5.2 (Kleiman p.52,55,58). Let f : X → Y be flat, projective, of pure
relative dimension n.

(1) If the fibers of f are Cohen–Macauly, then ωf exists.

(2) If the fibers are Gorenstein then ωf exists and is invertible.

In particular, if f is lci then (2) holds.

5.1 Adjunction formula

But this is not what we are going to use.

Theorem 5.3 (Kleiman, Corollary 19, Theorem 21). Let f : X → Y be flat,
projective, lci, of pure relative dimension n. (So in particular, ωf exists and is
invertible.) Now let h : Z → X be a regular closed immersion with ideal I on X.
(Locally it means that it is a complete intersection.) Suppose g = f ◦h : Z → Y
is flat of pure relative dimension m ≤ n. Then g admits a relative dualizing
sheaf ωg, invertible, and with a canonial isomorphism

ωg ∼= deg(h∗I )∨ ⊗OZ h
∗ωf .

What you can do is to check that this really is a relative dualizing sheaf.
Then if you have a dualizing sheaf on projective space, you can somehow restrict
it to closed subscheme.

Corollary 5.4. Let (X, π) be a regular arithmetic surface over S. Then ωπ
exists and is invertible. Explicitly, π is projective, so we can write i : X → PnS
with ideal I .

X PnS

S

i

π
p

Here i is a regular closed immersion because X is itself regular. Then

ωπ ∼= det(i∗I )∨ ⊗ i∗ΩnPnS/S .



Math 281x Notes 13

Corollary 5.5. Let (X, π) be a regular, normal crossings arithmetic surface
withe regular dualizing sheaf ωπ. Let s ∈ S be a closed point, and let k = κs.
Let i : C ↪→ X be a fiber component at s. Then ωC/k exists, is invertible, and

ωC/k ∼= i∗(ωπ ⊗ OX(C)).

Proof. We have I ∼= OX(−C). We pull first pull back to Xs over s, and then
use the adjunction formula.

Here is another corollary.

Lemma 5.6. Let f : X → Y and h : Z → X where h is a closed immersion
with ideal I . Consider g = f ◦ h : Z → Y . Then

h∗I → h∗Ω1
X/Y → Ω1

Z/Y → 0

is exact. Moreover, if f is smooth then the first map is injective on the smooth
locus of g.

Corollary 5.7. Let f : X → Y be flat, projective, lci of pure relative dimension
n (so that ωf exists and is invertible). Suppose X and Y are regular. Let U ⊆ X
be the smooth locus. Then ωf |U ∼= ΩU/Y .

Proof. Let us factor f : X → Y as X
v−→ P`Y

u−→ Y where v is a regular closed
immersion with ideal I . We’re in a situation where we can apply adjunction.
Then

ωf ∼= deg(v∗I )∨ ⊗OX v
∗Ω`u.

The lemma is giving me that on the smooth locus, I have the exact sequence

0→ v∗I |U → v∗Ω1
u|U → Ω1

f |U → 0.

So if we take determinant, we get

Ωnf |U ⊗ det(v∗I )|U ∼= v∗Ω`u|U .

They will then agree.
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6 February 2, 2018

6.1 Surfaces with rational singularities

Let S be a (Noetherian) scheme with dimS = 2, and assume S is normal. Let
p ∈ S is a singular point. By normality, the singular point is going to be isolated.

Definition 6.1 (Artin). The point p is a rational singularity if there is a
strong desingularization (that is, blow-up only at p) π : S′ → S such that
R1π∗OS′ = 0.

In this case, we can desingularize by blowing up, and it will be a chain of
(−2)-curves. In our case, semi-stable arithmetic surfaces are of this type. So we
can use the theory of Artin.

Lemma 6.2. Let (X, π) be a semi-stable arithmetic surface over S = SpecA
with smooth X = Xη. Let L be a line sheaf on X and i ≥ 0. Then the natural
map

Hi(X,L )→ Hi(X′, p∗, p∗L )

is an isomorphism. Here p : X′ → X is the minimal desingularization.

Proof. We have the map OX → p∗p
∗OX. This is an isomorphism because X is

normal and use Hartog’s lemma. So for all L , the natural L → p∗p
∗L is an

isomorphism because everything is local. Now it is enough to show that

Hi(X, p∗F ) ∼= Hi(X′,F )

for F a line sheaf on X′. This can be seen from the Leray spectral sequence.

6.2 Base-change trick

Let L/K be a finite extension. (All residue fields are perfect and everything is
Noetherian.) Let B ⊆ L be the integral closure of A ⊆ K. Let S = SpecA and
T = SpecB. Let X/S be a regular semi-stable arithmetic surface, and write
X = Xη. Let Y = X/T be the base-change. This is semi-stable, but there is no
reason for it to be regular. Let Y′ → Y be the minimal desingularization.

Y′ Y = XT X

T T S.

p

f

q

We would like to relate the cohomology on X to cohomology on Y′.

Proposition 6.3. Let L be a line sheaf on X and i ≥ 0. Then there exists a
canonical isomorphism

Hi(Y′, f∗L ) ∼= Hi(X,L )⊗A B.
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Proof. First, B is flat over A, so by flat base change,

Hi(X,L )⊗A B ∼= Hi(Y, f∗L ).

Then use the previous discussion.

Consider the relative dualizing sheaves ωX/S and ωY′/S . We don’t know
from last time that ωY/T exists, but pullbacks of relative dualizing sheaves are
relative dualizing, and so we can define

ωY/T = f∗ωX/S .

Now we want to compare between ωY′/T and p∗ωY/T = f∗ωX/S . They differ
only where the surfaces differ.

Proposition 6.4. We have a canonical isomorphism ωY′/T
∼= f∗ωX/S.

Proof. Let U ⊆ X be the smooth locus of X/S. Then codimU c = 2. Let V ⊆ YT

be the smooth locus and V ′ ⊆ Y′/T be the smooth locus. By projectiveness,
we have canonical isomorphisms

ωX/S |U ∼= Ω1
U/S , ωY′/T |V ′ ∼= ωV ′/T .

Because q∗Ω1
X/S
∼= Ω1

Y/T , we can look at their smooth locus and get q−1(U) =

V . Then we have ωY/T |V ∼= Ω1
V/T by restricted to V . Then generally, we get

ωY′/T
∼= p∗ωY/T ⊗ OY′/T ⊗ OY′(D),

where D is a divisor supported on the p-contracted (−2)-curves. Now I claim
that D = 0, and the reason this holds is adjunction. At this point, it is okay to
assume that B is a DVR. It is enough to show that D2 = 0, because then D is
a rational multiple of the fiber, but D does not surject onto Ys.

It is enough to show that for all C irreducible components of the support of
D, we have C ·D = 0. But we can compute

C ·D = degC/k(p∗ωY/T ⊗ OY′(D))|C
= degC/k(ωY′/T )|C = −C2 + (2gC − 2) = 2− 2 = 0

because C is a (−2)-curve, which is a P1.
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Today, we are going to do some analytic preliminaries. There are some analogies
with Riemann surfaces.

Arithmetic surfaces Curves over C
“good” integral models suitable metrics on line sheaves

geometric intersection numbers Green function g(P,Q)

Table 1: Analogies between arithmetic surfaces and Riemann surfaces

7.1 Metrized line sheaves

Let X/C be a complex projective manifold of dimension n. Let L be an invert-
ible sheaf on X.

Definition 7.1. A smooth metric on L is a morphism of sheaves of sets
L → Cont(X,R≥0) such that

(0) For every local generating section s ∈ L (U), the map ‖s‖ : U → R≥0 is
smooth,

(1) given f ∈ OX(U) and φ ∈ L (U), we have ‖f · φ‖ = |f |‖φ‖,
(2) ‖φ‖(p) = 0 if and only if φ(p) = 0 in L |p = L ⊗ kp.

Example 7.2. If X = Pn and L = OX(1), there is a global section. The global
section

s = α0x0 + · · ·+ αnxn

generates this away from the zero section. Then

‖s‖FS =
|α0x0 + · · ·+ αnxn|√
|x0|2 + · · ·+ |xn|2

gives a norm. This generates the line sheaf as an OX -module, so it determines
the whole metric.

Let us write L = (L , ‖−‖).

• We can tensor them and get define L 1 ⊗ L 2. If s1 and s2 are locally
generating sections, we can define

‖s1 ⊗ s2‖ = ‖s1‖‖s2‖.

• We can dualize them by L
∨

= H om(L ,OX) and for p ∈ X and φ a
section of L ∨ near p, define

‖φ‖(p) = sup
‖s‖(p)=1

|φ(s)|(p).
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Then if we defined things correctly, we should be able to check that L ⊗L ∼=
OX . We can check this by using the fact that sup is not really useful.

Lemma 7.3. Every line sheaf on X admits a smooth metric.

Proof. If X is projective, we can put metrics on very ample line bundles by
pulling back the Fubini–Study metric. But any line bundle is a very ample line
bundle tensored with a dual of a very ample line bundle.

7.2 Differential operators

For U ⊆ C a domain, there are operators

∂

∂z
=

1

2

( ∂
∂x
− i ∂

∂y

)
,

∂

∂z̄
=

1

2

( ∂
∂x

+ i
∂

∂y

)
on C∞(Ω,C). These are defined so that ∂

∂z = 1, ∂
∂z̄ z = 0, and so on. We then

define

∂f =
∂f

∂z
dz, ∂̄f =

∂f

∂z̄
dz̄,

4∂∂̄f = 2∂((fx + ify)dz̄)

= ((fxx + ifyx)− i(fxy + ifyx))dz ∧ dz̄ = (fxx + fyy)dz ∧ dz̄.

Let X be a compact Riemann surface. This means that X/C is a projective
curve. Take L on X.

Definition 7.4. The curvature is

curv(L ) = ∂∂̄ log‖s‖2

on U ⊆ X with s a locally generating on U .

Explicitly, say s is a local generator on U , and z be a local chart on U . Then

curv(L )|U =
∂2 log‖s‖2

∂z∂z̄
dz ∧ dz̄.

If we choose another section t = fs with f ∈ O×X(U), we need to check that

∂2

∂z∂z̄
log|f |2 = 0

on U . But the thing is that f = f · f̄ , and so log f is just a sum of some
holomorphic and anti-holomorphic. But they are both killed by ∂ and ∂̄. So
curv(L ) is a C∞ (1, 1)-form on X.

Lemma 7.5.

∫
X

curv(L ) = 2πideg(L ).

We will check this next time.
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Today we are going to continue computing curvature. Recall:

Theorem 8.1 (Stokes’s theorem). Let U ⊆ C be a domain (with nice boundary)
and Ω ⊇ U a domain. Let f ∈ C∞(Ω,C). Then∫

U

∂(fdz̄) =

∫
∂U

fdz̄,

∫
U

∂̄(fdz) =

∫
∂U

fdz.

Lemma 8.2. Let X be a compact Riemann surface, and let L = (L , ‖−‖) be
a metrized line bundle. Then∫

X

(2πi)−1 curv(L ) = deg L .

Proof. Let s be a meromorphic section. Let D be the divisor, and write D =∑
p vp,L (s) · p. Let ε > 0 be small and consider closed balls B(p, ε) that do not

overlap for p ∈ suppD. Let U = X −
⋃
pB(p, ε) be an analytic open set. Then

curv(L )|U = ∂∂̄ log‖s‖2

and so

lim
ε→0

∫
U(s,ε)

curv(L ) =

∫
X

curv(L )

because the curvature is actually smooth. By Stokes’s theorem,∫
U(s,ε)

curv(L ) = −
∑

p∈supp(D)

∫
∂B(p,ε)

∂̄‖s‖2.

Now the claim is that

lim
ε→0

∫
∂B(p,ε)

∂̄ log‖s‖2 = −2πivp,L (s).

But locally on p, we can write s = ft for f ∈ O×X on B(p, ε)\{p} and t a locally
generating section. Then

lim
∂B(p,ε)

∂̄ log‖ft‖2 =

∫
∂̄ log(ff̄)

because ∂̄ log‖t‖2 is C∞. Then log f vanishes after ∂̄, and then use Cauchy or
something.

For the purpose of Arakelov theory, you really need to get the normalization
right.
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Example 8.3. Take X = P1 and L = O(1) with the Fubini–Study metric. We
use the chart z = x1

x0
and the section s = x0. Then

‖s‖2 =
|x0|2

|x0|2 + |x1|2
=

1

1 + |z|2
=

1

1 + zz̄
.

Curvature is then

curv(L ) = ∂∂̄ log‖s‖2 =
∂2

∂z∂z̄
log

1

1 + zz̄
dz ∧ dz̄ = − 1

(1 + |z|2)2
dz ∧ dz̄.

(dz∧dz̄ = −2idx∧dy has the negative orientation for some traditional reason.)
Then ∫

X

curv(L ) =

∫
U

−1

(1 + |z|2)2
dz ∧ dz̄.

If we switch to z = re2πiθ, we get 2πi.

In Arakelov theory, we want only to work with metrics with curvature a
constant times a certain fixed (1, 1)-form. But there is the question of existence,
and we can first construct a nonvanishing curvature metric.

8.1 Curvature on projective manifolds

Let X be a projective manifold, and L = (L , ‖−‖) be a metrized line bundle.
We similarly define curvature locally. Let z = (z1, . . . , zn) be a chart, and let
us use a generating section s ∈ L (U). Then we can properly define

curv(L )|U =

n∑
j=1

n∑
k=1

∂j ∂̄k log‖s‖2.

This is well-defined and C∞ by the same argument.

Lemma 8.4. We have curv(L 1 ⊗L 2) = curv(L 1) + curv(L 2) and same for
duals.

Definition 8.5. A smooth (1, 1)-form is self-adjoint if it locally can be written
as

ω =
i

2

∑
j,k

fjkdzj ∧ dz̄k

with the matrix [fjk] self-adjoint pointwise. We say that ω is positive if is
positive-definite.

For dimX = 1, we have i
2dz ∧ dz̄ = fdx ∧ dy, so this really the right thing.

Also, note that the choice of a coordinate does not matter.

Definition 8.6. For L , we say that it is positive if (2πi)−1 curv(L) is positive.

Proposition 8.7. On Pn, (O(1), ‖−‖FS) is positive.
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Proof. We can write down the metric and the curvature. This is going to be

(2πi)−1 curv(L ) =
i

2

( n∑
j=1

π−1

1 + |z|2
dzj ∧ dz̄j −

n∑
j=1

n∑
j=1

π−1z̄jzk
(1 + |z|2)2

dzj ∧ dz̄k
)

and you can check that it is positive.
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Last time I tried to convince you that the Fubini–Study metric is positive. We
computed it on the open set U = {x0 6= 0} and the coordinate z = (zj) with
zj = xj/x0. The claim is that (2πi)−1 curv(O(1), ‖−‖FS) is positive. The
metric is

‖s‖2 =
1

1 + |z1|2 + · · ·+ |zn|2
=

1

1 + |z|2
.

Then we can compute the curvature

∂∂̄‖s‖2 =
∑
j,k

∂2

∂zj∂z̄k
‖s‖2dzj ∧ dz̄k

=
∑
j,k

(
−δjk

1 + |x|2
+

z̄jzk
(1 + |z|2)2

)
dzj ∧ dz̄k.

We need to check that

n∑
j=1

π−1

1 + |z|2
dzj ∧ dz̄j −

n∑
j=1

n∑
k=1

π−1z̄jzk
(1 + |z|2)2

dzj ∧ dz̄k

is positive definite. We can check this using Cauchy–Schwartz.

9.1 Constructing positive metrics

Lemma 9.1. Let f : X → Y be a regular closed immersion of projective complex
manifolds. Let L be a positive metrized line sheaf. Then f∗L is also positive.

Proof. Take z = (z1, . . . , zn) be a local holomorphic chart at p ∈ X. Then the
claim is that there exists a local holomorphic chart w = (w1, . . . , wl) at q = f(p)
such that w extends z. That is, for j ≤ m, zj = f∗w. Now the claim follows the
fact that principal minors of positive definite matrices are positive definite.

Theorem 9.2. Let X be a projective complex manifold, and let L be an ample
line sheaf. Then there exists a metric ‖−‖ on L which is positive.

Proof. If it is very ample, you can embed into projective space and then you
can pull it back. For ample L , take r ≥ 1 such that L ⊗r such that L is very
ample. Take ‖−‖ positive on L ⊗r and define ‖−‖0 on L locally as

‖s‖0 = ‖s⊗ · · · ⊗ s‖1/r.

We need to check that this is a metric. It is positive because curv(L , ‖−‖0) =
1
r curv(L ⊗r, |−|).

Actually, the converse is true as well.

Theorem 9.3 (Kodaira). Let L be a line sheaf on a projective complex mani-
fold. Suppose L admits a positive metric. Then L is ample.
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9.2 Poisson equation

This is in general the name of the Laplace equation ∆f = φ. We can take φ to
be a distribution and ask f to be a distribution. We can take φ to be a current,
which is like a (1, 1)-form with distributional coefficients.

Lemma 9.4 (Weyl). Let X be a compact Riemann surface. Let ω be a smooth
(1, 1)-form on X. Suppose ∂∂̄f = ω has a weak solution. Then it f is in fact
represented by a smooth function.

This is an example of elliptic regularity. In our context, X is a compact
Riemann surface and ω is a smooth (1, 1)-form. We want to solve ∂∂̄f = ω
where f ∈ C∞(X,C) because it is going to be smooth if it has any meaning.

If f is real-valued, then ∂∂̄f is i times real-valued. Also, ∂∂̄f = 0, then f is
constant because locally f should be harmonic.

Also, if ∂∂̄f = ω has a solution, then
∫
X
ω = 0. This is because∫

X

ω =

∫
X

∂∂̄f =

∫
∂X

∂̄f = 0.



Math 281x Notes 23

10 February 12, 2018

Last time we were looking at the Poisson equation

∂∂̄f = φ

on a compact Riemann surface. For us φ is a smooth (1, 1)-form, because Weyl’s
lemma tells us that if there is a solution f in the weak sense then it is represented
by C∞(X,C).

If there exists a solution f , then

• f is unique up to adding a constant, because the difference is going to be
locally the solution of the Laplacian.

• if there exists a C∞ solution f , then∫
X

φ = 0

by Stokes’s theorem.

Theorem 10.1. Let ω be a smooth (1, 1)-form on a compact Riemann surface
X. Then there is a smooth f ∈ C∞(X,C) such that it solves the equation
∂∂̄f = ω, provided that

∫
X
ω = 0.

Locally, you can solving it by convoluting with the fundamental solution.
But the question is whether you can glue them.

Proof. We solve this for f ∈ L2. The key step is to decompose 1-forms by
“orthogonal projection” into fdz and gdz̄ and a harmonic part. Then elliptic
regularity will tell you that it is smooth.

What is interesting is that this shows that it can be expressed by integration
against a kernel.

10.1 Admissible metrics

Let X be a compact Riemann surface.

Definition 10.2. A smooth (1, 1)-form ω is a volume form if it is positive.

To each volume form we can associate a measure

µ(A) =

∫
A

ω.

Since ω is positive, this is strictly positive for m(A) > 0. This means that
locally ω|U = fdx ∧ dy = i

2fdz ∧ dz̄ where f is positive valued. For us, we
are going to normalize this. We say that ω is a probability volume form if
µ(X) =

∫
X
ω = 1.
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Definition 10.3. Fix a probability volume form ω on X. Let L = (L , ‖−‖)
be a metrized line sheaf. We say that ‖−‖ on L is ω-admissible if there exists
a λ ∈ C such that

(2πi)−1 curv(L ) = λω.

Note that necessarily λ = deg L .

Question. Given a probability volume form ω and L , does there exists a ‖−‖
on L that is ω-admissible? Is it unique?

Proposition 10.4. Given a probability volume form ω on X, let L = (L , ‖−‖)
be ω-admissible. Let ‖−‖0 be another ω-admissible metric on L . Then there
exists an c > 0 such that ‖−‖0 = c‖−‖.

Proof. Let U, z, s be local data for L . Then

∂∂̄ log‖s‖2|U = (2πideg L )ω|U = ∂∂̄ log‖s‖20|U ,

and so

∂∂̄ log
‖s‖2

‖s‖20

∣∣∣
U

= 0.

But ϕ = ‖s‖2/‖s‖20 extends to a global C∞-function, which is everywhere har-
monic, and hence constant.

So for instance, on the structure sheaf, the only ω-admissible metrics are
constant times the absolute value.

Theorem 10.5. Given ω a probability volume form on X, and L a line sheaf
on X, there is a metric on L which is ω-admissible.

Proof. It suffices to assume that L is very ample. This is because curvature is
additive in tensor products and duals. So let us deal with the very ample case.

Let L be very ample. Let ‖−‖0 be a psotive metric. Consider

ξ = (2πideg L )−1 curv(L , ‖−‖0).

This is a probability volume form. Now ω − ξ is a smooth (1, 1)-form, and
satisfies ∫

X

(ω − ξ) = 1− 1 = 0.

So we can solve the Poisson equation

∂∂̄φ = (2πideg L )−1(ω − ξ).

This solution φ is smooth, and unique up to adding a constant.
If f is some function f ∈ C∞(X,R), then ∂∂̄f = i · (real). This shows that

=(φ) is a constant, so that we can throw it away. Then we get a real-valued
solution f ∈ C∞(X,R) with

∂∂̄f = (2πideg L )(ω − ξ).
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Let γ = ef/2 and let
‖−‖ = γ · ‖−‖0.

This is a metric, and its curvature is, locally,

∂∂̄ log(‖s‖2) = ∂∂̄ log(γ2‖s‖20) = ∂∂̄f + (2πideg L )ξ = (2πideg L )ω.

So one can construct admissible metrics.

Let f ∈ C∞(Ω,C), and consider B(0, ε) ⊆ Ω. Then∫
B(0,ε)

f(z) log|z|2dz ∧ dz̄

converges absolutely.
With this, the following makes sense. Let D be a divisor on X and ω be a

probability volume form.

Proposition 10.6. There is a unique “canonical” metric on OX(D) which is
ω-admissible.

First, there is a canonical rational section for OX(D). This is because
O(D) ⊆ K and there is the constant section 1. Let ‖−‖ be an admissible
metric on O(D) satisfying ∫

X

log‖1‖dµ = 0.

This ‖−‖ exists and is unique. This is going to be used to construct the Green’s
function.
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Admissible metrics are important because that is how we define intersection
numbers.

11.1 Global equations for points

Fix X a compact Riemann surface and ω a probability volume form on X.
Recall that there is a unique admissible metric ‖−‖D on OX(D) for any divisor
D on X such that ∫

X

log‖1‖D(P )dµ(P ) = 0.

This 1 is going to be the section with div(1) = D.
Let P ∈ X be a point, and define

ϕP : X → R; ϕP (Q) = ‖1‖P (Q).

Because 1 is locally generating away from P , it is smooth away from P .

Proposition 11.1. Let P ∈ X and let f : X → C be a function. We have
f = ϕP if and only if the following holds:

(1) f is smooth and positive away form P ,

(2) ff has a simple zero at P (this means that if z is a local holomorphic
chart near P with z(P ) = 0 then there exists a u smooth near P such that
locally f = |z|u and u(p) 6= 0),

(3) on U = X \ p, we have (2πi)−1∂∂̄ log f2|U = ω|U ,

(4)
∫
X

(log f)dµ = 0.

Proof. First it is clear that ϕP satisfies (1)–(4). For the other direction, take
any other f and divide by ϕP . Then this is smooth nonzero harmonic and so
can be shown to be 1.

Definition 11.2. ϕP is called the global equation for P ∈ X.

11.2 Green function

Definition 11.3. We define the Green function as

G : X ×X → R; (P,Q) 7→ ϕP (Q).

Since ϕP has an axiomatic characterization, so does G.

Lemma 11.4. Let Ω ⊆ C be a domain with 0 ∈ Ω. Let ε0 > 0 be such that
B(0, ε0) ⊆ Ω. Let f ∈ C0(Ω,C). As ε→ 0 with 0 < ε < ε0, we have

(1) lim
ε→0

∫
∂B(0,ε)

(log|z|)f(z)dz = 0 and
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(2) lim
ε→0

∫
∂B(0,ε)

f(z)∂ log|z|2 = 2πif(0).

Proof. Parametrize the circle and just compute.

Theorem 11.5. G is symmetric.

Proof. Let P 6= Q in X. Let ε > 0 be small so that both B(P, ε) and B(Q, ε)
do not meet. Consider the open set Uε = X − (B(P, ε)∪B(Q, ε)), and compute

Iε =

∫
Uε

(logϕP∂∂̄ logϕQ − logϕQ∂∂̄ logϕP )

= πi

∫
Uε

(logϕP · ω − logϕQ · ω)→ 0

as ε→ 0, because logarithmic singularities don’t contribute much.
Now note that

∂(logϕP ∂̄ logϕQ) = ∂ logϕP ∧ ∂̄ + logϕP∂∂̄ logϕQ,

∂̄(logϕQ∂ logϕP ) = ∂̄ logϕQ ∧ ∂ logϕP + logϕQ∂̄∂ logϕP

= −∂ logϕP ∧ ∂̄ logϕQ − logϕQ∂∂̄ logϕP .

So we can use Stokes to write

Iε = −
∫
∂B(P,ε)+∂B(Q,ε)

(logϕP ∂̄ logϕQ + logϕQ∂ logϕP )

= (→ 0)− 1

2

∫
∂B(P,ε0

logϕQ∂ logϕ2
P −

1

2

∫
∂B(Q,ε)

logϕP ∂̄ logϕ2
Q

→ −2πi

2
(logϕQ(P )− logϕP (Q)).

This finishes the proof.

Since ω is a volume form, it is positive. This means that locally ω = i
2fdz∧dz̄

where f > 0. Therefore the next construction works. Let φ ∈ C∞(X,C) be a
smooth function, and write

(πi)−1∂∂̄ = (∆φ)ω.

This is the definition of

∆ : C∞(X,C)→ C∞(X,C),

which is called the Laplacian.
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Today we invert the Laplacian. We have the Laplacian

∆ : C∞(X,C)→ C∞(X,C)

with respect to ω, given by the equation

(πi)−1∂∂̄f = (∆f)ω.

Theorem 12.1. Let ψ ∈ C∞(X,C). The equation ∆φ = ψ has a smooth
solution if and only if ∫

X

ψω = 0.

Furthermore, the solution is unique up to additive constant in this case. In
particular, φ is unique if we additionally require

∫
X
ψω = 0.

Proof. We already know this.

Corollary 12.2. Let C∞(X,C)0 = C∞(X,C)0
ω be the space of all f ∈ C∞(X,C)

with
∫
X
fω = 0. Then ∆ restricts to a linear operator ∆ : C∞(X,C)0 →

C∞(X,C)0, which is a linear bijection.

12.1 Inverting the Laplacian

We define g = logG : X ×X \∆→ R. Now I can define the following operator
Γ pointwise. For ψ ∈ C∞(X,C) and a point P ∈ X, we define

(Γψ)(P ) =

∫
X

(−g(P,−))ψω ∈ C.

So we have Γψ : X → C.

Theorem 12.3. Γ restricts to a linear bijection Γ : C∞(X,C)0 → C∞(X,C)0

and it is the inverse of ∆ on this space.

Proof. Because ∆ is bijective, it suffices to check that Γ(∆f) = f for all f ∈
C∞(X,C)0. Let P ∈ X, and let us check this pointwise. First note that

∂(g(P,−)∂̄f) = ∂g(P,−) ∧ ∂̄f + g(P,−)∂∂̄f.

Then

(Γ∆f)(P ) =

∫
X

−g(P,−)(∆f)ω =

∫
X

−g(P,−)(πi)−1∂∂̄f = − 1

πi

∫
X

g(P,−)∂∂̄f

=
1

πi

∫
X

∂g(P,−) ∧ ∂̄f

by Stokes and the lemma we had last time.
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Also, we have

∂̄(f∂g(P,−)) = ∂̄f ∧ ∂g(P,−) + f∂̄∂g(P,−)

= −∂g(P,−) ∧ ∂̄f − f∂∂̄g(P,−) = −∂g(P,−) ∧ ∂̄f − f 1

2
2πiω

So if we let Uε = X \B(p, ε) then

−
∫
∂B(p,ε)

f∂g(P,−) = −
∫
Uε

∂g(P,−) ∧ ∂̄ − 1

2

∫
Uε

fω.

So as ε→ 0, we get

−1

2
2πif(P ) = −πi(Γ∆f)(P ).

The spectral theory of the Laplacian will play a role later.

12.2 Arakelov’s theory

Let K be a number field and OK be the ring of integers, and S = SpecOK .
Take X a regular semi-stable arithmetic surface. Let X = Xη the fiber, and
assume that it is geometrically irreducible. For all σ : K → C, let Xσ = X ⊗C
and look at it as a compact Riemann surface. For each σ, let ωσ be a fixed
choice of a probability volume form on Xσ, and µσ be the measure associated
to ωσ, so that integration against dµσ is integration against ωσ. Let us package
this data into

X̂ = (X, π, {dµσ}σ).

Definition 12.4. An Arakelov divisor is a divisor D = Dfin + D∞ where
Dfin ∈ Div(X) and D∞ =

∑
σ:K→C ασFσ (where Fσ are formal symbols), and

the set of divisors is denoted Div(X).

Let f ∈ K(X)× and we can define

d̂iv(f) = div(f) +
∑

σ:K→C
vFσ (f)Fσ

where

vFσ (f) = −
∫
Xσ

log|f |‘dµσ.

These are the principal divisors PDiv(X). Then we can also define

Cl(X̂) =
Div(X̂)

PDiv(X̂)
.

A admissible line sheaf on X is (L , {‖−‖σ}) where

(1) L is a line sheaf on X,

(2) ‖−‖σ is a ωσ-admissible metric on Lσ.

This forms a group, and Pic(X̂) is the group of such objects up to isometric
isomorphism.
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I missed 20 minutes of class. fill infill in

13.1 Comparison of class group and Picard group

Lemma 13.1. If L 1
∼= L 2 and si 6= 0 are nonzero sections on Li, then

divL1(s1) ∼ divL2(s2).

Proposition 13.2. The previous construction gives a group morphism

ξ : Pic(X̂)→ Cl(X̂); L 7→ divL (s)

where s is a rational section of L .

Proof. This is well-defined. If we take tensors L1 ⊗L2, then we can compute
this on s1 ⊗ s2. On O, we take s = 1.

Lemma 13.3. ξ is injective.

Proof. Say L is such that for s 6= 0 a rational section with divL (s) ∼ 0. Then
Take f 6= 0 such that div(f) = divL (s), and let t = f−1s which is a rational

section of L and divL (t) = 0. Now define the map

ϕ : O → L ; 1 7→ t.

This is an isomorphism, and let us check what happens on the metrics. Both
|−|σ and ϕ∗‖−‖σ are admissible on O. So

0 = −
∫
Xσ

log|1|σdµσ

and

−
∫
Xσ

log(ϕ∗‖−‖σ)(1)(P )dµσ(P ) = −
∫
Xσ

log‖ϕ(1)‖σdµσ = vFσ,L (t) = 0.

So they have the same normalization, and thus equal.

Let D = Dfin + D∞ be an Arakelov divisor, with D∞ =
∑
σ ασFσ. We

would like to define an admissible O(D), given by

O(D) = (O(D)fin, {e−ασ‖−‖σ}σ),

where |−|σ is the unique normalized admissible dµσ.

Lemma 13.4. O(D)⊗ O(E) ∼= O(D + E).

Proof. Clear.

Lemma 13.5. D ∼ 0 implies O(D) ∼= O.

Proof. Say D = div(f), with f ∈ K(X)×. Then define ϕ; O → O(Dfin) that
maps 1 7→ f ∈ H0(X,O(Dfin)). This is well-defined and an isomorphism. For
the metric parts, it is going to be admissible. So we check normalization.
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After the computation we had before, we have an injective group homomorphism

ξ : Pic(X̂)→ Cl(X̂); L 7→ divL (s).

Also we have a map

ζ : Div(X̂)→ (admiss. line sheaves); D 7→ O(D).

This induces a group morphism ζ̄ : Cl(X̂)→ Pic(X̂).

Proposition 14.1. ζ̄ ◦ ξ = idPic(X̂) so that ξ is an isomorphism.

Proof. Let L be an admissible line sheaf. Choose 0 6= s a rational section. It
is enough to show that L ∼= O(divL (s). Since ξ is injective, it suffices to show
that

divO(divL (s))(1) = divL (s).

This can be checked by direct computation.

14.1 Arakelov point of view on height

Height measures the complexity of a point with respect to a divisor. If you look
at the theory, there is always a O(1) hanging around. But this has a meaning.

Let me first look at the 1-dimensional case. Forget about the admissibility
condition now. In general, let K be a number field, and OK its ring of integers,
and S = SpecOK . Let Y/S be regular flat projective. Assume Y = Yη be
irreducible over K. In this setting, we have metrized line sheaves over Y .

Assume Y has dimension 1 (relative dimension 0), and in particular take
Y = S. Let Ŝ = (S, {σ : K → C}). A metrized line sheaf L = (L , {|−|σ}) is

(1) L a line sheaf on S,

(2) ‖−‖σ is a metric on L |η ⊗σ C.

Note that S is affine. So M = (M , {‖−‖σ}) has exactly the same data of
M = (M, {‖−‖σ}) where M is a projective module over OK of rank 1 and ‖−‖σ
is a hermitian metric on the C-vector space M ⊗σ C. The interesting thing is
that we can define degree.

Definition 14.2. Let M be a metrized line sheaf on S. Let ñ ∈M be a nonzero
element. We define the degree as

d̂egK(M,η) = log #M/OK · η −
∑

σ:K→C
log‖η‖σ.

Proposition 14.3. The degree degK(M,η) does not depend on the choice of η.
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Proof. Note that projective modules of rank 1 are just fractional ideals. So it
is enough to compare η and βη for β ∈ OK − {0}. By the Chinese remainder
theorem, we have

M/OKη ∼=
∏
p

(M/OKη)p.

Now we can compute

#(M/βOKη)p = #(Ok/p)vp(β)#(M/OKη)p.

All together, we get

d̂egK(M,βη) = d̂egK(M,η) +
∑
p

vp(β) log #(OK/p)−
∑
σ

log|σ(β)|.

The last two terms cancel by the product formula in algebraic number theory.

Now let Y/S have relative dimension n. For P ∈ Y (k), let DP ⊆ Y be the
subscheme that is the closure of P . It is easy to check that DP is finite and
flat over S. Then degDP /S = [kP : k], where K(DP ) = kP . Now take the
normalization

Bp Dp ⊆ Y

S

v

π

This is a curve, normal and finite over S. So we get Bp = SpecOL where
L = kP . Now let L be a metrized line sheaf on Y. It makes sense to pull back
to get a metrized line sheaf v∗L on Bp. This is

(v∗L ) = (v∗L , {‖−‖τ})

where ‖−‖τ agrees with ‖−‖σ for σ = τ |k. Finally, we can define height.

Definition 14.4. The height of Y with respect to L is defined as

hL : Y (K)→ R; P 7→ 1

[kP : k]
d̂egkP v

∗L .
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Last time we had Y/S an arithmetic scheme (flat, projective, Y/K geometrically
irreducible, normal, regular). Then for a line sheaf L we defined height as

hL ,K : Y (K)→ R; P 7→ 1

[KP : K]
d̂egKP ν

∗
pL .

Here are some properties:

(1) Linearity on L : d̂eg is compatible with ⊗.

(2) Functoriality: if f : Y→ Z is an S-morphism, and L is on Z, then

f∗hL ,K = hf∗L ,K .

To prove this, just use that we can enlarge KP and the number is the
same. Then use the fact that ν∗ ◦ f∗ = (f ◦ ν)∗.

The compatibility of Neron functions is implicitly hidden in that there is a
morphism between integral models.

(3) Let L on Y/S and let L be ample. Then for all A,B > 0 the set

{P ∈ Y (K) : hL ,K(P ) < A and [KP : K] < B}

is finite.

Proof. For Y = PnS and L = O(1) with the Fubini–Study metric, this is classical.
You can check for P1, and then embed Pn into some product of copies of P1.
The general case follows from this, (1), (2), and norm comparison.

15.1 Intersection pairing

Let X/S be a regular semi-stable arithmetic surface, with dµσ a probability

volume form, so that we have X̂. Let us construct an intersection pairing

(−,−) : Div(X̂)× Pic(X̂)→ R.

(0) We make this linear on the first component. So we want to define on Fσ,
irreducible fiber components, and horizontal curves Dp for P ∈ X(K).

(i) Fσ: We define (Fσ,L ) = degC L |Xσ = degK L |X .

(ii) irreducible fiber component: say ν : C̃ → Xs ⊆ X so that C = ν(C̃).
Then we define

(C,L ) = is(C,L ) · log #ks.

Recall that is(C,L ) = degks L |C = degC̃/ks ν
∗L .

(iii) horizontal curves: say νP : BP → DP ⊆ X, for P ∈ X(K). Then

(DP ,L ) = d̂egkP ν
∗
pL = [KP : K]hL ,K(P ).



Math 281x Notes 34

Actually, we have a bilinear map

Div(X̂)× Pic(X̂)→ R.

This is because we are only taking degree. Also note that we have a map
ζ : Div(X̂)× Pic(X̂). So we get map

(−,−) : Div(X̂)×Div(X̂)→ R.

This new pairing is well-defined, bilinear, and respects linear equivalence on the
second component. Also, we have an explicit description. The way we are going
to check linear equivalence on the first component is by proving symmetry.

Proposition 15.1. (−,−) is symmetric on Div(X̂)×Div(X̂).

Proof. It is enough to check it for (C1, C2) for C1 6= C2 “irreducible”, meaning
Fσ, irreducible fiber component, and horizontal Dp. Here are a bunch of cases.

1. For C1, C2 being either Fσ or irreducible fiber components, we should get
0.

2. For C1 = Fσ and C2 horizontal, we need to show that

d̂egν∗PO(
∑
σ ασFσ) = [KP : K]

∑
σ

ασ,

because (Fσ,O(DP )) = [KP : K]. Using s = 1, we can evaluate the left
hand side as

−
∑

γ:KP→C
log‖ν∗1‖τ = −

∑
σ:K→C

∑
τ |σ

log(e−ασ1) = [KP : K]
∑
σ

ασ.

We will finish next time.
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So far we have this pairing

Div(X̂)×Div(X̂) R

Div(X̂)× Pic(X̂)

(−,−)

where the map from Div×Pic is given by taking degree. We know that the
upper map is

• bilinear,

• respects linear equivalence on the second component,

• well–defined and explicit.

We are trying to show that it is symmetric. Let’s do only the hardest case
now. Assume that P,Q ∈ X(K) and this gives horizontal divisors DP , DQ. We
are trying to show that (DP , DQ) = (DQ, DP ). By definition,

(DP , DQ) = d̂egKP ν
∗
POX(DQ) = (finite contribution for η)+

∑
τ :KP→C

log‖ητ‖τ |K

for some η ∈ H0(BP , ν
∗
POX(DQ)). We are going to choose η = 1 = ν∗P 1. Here,

because P 6= Q we have η 6= 0. We can write the finite part as the sum of terms
of the form

length
(OX,x

(s, t)

)
log #kx

where x is a closed point of X and s, t ∈ OX,x are local equations for DP , DQ

respectively. The infinite part is the sum of the terms of the form

log(ν∗‖−‖σ)(ν∗1) = log‖1Q‖σ(P ) = logϕQ(P ).

We spent a week showing that this is symmetric.
So this bilinear paring is symmetric, and we can descend to

Pic(X̂)× Pic(X̂)→ R.

Suppose E1, E2 ≥ 0 are effective Arakelov divisors. Say even that E1, E2

are irreducible “scheme-theoretic”, and assume E1 6= E2. We still can have
supp(E1) ∩ supp(E2) 6= ∅ and (E1, E2) < 0. There is some infinite contribution
if we intersect horizontal divisors, and the Green function is not bounded below
by 1 or anything.
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16.1 Canonical class

Question. What should be a canonical class?

Our conditions on X implies that there exists a relative dualizing sheaf ω =
ωπ, and it is invertible. Note that gX ≥ 1 by semi-stability. We are going to
take ω not to be O(−). On the infinite part, we will be able to put “good”
canonical metrics on ω when we choose

dµσ = dµAr
σ .

Here, given a compact Riemann surface Y with Y ≥ 1, we define dµAr as

dµAR =
i

2g

g∑
j=1

αj ∧ ᾱj

where {αj} is the orthonormal basis for H0(Y,Ω1
Y/C) with 〈α, β〉 = i

2

∫
Y
α ∧ β̄.

Note that

(1) dµAr is a smooth (1, 1)-form independent of αj ,

(2)
∫
Y
dµAr = 1

g (1 + · · ·+ 1) = 1,

(3) dµAr is positive.

On Y × Y , we define the (1, 1)-form

γ = P ∗1 dµ
Ar + P ∗2 dµ

Ar =
i

2

g∑
j=1

(P ∗1 α ∧ P ∗2 αj + P ∗2 αj ∧ P ∗1 αj).

We are going to show that there is a metric on OY×Y (∆) with γ as a curvature.
Then we are going to show that the norm of 1 is the Green function. Then we
are going to pull the metric along the diagonal.
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Last time we talked about picking a canonical element of Pic(X̂). For a compact
Riemann surface Y (which we secretly think as Xσ) with genus g ≥ 1, we defined

dµAr =
i

2g

i∑
i=1

αj ∧ ᾱj

with {αj} an orthonormal basis for H0(Y,Ω1
Y/C).

17.1 Green’s function from the diagonal

Our goal is to find a canonical dµAr-admissible metric on Ω1. But we can
describe

Ω1 = δ∗OY×Y (−∆)

where δ : Y → Y × Y is the diagonal and ∆ is the image as a divisor. In fact,
this is how Hartshorne defines, and this is what we normally have.

This is because the sheaf of ideals corresponding to ∆ is I = ker(A⊗A→ A).
Then the map

d : A→ I/I2; x 7→ 1⊗ x− x⊗ 1.

Here, we are taking I as a left A-module acting on the left component, and you
can check that (I/I2, d) is the universal algebra. So this is Ω1

A/K .

Now if we consider dµAr a probability volume form on Y , we can define

γ = p∗1dµ
Ar + p∗2dµ

∗dµAr − i

2

g∑
j=1

(p∗1αj ∧ p∗2αj + p∗2αj ∧ p∗1αi).

Then you can check that δ∗γ = −(2g − 2)dµAr.

Proposition 17.1. We have γ = 1
2πi curv(OY×Y (∆), ‖−‖∆) for certain ‖−‖∆.

Proof. Here we need to use some Hodge theory.

This metric is going to be unique up to scalar.

Corollary 17.2. Let H : Y × Y → R be defined by H(P,Q) = ‖1‖∆(P,Q).
Then there exist c > 0 such that cH = GdµAr . Note that we are using symmetry
of both H and G.

Proof. This can be checked by checking the axioms for the Green function. For
the curvature condition, if we restrict γ to any coordinate, we get just dµAr. So
it can be checked. Note that we are using symmetry of both H and G.

Corollary 17.3. G is C∞ away from ∆ in Y × Y , and vanishes to order 1
along ∆.
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Recall that G = GdµAr is canonically attached to dµAr, and dµAr is canoni-
cally attached to the Riemann surface Y .

Proposition 17.4. There exists a unique C∞-metric ‖−‖−∆ on OY×Y (−∆)
determined by the condition

‖1‖−∆(P,Q) = G(P,Q)−1

for all P 6= Q. Furthermore, it induces a metric ‖−‖Ar on Ω1
Y by δ∗. This

metric is canonical and dµAr-admissible.

Proof. First this gives a smooth metric, because G(P,Q) is nonzero smooth
away from ∆ and vanishes to order 1 on ∆. The metric is admissible because
duals work well with curvature and −δ∗γ = (2g − 2)dµAr.

For a point P , there is a residue map

OY (P )⊗ Ω1
Y |P

∼=−→ C;
1

t
⊗ dt 7→ 1.

This is pushing forward along the diagonal, and then pulling back along some
horizontal copy of Y to get a sheaf supported at a point.
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Last time we had for Y a compact Riemann surface, a probability volume for
dµAr. We defined γ a (1, 1)-form, and for the diagonal δ : Y → Y × Y and
horizontal embedding hP : Y → Y × Y , had

−δ∗γ = (2g − 2)dµAr, h∗P γ = dµAr.

We can compute

γ =
1

2πi
curv(OY×Y (∆), ‖−‖∆),

and also checked that
‖1‖∆(−,−) = G(−,−)

up to some constant c > 0. Then G(−,−)−1 determines a metric ‖−‖−∆ on
OY×Y (−∆), and this gives a metric on Ω1

Y/C which is dµAr-admissible. In
particular, we will have

1

2πi
curv(Ω1

Y/C, ‖−‖
Ar = (2g − 2)dµAr.

Let me make one additional comment. We have

Ω1
Y ⊗ δ∗(O(∆)) ∼= OY ,

by just taking dual, and then pushing forward gives

δ∗Ω
1
Y ⊗ δ∗δ∗O(∆) ∼= δ∗OY

as sheaves of OY×Y -modules supported on ∆. Then if you pull back by hP , we
get sheaves on Y supported at P . The fiber at P is going to be

Ω1
Y |P ⊗ OY (P )|P ∼= C.

Proposition 18.1. This isomorphism is the following. Choose t a uniformizer
at p, and then

dt|p ⊗
1

t
|p 7→ 1.

Moreover, everything we have been talking about were isometries, and so
the metrics match. That is,

‖dt‖Ar(P ) ·
∥∥∥1

t

∥∥∥
O(P )

(P ) = 1.

Note that the residue maps are also the adjunction isomorphisms for P → Y
over SpecC.
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18.1 The canonical sheaf

Form now on, my arithmetic surface is going to be

X̂ = (X, π, {dµAr}σ:K→C)

where X is my usual regular semi-stable surface and dµAr
σ is dµAr for Xσ =

X⊗σ C.
So we have this canonical sheaf

ω̂ = (ωπ, {‖−‖Ar
σ }σ:K→C).

This is a relative dualizing sheaf for π : X→ S and it is a line sheaf because X
is regular and semi-stable. This is the canonical class in Pic(X̂).

Theorem 18.2 (Adjunction for sections, Arakelov). Let P ∈ X(K) be a ra-
tional point. This induces a divisor DP ⊆ X. Then the normalization is
BP = SpecOK = S, so the normalization map ν : S → X is a section. Then
we have

(DP .O(DP )⊗ ω̂) = 0.

In other words, D2
P +DP .ω̂ = 0.

Proof. It suffices to show that

d̂egKν
∗O(DP )⊗ ω̂ = 0,

but the sheaf is precisely O(S). (For the finite part, use the adjunction formula
for IDP = OX(−DP ), and for the infinite part, we have made so that they
match.)
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So where are we now?

1. We have a theory of good integral models over number fields.

2. We have a notion of metrics on line sheaves, and also a notion of admissi-
bility. From this we obtained global equations ϕP and the Green function
G.

3. We have an “intersection” paring for Div(X̂). This take values in real
numbers, and sometimes take negative values even for effective divisors.
This is quite general for X̂ = (X, π, {dµσ}σ).

4. We have a canonical class ω = ωπ. But to put metrics, we need admis-
sibility and should be uniquely normalized. So we had (on Y = Xσ with
g ≥ 1) to restrict to a special probability volume form

dµAr =
i

2g

g∑
j=1

αj ∧ ᾱj

where αj form an orthonormal basis forH0(Y,Ω1). There was some canon-
ical construction ‖−‖Ar on Ω1

Y that is dµAr-admissible. Also, it satisfied
the property that the residue/adjunction map

ResP : Ω1
Y |P ⊗ OY (P )|P → C = OY |P ; dt|P ⊗ 1

t |P 7→ 1

for P ∈ Y is an isometry.

19.1 Outline of the theory

Theorem 19.1 (Adjunction for section). Let P ∈ X(K) be a point and DP ⊆
X. Then

O(DP ).(O(DP )⊗ ω̂) = 0.

Another consequence is that the canonical height is

hX,KX (P ) = d̂egν∗P ω̂ = −D2
P .

Here is another application. Take JX the Jacobian. Then there is a uniquely
defined height ĥJX ,θ called a Neron–Tate height. Weil height is only defined up
to constant, but then you can add points together and do some limiting process.
How does it compare to the self-intersection D2

P we defined above? You choose a
basepoint on X and map X → JX . Then you can compare the self-intersection
number in Div(X̂) orthogonal to fibers, with −ĥJX ,θ.

Theorem 19.2 (Hodge index theorem).

(1) If D is orthogonal to all fibers in Div(X̂), then

−D2 = 2[K : Q]ĥJX ,θ(O(D)|X).
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(2) The signature of (−,−) on Div(X̂)/num is (+,−, . . . ,−) where the nega-
tive part comes from (1).

(3) The number of − signs is∑
v∈S

(#{components of Xv} − 1) + rk JX(K) + 1.

This will follow from Riemann–Roch. We should expect some alternating
sum of dimension of cohomology, but cohomology are not vector spaces but
OK-modules. We are going to put some metrics, but do this for both H0 and
H1 in a way that they are defined uniquely up to some common multiple which
will cancel out.

For M be a finitely generated rank OK-module of rank n, write ΛM =
∧
nM .

Then we can define

λRΓ(X,L ) = Λ(H0(X,L ))⊗ Λ(H1(X,L )∨)

and the same for Xσ. Note that a Hermitian metric on ΛV with V a C-vector
space is the same as a volume on V . Putting the metric λ is not easy and
Faltings complain about this. We want it to be:

(1) compatible with isomorphisms (of L ),

(2) compatible with long exact sequences.

We are going to do this on some moduli space Picd.
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Recall Haar measures on vector spaces over R,C. We are going to consider M
an OK-odule, finitely generated. (These will come from cohomology.) They will
come with volumes at∞, on M ⊗σC. This is not going to be a full-rank lattice,
because in the simplest case Z ⊆ Q, we get Z ⊆ C and we can’t immediately
use the covolume.

We can define

Mf = M/Mtor =
⊕
σ

M ⊗σ C ∼= M ⊗Z C

and then M ⊗Z R inside M ⊗Z C. Then it make sense to consider Vol(M ⊗Z
R/Mf ), but this is not exactly what we will use.

20.1 Haar measure

Let V be an R-vector space, and n = dimV .

Definition 20.1. A Haar measure on V is µ a Borel measure such that it is
(i) translation invariant and (ii) µ(λA) = |λ|nµ(A).

Proposition 20.2. Haar measures on V are the same as norms in det(V ) =∧
nV .

Proof. Take v1, . . . , vk a basis of V . Then we can form v1 ∧ · · · ∧ vn ∈ det(V ).
Then we define

dµ = ‖v1 ∧ · · · ∧ vn‖µdx1 ∧ · · · ∧ dxn
where xj are the dual basis.

We the same notation, we consider M = 〈v1, . . . , vn〉Z ⊆ V and we can define
the covolume

Volµ(V/M) =

∫
V/M

dµ =

∫ 1

0

· · ·
∫ 1

0

‖v1∧· · ·∧vn‖µdx1∧· · ·∧dxn = ‖v1∧· · ·∧vn‖µ.

The complex case is a little annoying. Let V be a C-vector space and n =
dimC V . A Haar measure can be defined similarly but with µ(λA) = |λ|2nµ(A).
Again, µ a Haar measure corresponds to a norm on detC V . Take v1, . . . , vn a
C-basis of V . Then there is a dual basis zj = xj + iyj . (We’re taking real an
imaginary parts of V → C.) Then we can take

dµ = ‖v1 ∧ · · · ∧ vn‖2µdx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn.

To define the volume, we can take

W = R〈v1, . . . , vn〉
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so that V = W ⊕ iW . Let M = Z〈v1, . . . , vn〉 ⊆ V . Given a Haar measure µ
on V , we can take µW the only Haar measure on W such that µ is the product
measure on V = W ⊕ iW . Altenratively, we have the formula

dµW = ‖v1 ∧ · · · ∧ vn‖µdx1 ∧ · · · ∧ dxn.

Then

VolµW (W/M) =

∫
W/M

dµW = ‖v1 ∧ · · · ∧ vn‖µ =
√

Volµ(V/M ⊕ iM).

20.2 Measurable modules

Let K be a number field and M a finitely generated OK-module.

Definition 20.3. A measurable OK-module is M̂ = (M, {µσ}σ) where

(1) M is a finitely generated OK-module,

(2) for σ : K → C, µσ is a Haar measure on Mσ = M ⊗σ C.

By general number theory, there is a canonical isomorphism

MC = M ⊗Z C ∼=
⊕

σ:K→C
Mσ; x⊗ 1 7→ (x⊗σ 1)σ.

Let Mf be the image of M on the right side so that it is isomorphic to M/Mtor.
Then M ⊗Z R is the R-span of Mf in M ⊗Z C.

So we first get a measurable Z-module from M̂ . ThisM is a finitely generated
Z-module. Then we can embed into M ⊗ZC, and then we can take the product
measure from the isomorphism. Now we can define the covolume Volµ(M ⊗Z
R/M).

Proposition 20.4. If you take ÔK = (OK , obvious measures on C), then the
covolume is Vol(OK ⊗Z R/OK) =

√
|DK |.
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Last time we had V a C-vector space and B = {vj}j a basis over C. Then we
get W = R〈B〉, and from µ a measure on V , ν a measure on W . We had K a

number field and a notion of a measurable finitely OK-module M̂ = (M, {µσ}σ).
For every σ : K → C, µσ is a Haar measure on Mσ = M ⊗σ C.

1. We defined the covolume Vol(M ⊗Z R/M).

2. This construction factors through regarding M̂ an OK-module a as a mea-
surable Z-module.

Lemma 21.1. Vol(OK ⊗Z R/OK) =
√
|DK |, where ÔK has the Euclidean

measure on OK ⊗σ C ∼= C.

Proof. We have to understand the measure on OK ⊗Z C =
⊕

σ C. This is the
same as taking the usual absolute value on detC(OK ⊗Z C) = deg(

⊕
σ C) ∼= C.

Let b1, . . . , bn be a Z-basis for OK . Then I need to compute is

Vol(OK ⊗Z R/OK) = ‖b1 ∧ · · · ∧ bn‖µ = |deg[σ(bi)]i,σ| =
√
|DK |.

21.1 Changing the module/volume

Now I would like to talk about a trick. Our goal is to show that Vol(M⊗ZR/M)
is something explicit formula. To compute this, we can replace M with other
modules of finite index or coindex. Or we can vary the volume.

Let me look at the special case of a rank 1 projective OK-module. Consider
M = (M, {‖−‖σ}σ) a metrized line sheaf on OK . Then for every σ : K → C, I
have detC(Mσ) = Mσ. So the norm is just a measure on Mσ. That is, one can
go back and forth between a metrized line sheaf M and a measurable projective

rank 1 module M̂ . So what is the relation between the two real numbers d̂egKM
and Vol(M ⊗ R/M)?

Proposition 21.2. log Vol(M ⊗Z R/M) = 1
2 log|DK | − d̂egKM .

Proof. First note that projective OK-modules of rank 1 are fractional ideals up
to isomorphism. So we are going to assume that M is a fractional ideal. Then
Mσ = M ⊗σ C ∼= K ⊗σ C canonically. Now I can meaningfully say that I keep
the archemedian data fixed while I change M .

We replace M by any other fractional ideal M ′ ⊆M , keeping the norms and
the volumes fixed. The change on the left hand side is log[M : M ′]. On the
right hand side, in the definition of the degree, we were counting the cardinality
of the quotient. So if we pick some η ∈M ′ ⊆M , the archemedian part doesn’t
change and the cardinality decreases by log[M : M ′]. So the changes match up.

But I can actually replace M by any other fractional ideal, say M = OK .
Now, Mσ

∼= C canonically, and so ‖−‖σ = λσ|−| with the same coefficient

µσ = λσm. Now we can compute d̂egK with η = 1.
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Now we want to base change. Ultimately we want to prove Riemann–Roch,
and we usually do this by adding divisors one by one. When you put in vertical
divisors, this is usually not very hard. But if we put in horizontal divisors, we
need some sort of adjunction formula to see what changes. But this only works
for sections. So what we are going to do is suitably bash change so that the
horizontal divisor becomes a section.

Definition 21.3. Let M̂ be a measurable OK-module and F/K a finite exten-
sion. We define

M̂OF = (MOF = M ⊗OK OF , {ντ}τ :F→C)

where (M ⊗OK OF )⊗τ C ∼= M ⊗OK ,τ |K C ∼= Mτ |K is given the volume induced
from µτ |K .

Proposition 21.4. With the same notion, and r = rkOK M = rkOF (MOF ),

Vol(MOK ⊗Z R/MOK )

Vol(OK ⊗Z R/OK)r
=

(
Vol(MOK ⊗Z R/MOK )

Vol(OK ⊗Z R/OK)r

)[F :K]

Proof. We only mess around with M . We first kill the torsion in M , then take
finite index free submodule, so that we can assume that M is free. Then the
free parts can be separated, so we assume r = 1 and M = OK . Then both side
consists of these scalars coming from the volumes, and each K → C appears
exactly [K : F ] times in the F → C.
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Last time we looked at the trick of changing volume. But there is this discrim-
inant coming out, which is annoying.

22.1 Arithmetic Euler characteristic

Let E : 0 → M1 → M2 → M3 → 0 be an exact sequence of Z-modules, with
volumes. I want to make sense of volume exactness. We can define detE as

det
C

E =

3⊗
i=1

(det
C
Mi ⊗ C)⊗(−1)i+1 ∼= C,

where the isomorphism comes from exactness.

Definition 22.1. We say that the sequence E is volume exact if detE ⊗ C
with the volumes matching up.

Now we can define the Euler characterisitic

χ(M̂) = − log Vol(M ⊗ R/M) + log #Mtor.

Proposition 22.2. For E a volume exact sequence, χ(M̂1)−χ(M̂2)+χ(M̂3) =
0.

Let K be a number field, and M̂ be a measurable OK-module. We define

χK(M̂) = − log Vol(M ⊗Z R/M) + log #Mtor + rkOK (M) log|DK |1/2.

Note that the last term work well with exact sequences as well.

Corollary 22.3. Note that a line sheaf M gave M̂ . In this case, χK(M̂) =

d̂egKM .

Corollary 22.4. If M̂ is a measurable OK-module, and F/K is a finite exten-
sion, then

χF (M̂OF ) = [F : K]χK(M̂).

Now let us go back to (X̂, π, {dµAr
σ }σ). If L is a line sheaf on X, note that

Hj(X,L ) = (0) for j ≥ 2. This is because X is projective. Roughly Riemann–
Roch should look like

Vol(H0(X,L )⊗Z R/H0(−)) = formula involving intersection of L .

But we need to put a volume on the global sections. This is something we need
to do. We are sort of going to make sense of the difference between the volume
on H0 and H1, because we need to take the difference.

Note that
H0(X,L )⊗σ C ∼= H0(Xσ,Lσ).

So we are good if we can put volumes on the sections of any Riemann surface.
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22.2 Determinant of cohomology

Let Y be a compact Riemann surface, and gY = g ≥ 1. Let L be a line sheaf
on Y . Then determinant of cohomology is

λ(Y,L ) = det
C
H0(Y,L )⊗ det

C
H1(Y,L )∨.

So this is a line. Good norms on λ(Y,L ), depending on the given metrics on
L , are what we want.

Here are the things I want. The trick used in the usual Riemann–Roch is
that if D is a divisor on Y with P ∈ Y , and D′ = D + P , we have an exact
sequence

0→ O(D)→ O(D′)→ O(D′)|P = OP ⊗ O(D′)→ 0.

This gives a long exact sequence

0→ H0(Y,O(D))→ H0(Y,O(D′))→ O(D′)|P → H1(Y,O(D))→ H1(Y,O(D′))→ 0.

Then we get
λ(Y,O(D + P )) ∼= λ(Y,O(D))⊗ O(D′)P ,

which we will call the “exactness isomorphism”.
Here is one attempt for the structure sheaf. Let Y as before. We have a

canonical isomorphism

λ(Y,OY ) ∼= detH0(Y,Ω1)∨.

Then there is a hermitian norm induced by 〈−,−〉 on H0(Ω1
Y ) given by

〈α, β〉 =
i

2

∫
Y

α ∧ β̄.

(We call this ‖−‖F,can.)

Theorem 22.5 (Faltings’s volume in cohomology). Let Y be a compact Rie-
mann surface with g = gY ≥ 1. Then there is a unique way to associate to each
metrized lined sheaf L on Y , a hermitian norm ‖−‖F,L on λ(Y,L ) such that

(1) (isometry) If L 1
∼= L 2 is an isometric isomorphism, then it induces an

isomorphism on λ with compatible ‖−‖F,L .

(2) (scaling) If for L = (L , ‖−‖) and a > 0 we define aL = (L , a‖−‖),
then

‖−‖F,aL = ah
0(L )−h1(L )‖−‖F,L .

(3) (exactness) For D a divisor on Y and P , put unique Ar-admissible nor-
malized metrics on O(div)s. Then the “exactness isomorphism”

λ(Y,O(D + P )) ∼= λ(Y,O(D))⊗ O(D + P )|P
is an isometry for the ‖−‖F norm.

(4) (normalization) The norm ‖−‖F,O is equal to the one that had a moment

ago on λ(Y,OY ).
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Last time we talked about volume exactness and the Euler characteristic χK .
Also, we were able to formulate Falting’s theorem on volumes on “H0 −H1”.

23.1 Arithmetic Riemann–Roch

First, we define the Euler characteristic of metrized line sheaves. Consider a
semi-stable regular model X̂ = (X, π, {dµAr

σ }σ). Define

χK(X̂,L ) = χK(H0(X,L ))− χK(H1(X,L )).

Here, we use, at each σ : K → C, Faltings’ volumes on Hj(Xσ,L |Xσ ). Each
term alone is not well-defined, but when we take the difference, this is well-
defined.

Theorem 23.1 (arithmetic Riemann-Roch). Let L be an admissible line sheaf

on X̂. Then

χK(X̂,L ) =
1

2
(L .L ⊗ ω̂∨) + χK(X̂,OX).

Proof. First it is enough to assume that L = O(D) where D is some Arakelov
divisor. The statement is clearly true for L = O. Now we show that the truth
of the equation is unchanged when we add to D a divisor α ·Fσ. The change in
the left hand side is

∆(LHS) = α(h0(O(D)|X)− h1(O(D)|X))

The change in the right hand side is

∆(RHS) =
1

2
(D + αFσ.D + αFσ − ω̂)− 1

2
(D.D − ω̂)

= α(Fσ.D)− 1

2
α(Fσ.ω̂) = α(degX(D|X) + 1− g) = α(h0(D|X)− h1(D|X))

by ordinary Riemann–Roch.
So we may assume that D = Dfin. It is now enough to show that both

sides vary in the same way if we change D to D + C, where C is irreducible in
X. Here, we may replace K by a finite extension. Here, we need to be a bit
careful, because our surface might no longer be regular. So we have to take a
desingularization. For F/K, we can base change X to Y = X ×S SF and then
to Y′. Now we might mess up with the canonical sheaf or cohomology. Let
f : Y′ → X. But in the semistable case, we checked that

1. ω̂Y′ = f∗ω̂, and

2. Hj(X,L )⊗OK OF ∼= Hj(Y,L |Y) ∼= Hj(Y′,L |Y′).

So the measurable module doesn’t know about the desingularization at all.
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Going back to the proof, we are trying to replace D by D+C. First assume
that C is horizontal. Then after base change, we may assume that C is a section.
That is, there is ν : S → X such that C = ν(S). Now we have an exact sequence

0→ H0(X,O(D))→ H0(X,O(D + C))→ H0(S, ν∗O(D + C))

→ H1(X,O(D))→ H1(X,O(D + C))→ 0.

This is the “exactness” exact sequence, so

χK(X̂,O(D)) + χK(H0(S, ν∗O(D + C))) = χK(X̂,O(D + C)).

But the middle term is

d̂egKν
∗O(D + C) = (C.D + C) = (C.D) + C2 = C.D − C.ω̂

by adjunction. The variation of the right hand side is going to be the same
number.
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Last time we were proving Riemann–Roch. We want to show

χK(X̂,L ) =
1

2
(L .L ⊗ ω̂∨) + χK(X̂,O).

We now only need to check the variation under D replaced with D+C with C
irreducible. Last time, we were dealing with the case when C is horizontal, and
after base change, we were checking for C a section. We computed that

∆(LHS) = C.D − C.ω̂.

This used the exactness property of the ‖−‖F , basic properties of (−.−), and
the adjunction formula for sections (due to Arakelov). Lang actually proves
Riemann–Roch without assuming semistability, and here he uses some other
complicated version of the adjunction formula that works in the regular setting.
Anyways, the variation of the right hand side is

∆(RHS) =
1

2
((D.D − ω̂) + (D.C) + (C.D) + C2 − (C.ω̂)− (D.D − ω̂))

=
1

2
(2(C.D)− 2(C.ω̂)).

The last case is when C is a fiber component Xs for s ∈ S. This you can
check it.

24.1 Constructing metrics on determinants of cohomology

So this is how Riemann–Roch is proved, after we have this metrics on deter-
minants of cohomology. Today I’m going to give an outline of why you should
expect this to be true.

Now we are working over C. We have a Riemann surface Y of genus g ≥ 1,
and we have dµAr on it. We want to put metrics ‖−‖F,L on λ(Y,L ) that de-

pend nicely on admissible L . Recall that “nicely” means respecting isometries,
scaling, exactness, normalization at O. Note that if such metrics exist, they are
unique.

Let me make some reductions:

1. It is enough to consider sheaves that look like O(D) (as long as we can
show isometric isomorphisms).

2. It is enough to use the unique normalized (at 1) admissible metric on
O(D), which we call O(D).

3. The case O is done.

Lemma 24.1. Under “exactness” and “normalization”, every O(D) receives a
unique well-defined metric on λ(Y,O(D)).
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Proof. We’re just starting from O at adding or subtracting points. Here, you
are going to need to check that the resulting metric does not depend on the
order of adding points. If you write out, this will be coming from that G(−,−)
is symmetric.

Therefore it suffices to check that the metrics on λ only depend on the linear
equivalence class of D. The way Faltings proves this is beautiful. First we may
a couple more of technical reductions.

1. It is enough to assume that degD is fixed, say g − 1.

2. It is enough to fix an arbitrarily large r > 0, and a divisor E with degE =
r + g − 1, and consider only D = E − (P1 + · · ·+ Pr).

Sketch of proof. First, there is a “universal determinant of cohomology”. This
means that there is a certain line sheaf N on Y r together with canonical iso-
morphisms for P = (P1, . . . , Pr) ∈ Y r,

N |P ∼= λ(Y,O(E − (P1 + · · ·+ Pr))).

This is roughly because determinants of cohomology can be taken on affine
charts. Now there are metrics on the λs, and we can see how this varies explicitly
in terms of G. Then we can write down the curvature of the metric induced on
N , which is a (1, 1)-form.

Consider Picg−1(Y ). This doesn’t have a distinguished point, but it has a
distinguished divisor

Θ = {locus of [L ] : deg L = g − 1, h0(L ) > 0}.

Then we have the following morphism

ϕ : Y r → Picg−1(Y ); P = (P1, . . . , Pr) 7→ [O(E − (P1 + · · ·+ Pr))].

One can check that ϕ∗O(−Θ) ∼= N .
Finally, it is enough to prove that our metric N comes from a metric from

O(−Θ). You can write down a (1, 1)-form on Picg−1(Y ) such that the pullback
is equal to the (1, 1)-form on Y n. Then you can find a metric such that the
curvature is the (1, 1)-form.
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Let Y be a compact Riemann surface. The key idea for constructing ‖−‖F,− on
λ are

(1) there exists a universal N /Y r with fibers being λ,

(2) there exist ϕ : Y r → Picg−1(Y ) such that N is the pullback of the O(−Θ),
and

(3) there O(−Θ) has a metric such that the pullback metric on N agrees
with the fiberwise-defined metrics from |−|F,−.

Today I will give some explanation for (1) and (2).

25.1 The universal bundle

We have the map Y r → Picg−1(Y ) taking P to L (P ) = OY (E−(P1+· · ·+Pr)).
We consider r large enough so that ϕ is surjective. (Dominance comes from
Riemann–Roch and it is also proper.) Now we consider a auxiliary variety
Z = Y r × Y . Look at the projection map πj : Y r → Y and Γj the graph of πj
in Div(Z). Then consider D =

∑r
j=1 Γj and Y r × E, both divisors.

Write ZP = {P} × Y (for P = (P1, . . . , Pr)). Then ZP ∼= Y and consider
the line bundle

L = OZ(Y r × E −D).

Then
L |ZP ∼= L (P ).

So moving the point P around, we can recover all the line sheaves we care about.
Using this construction, we can define our determinant of cohomology bun-

dle. Work locally on Y r. For a point P ∈ Y r, consider an affine neighborhood
U = SpecA 3 P .

Proposition 25.1 (Hartshorne, p.282). There is a bounded complex of finitely
generated free A-modules

L0 δ0−→ L1 → · · · → Ln

such that for every A-module M , we have “L•⊗M computes cohomology H•(ZU ,L⊗A
M)”: we have that Hj(ZU ,L ⊗AM) ∼= Hj(L• ⊗AM). Hence,

Hj(Y,L (P )) ∼= Hj(ZP ,L |ZP ) ∼= Hj(L• ⊗A κP ).

Now define the A-module

N =

n⊗
j=0

(
∧
djLj)⊗(−1)j .

Here, a technicality is that N is uniquely determined only canonical isomor-
phism. This is because L is unique up to quasi-isomorphism, and they will
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induced a true isomorphism on N . Localization behaves well, because localiza-
tion of L will do the same thing. This means that Ñ on U glue to give a sheaf
N on Y r. This is what we want, because

N |P = N ⊗ κP = ⊗nj=0(
∧
dj (Lj ⊗ κP ))⊗(−1)j ∼= λ(Y,L (P )).

The last canonical isomorphism is an exercise in linear algebra. This shows (1).
Now we want to have an isomorphism N ∼= ϕ∗O(−Θ). So what is “1” for

N ? We’re assuming that ϕ : Y r → Picg−1(Y ) is a surjection. Then for general
P ∈ Y r, we have ϕ(p) /∈ Θ.

Recall that dimH0(Y,L (P )) − dimH1(Y,L (P )) = g − 1 + 1 − g = 0. So
we have that ϕ(P ) /∈ Θ if and only if

H0(Y,L (P )) = H1(Y,L (P )) = 0.

So in this case, λ(Y,L (P )) = C is canonical. Here, there is a 1. The question
is, do they vary nicely so that they give a meromorphic section?

We want a section s of N such that it agrees with these 1. Here it is useful
to go back to how we constructed N . Consider

s =

n−1⊗
j=0

(
∧

rk δj (δj))
⊗(−1)j+1

) ∈ N ⊗A Frac(A).

This really can be considered as an element. The claim is that s|P ∈ N ⊗A κP
for P /∈ ϕ−1Θ is 1. For P ∈ ϕ−1Θ generic, we will have dimH0(Y,L (P )) =
dimH1(Y,L (P )) = 1 and so you will be able to see that there is a pole of order
1.
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Last time we looked at determinant of cohomology and a sketch of how Faltings
proved existence of volumes. At the end of the day, we only care about H0, but
we have to have this H1 term. The algebraic part of the existence was given by
pulling back some line bundle along

ϕ : Y r → Picg−1(Y ); P 7→ L (P ) = O(E − P1 − · · · − Pr).

Then we get an isomorphism N ∼= ϕ∗O(−Θ).

26.1 Analytic input to construction of metric

Now for the analytic part, we look at two metrics on both line bundles, and
show that the curvature is equal to the pullback of the curvature. Consider
L = O(E) so that we have

L (P ) = L ⊗ O(−P1 − · · · − Pr) = L (−P1 − P2 − · · · − Pr).

By definition, we have an isometric isomorphism

λ(L ) = λ(L (−P1))⊗L |P1 = λ(L (−P1 − P2))⊗L (−P1)|P2 ⊗L |P1

= λ(L (−P1 − P2))⊗ O(−P1)|P2
⊗L |P2

⊗L |P1
= · · ·

= λ(L (−P1 − · · · − Pn))⊗
⊗
i<j

O(−Pi)|Pj ⊗
r⊗
j=1

L |Pj .

Then if you take curvature of N , the contribution of O(−Pi)|Pj is going to be
some Green function. So if you work out,

curv(N ) = −
r∑
j=1

p∗j curv(L ) +
∑
i 6=j

∂∂ logG(Pi, Pj).

But L is an admissible metric on O(E). So its curvature is the degree times
dµAr.

Note that if a certain metric on O(−Θ) works for given choice (E, r), the
same works for all (E, r). To see this, consider (E1, r1) and (E2, r2). Then for
E = max(E1, E2), we will have something like

O(E1 −
∑
P

(1)
j ) = O(E −

∑
Pj) = O(E2 −

∑
P

(2)
j ).

26.2 Averages of G

Let Y be a compact Riemann surface with g ≥ 1. The Green functions is sort
of measuring distance. Suppose we have x1, . . . , xn ∈ Y all different. How big
can the sum ∑

i 6=j

logG(xi, xj)
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be? The trivial upper bound is cY n
2 because the Green function is globally

bounded above. Naively, we expect to see some cancellation because there can’t
be too many points away from each other.

Theorem 26.1 (Faltings, Elkies). There is a constant c > 0, only depending
on Y , such that for all n ≥ 2 and x1, . . . , xn ∈ Y , we have∑

i 6=j

logG(xi, xj) ≤ cn log n.

Proof. Recall that ∆ : C∞(Y,C)0 → C∞(Y,C)0 was defined as (πi)−1∂∂ϕ =
(∆ϕ)dµAr. Note that we computed

∂∂f =
−i
2

(
fxx + fyy

)
dx ∧ dy.

So in reality, our Laplacian is negative of the ordinary Laplacian. Thus the eigen-
values of our ∆ are positive, 0 < λ1 ≤ λ2 ≤ · · · . Let us write the eigenfunctions
as ϕ1, ϕ2, . . .. Recall also that we had the operator Γ : C∞(Y,C)0 → C∞(Y,C)0

given by

(Φψ)(p) =

∫
Y

(−g(P,Q))ψ(P )dµAr(Q),

and checked that this is the inverse of ∆. Now we can express the kernel using
the eigenfunctions. As distributions, we should have

g(P,Q) = −
∑
n≥1

1

λn
ϕn(P )ϕn(Q).

But distributions, this is not good enough, so for t > 0 we define

gt(P,Q) = −
∑
n≥1

e−tλn

λn
ϕn(P )ϕn(Q).

For t > 0, this gives an honest C∞ function, because there are estimates on the
growth of λn. Now we state some facts.

(1) There exists an A = A(Y ) > 0 such that for all x 6= y and t > 0, we have
gt(x, y) +At ≥ g(x, y).

(2) There exist B = B(Y ) and C = C(Y ) such that for all x ∈ Y and t > 0,
we have gt(x, x) ≤ B log t+ C.

(3) There exist b = b(Y ) and c = c(Y ) such that for all x ∈ Y and t > 0, we
have gt(x, x) > b log t− c.

(In fact, gt(x, x) = c′ log t+Ox(1), but we don’t need this.) So we have∑
i 6=j

(g(xi, xj)−At) ≤
∑
i6=j

gt(xi, xj) = −
∑
i6=j

∑
k≥i

e−λk

λk
ϕk(xi)ϕk(xj)

=
∑
k≥1

e−tλk

λk

( n∑
i=1

|ϕk(xi)|2 −
∣∣∣∣ n∑
i=1

ϕk(xi)

∣∣∣∣2) ≤ − n∑
i=1

gt(xi, xi).
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Then we have∑
i 6=j

g(xi, xj) ≤
m∑
i=1

(−gt(xi, xi) + nAt) ≤ n(−b log t+ c+ nAt).

Take t = 1
n .

Next time we are going to make use of this.
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If Rn, if there is a norm ‖−‖ and a lattice Λ, there is a numerical criterion for
the ball B = {x ∈ Rn : ‖x‖ ≤ 1} to satisfy B ∩ Λ ) {0}. In particular,

Vol(B) ≥ 2n Vol(Rn/Λ)

is fine. We are going to use this to get a numerical criterion for line sheaves to
be effective.

Let Y be a compact Riemann surface with g = gY ≥ 1 and L be an
admissible metrized line sheaf. We have a norm on H0(Y,L ) defined by

‖s‖2L2 =

∫
Y

‖s‖2(P )dµAr(P ).

We can define (Falting’s) volume

V (L ) = VolF ({x ∈ H0(Y,L ) : ‖s‖L2 ≤ 1}).

Lemma 27.1. If degY (L ) ≥ 2g − 1, then V (L ) is well-defined and is inde-
pendent of the norm of L .

We write this V (L ).

Theorem 27.2. There exists a c > 0 depending only on Y such that for all L
of degree d ≥ 2g − 1,

V (L ) > exp(−cd log d).

Proof. Assume L = O(E), and write d = r + g − 1 with r ≥ g. We have this
map

ϕ : Y r → Picg−1(Y ); P 7→ O(E)⊗ O(−
∑
Pj)

that is a surjection. We define U = Y r−ϕ∗Θ. Then for P ∈ U , the determinant
of cohomology is λ(Y,L ⊗ O(−

∑
Pj)) = C contains 1. Define

ω(L , P ) = ‖1‖F,L⊗O(−
∑
j Pj)

.

Note that ω(L , P ) > c1 > 0 is bounded below, with c1 independent of L , r, P ,
because we had ‖−‖F,N = ϕ∗‖−‖−Θ. So the norm of 1 is given by pullback of
1, and div(1) = −Θ. This shows that there are poles at Θ, and no zeros.

What we want to know is λ(Y,L ). So we write

λ(Y,L ) = λ(Y,L ⊗ O(−
∑
j Pj))⊗C

(⊗
i<j

O(−Pj)|Pj
)
⊗C

(
⊗ri=1L |Pi

)
.

Here, evaluation gives an isomorphism

ev : H0(Y,L ) ∼=
r⊕
j=1

L |Pj
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and taking determinant gives detH0(Y,L ) ∼=
⊗r

i=1 L |Pi . But there is some
distortion in volume, and the other terms is what measures this.

Now we can estimate

µF (B) =
w(L , P )2∏
i6=j G(Pi, Pj)

ν(ev(B)) > exp(−c2 − c3r log r)ν(ev(B)).

Then
ν(ev(B)) > exp(−c5r log r)‖f1 ∧ · · · ∧ fr‖2r(P )

where s1, . . . , sr is an L2-orthonormal basis overH0(L ) and fj = (π∗1sj , . . . , π
∗
nsj) ∈

H0(Y r,
⊕
π∗jL ).

We now average this inequality over Pi, i.e., take the integral∫
Y r

(−)dµAr(P1) · · · dµAr(Pr).

Then we actually have
∫
Y
‖f1 ∧ · · · ∧ fr‖2(P )dP = r! > 1.

Theorem 27.3. Let L is an admissible line sheaf on X̂. Suppose L
2
> 0 and

for any fiber F (or there exists an F such that) L .F > 0. Then there exist n0

such that for all n ≥ n0, the line sheaf L
⊗n

is effective, i.e., there exists an

Arakelov divisor Dn ≥ 0 such that L
⊗n ∼= O(Dn).

Proof. We want for n� 1, some 0 6= s ∈ H0(X,L ⊗n) such that for all σ : K →
C, the integral

∫
Xσ

log‖s‖σ(P )dµAr
σ (P ) ≤ 0 as well. Since log is concave, it is

enough to get ∫
Xσ

‖s‖2σ(P )dµAr(P ) ≤ 1.

Now we can ensure this by Minkowski. Take the lattice Λ = H0(X,L ⊗n).
Use the Faltings’s volume. The volume of the unit ball is then greater than
− exp(cn log n) (because degree is linear in n). We also have H1(X,L ⊗n) = 0
for n � 1 because L .F > 0. This means that H1 only contributes as torsion.
Therefore the covolume of Λ is at most

< exp(−χK(X̂,L )) < exp(−n
2

2 L
2

+ cn).

Here, L
2
> 0 so we can apply Minkowski.
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Today we study D2.

28.1 Fibered divisors

For s ∈ S, let Vs be the group generated by the components of Xs, as a subgroup
of Div(X̂). For σ : K → C, we will have Vσ = RFσ. For s ∈ S, we write Fs the
fiber corresponding to Xs.

Write Ŝ = S ∪ {σ : K → C}. Then we consider

V =
⊕
p∈|Ŝ

|Vp.

(We’re ignoring the 0 ideal.)

Proposition 28.1. (−,−) is negative semi-definite on each Vp, and on V .
Also, Vp are orthogonal to each other. In each Vp, the only Arakelov divisors
with square equal to 0 are multiples of Fp.

Proof. This follows from the intersection parings and properties of is.

Lemma 28.2. Let D be a (Arakelov) divisor with degX D > 0. Then given any
Fp, for n� 1 we have

(D + nFp)
2 > 0.

Proof. We have (D + nFp)
2 = D2 + 2nDFp + n2F 2

p ≥ D2 + 2n(degX D) log 2.
Here, the log 2 term comes from the residue term. (This is true even for p
infinity, because 1 > log 2.)

Theorem 28.3 (special case of Ragnaud). There is an S-scheme Picg−1(X/S)
locally of finite type with a universal line sheaf L on X×S Picg−1(X/S) which
is the moduli space of line sheaves of X of degree degX = g − 1.

This can only be locally of finite type, because if your curve has many
components, the only condition is that the degrees on each of the components
add up to g−1. So there are infinitely many discrete possibilities. The reason we
are only looking at g−1 is because the Faltings volume is going to be independent
of the metric. By Riemann–Roch, we have h0 − h1 = degX +1− g = 0.

(1) There exists a Θ̃ ∈ Div(Picg−1(X/S)) which extends the Θ on Xσ and
Picg−1(Xσ).

(2) Consider F a line sheaf on X with degX F = g − 1. Then there is a
section x ∈ Picg−1(X/S)(S) such that L |X×Sx gives F on X ∼= X×S x.

(3) There is a universal determinant of cohomology using L . Then λ(L ) ∼=
O(−Θ̃) with the Riemann–Roch metrics. Moreover, for all F and x as in
(2), we have

d̂egKx
∗λ(L ) = χK(X̂,F ).

(Here, we can use any admissible metric on F because the degree is g−1.)
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28.2 Intersection pairing and Néron–Tate heights

Consider Jac(X/K) = Pic0(X/K). Note that Fp ⊥ Fp for all p, and also

V + V ⊥ ( Div(X̂) because D ∈ V ⊥ implies degX D = 0.

Choose E ∈ Div(X̂) of degree degX E = g − 1. Take D ∈ V ⊥ and let P be
those with the same intersection pattern as before for E. Then for all n ≥ 1,
we have [E + nD] ∈ P(S). So we have sections xn : S → P. We have

d̂egKx
∗
nλ(L ) = χK(X̂,O(E + nD)) = · · · = D2

2
n2 +O(n)

by Riemann–Roch. Also, this degree is

d̂egKx
∗
nλ(L ) = d̂egKx

∗
nO(−Θ̃)

= −[K : Q]hPicg−1(X/K),Θ(xn) +O(1)

= −[K : Q]ĥJX ,Θ([D])n2 +O(n)

where h is the Weil height and ĥ is the canonical Néron–Tate height.

Theorem 28.4. For all D ∈ V ⊥, (so that degX D = 0 and [D] ∈ JacX/K(K))
we have

D2 = −2[K : Q]ĥJX(θ)([D]) ≤ 0.
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Last time we proved this theorem.

Theorem 29.1 (Faltings–Hriljac). For all D ∈ V ⊥, we have

D2 = −2[K : Q]ĥJX ,Θ([D]).

29.1 Hodge index theorem

Consider
Num(X̂)R = Div(X̂)R/numerical equivalence

where Div(X̂])R is the Arakelov divisors of X with R-coefficients. Here, the

intersection pairing extends linearly. Then Num(X̂)R is a R-vector space with
with a non-degenerate bilinear form. By no means it is clear that it is finite-
dimensional.

Now consider

Vs,R = Vs ⊗Z R, Vσ,R = Vσ, VR =
⊕
•
V•,R ⊆ DivR(X̂)

for s ∈ |S|. This maps to Num(X̂)R. Similarly, we have V ⊥R .

Fix E ∈ Div(X̂) with E2 > 0 and degX(E) > 0. (For example, take E =
DP + nFσ for P ∈ X(Kalg) and n � 1.) We want to see the contribution of
E in Num. This cannot be in V because degX(E) > 0 and it cannot be in V ⊥

because its self-intersection is positive.
Take any D ∈ Div(X̂)R. We see that D modulo RE can be represented in

the following way:

E ≡ D′ + (fiber components) with degX = 0, D′ ∈ V ⊥.

This is because we can first look at D − degX D
degX EE, and then this is some linear

algebra thing. So we have the following surjectivity:

ν : RE + VR + V ⊥R � Num(X̂)R.

Theorem 29.2 (Hodge index theorem). dimR Num(X̂)R is finite and the inter-
section pairing (−,−) has signature (1,−1, . . . ,−1). Moreover, the number of
−1 is

1 + rank JX(K) +
∑
s∈S

(dimR Vs,R − 1)

Proof. First we see that E gives +1. Now it is enough to understand the image
of V + V ⊥. We see that

ν(VR) =
⊕
s

V 0
s,R ⊕ RF•
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for your favorite F•. On ν(V ⊥R ), it follows from D2 = −2[K : Q]ĥNT([D]).
Because the intersection paring on ν(V ⊥R ) is non-degenerate, its should come
from JX . Then the intersection pairing is negative-definite on a codimension 1
space, and is positive at some point.

Looking back, the non-trivial part of this is the V ⊥R , but this is just the
Jacobian. Here are some applications. Consider gX ≥ 2 and let us look at ω̂
again.

Theorem 29.3. Let D ∈ Div(X̂) and suppose D ≥ 0. Then

D.ω̂ ≥ ω̂2

4g(g − 1)
degX(D).

Proof. We may assume that D is irreducible and not formal. First consider
the case when D is a fiber component. Then degX(D) = 0. By geometric
adjunction, we have

−1 ≤ gD − 1 =
1

2 log #κS
(D2 +D.ω̂).

If D.ω̂ < 0, then we would have is(D,D) > −2. This means that either D is
Fs (in which case gD > 0 and is not possible) or D2 = −1 (in which case it
contradicts that X is semi-stable).

Now take D horizontal. Say (up to base change) that D is a section. Then

degX((2g − 2)D − ω̂) = 0

implies that it comes from V + V ⊥ and so ((2g − 2)D − ω̂)2 ≤ 0. Expanding
and using D2 = −D.ω̂ gives a contradiction.

Provided that ω̂2 ≥ 0, this is going to be a highly nontrivial arithmetic
information.
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Last time we had this theorem that

ω̂.D ≥ ω̂2

4g(g − 1)
degX D.

For the horizontal divisor, we had degX((2g− 2)D− ω̂) = 0 and so we get that
(2g − 2)D − ω̂ has self-intersection number not positive. Then we can collect
terms by adjunction, we get

4g(g − 1)D.ω̂ ≥ ω̂2.

30.1 Positivity of ω̂2

Theorem 30.1 (for g ≥ 2). We have ω̂2 ≥ 0.

Proof. We have degX ω̂ = 2g− 2 > 0. Taking F = F• some fiber, we know that
for rational λ� 1 we have

degX(ω̂ + λF ) > 0, (ω̂ + λF )2 > 0.

By application of Riemann–Roch, we know that ω̂ + λF is linearly equivalent
to some effective Q-Arakelov divisor. (We did this by using Elkies’s result and
Minkowski and stuff.) So by the previous theorem,

ω̂2 + λω̂.F = (ω̂, ω̂ + λF ) ≥ ω̂2

4g(g − 1)
degX(ω̂ + λF ) =

ω̂2

2g
.

We want a good choice of λ ∈ Q with (ω̂ + λF )2 > 0, because this is all we
used. This condition is equivalent to

0 < (ω̂ + λF )2 = ω̂2 + 2λ(ω̂.F ).

So it is enough to take λ ∈ Q such that λ(ω̂.F ) > − 1
2 ω̂

2. This implies

ω̂2 − 1

2
ω̂2 ≥ ω̂2

2g

and so ω̂2 ≥ 0.

30.2 More on fiber divisors

Let me give more details on the fiber divisors we talked about last time. Recall
that

V 0
s =

{∑
αjCj : Fs =

∑
Cj ,
∑

αj = 0
}
.

We can also consider V 0
s,Q. We also defined V 0 =

⊕
s V

0
s and similarly V 0

Q . WE
also denote

Div(X̂)0 = {D ∈ Div(X̂) : degX(D) = 0}.
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Proposition 30.2. The following equivalent properties hold:

(1) for all D ∈ Div(X̂)0, there exists a unique E ∈ V 0
Q such that D−E ∈ V ⊥.

Furthermore, the rule Φ : Div(X̂)0 → V 0
Q given by D 7→ E is a group

homomorphism.

(2) Let s ∈ |S|. For all D ∈ Div(X̂)0, there exists a unique E ∈ V 0
s,Q such that

D − E ∈ V ⊥s,Q. Furthermore, Φs : Div(X̂)0 → V 0
s,Q is a group homomor-

phism.

Proof. The two statements are equivalent because we can take Φ =
∑
s Φs and

V 0
Q =

⊕
s V

0
s,Q. So let us prove (2).

If s is such that Xs is irreducible, then V 0
s,Q = (0). If this is not the case,

take Fs =
∑
Cj where Cj are irreducible components. We can use is instead of

(−,−), and this is integer-valued. Consider

W 0
Q = {a ∈ Qr :

∑
aj = 0} ∼= V 0

s,Q.

For D ∈ Div(X̂)0, define

b(D) = (bj(D))j , bj(D) = 〈Cj , D〉 ∈ Z.

But we have D.Fs = 0 and so b(D) ∈W 0
Q. Now we want to define Φ(D) = a(D)

such that for all γ ∈W 0
Q,

γt[〈Ci, Cj〉]ija(D) = γtb(D).

Now the key observation is that 〈−,−〉 is negative definite on V 0
s,Q which is

isomorphic to W 0
Q. So we can look at the equation as defined on V 0

s,Q and invert
the matrix [〈−,−〉].
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We have covered the basics of Arakelov theory.

31.1 Small points

Let X/K be a curve with gX ≥ 2. Then dim JX = g and let L be a line sheaf
on X. Assume that degX L = n ≥ 1. Then we get jL : X → JX and consider
P 7→ [L ⊗ O(−nP )]. If L = Ω1

X/K , we can the canonical map

j = jΩ1
X/K

: X → JX .

These are not in general embeddings.
On the Jacobian, there is the Néron–Tate height

ĥ = ĥJX ,Θ : JX(K)→ R

that satisfies

• ĥ(P ) ≥ 0, with equality if and only if P ∈ JX(K) is torsion,

• ĥ is quadratic and so there is a pairing 〈−,−〉NT.

Because of Mordell–Weil, we get that

JX(L)⊗Z R

becomes a Euclidean finite-dimensional space with ĥ.
Here are some conjecture that have been proven.

Conjecture 31.1 (Manin–Mumford). jL (X) ∩ JX(K)tor is finite.

This is a bold conjecture, because torsion points are everywhere (dense in
the analytic topology). Here is something stronger.

Conjecture 31.2 (Bogomolov). There exists an ε0 = ε0(X/K,L ) > 0 such

that jL (X) ∩ {P ∈ JX(K) : ĥ(P ) ≤ ε0} is finite.

The Manin–Mumford conjecture was proved by Raynaud in 1983 p-adically.
For the Bogomolov conjecture, Szpiro figured in 1990 that one can use Arakelov
theory to do this. First assume X has potentially good reduction, with ω̂2 > 0.
Then the Bogomolov conjecture holds for X. In 1993, S-W Zhang, who was
a student of Szpiro, generalized Szpiro’s proof to all possible reductions and
proved that if X does not have potentially good reduction, then ω̂2 > 0. In
1998, Ullmo proved Bogomolov’s conjecture and more using Arakelov theory
and equidistribution of small points. So we now know that ω̂2 > 0.

Theorem 31.3 (Szpiro). Assume gX ≥ 2 and X/K has an everywhere good
reduction. Let X/S be the minimal regular model of X and let ω̂ = ω̂Ar

X/S. Let

L be a line sheaf on X/K of degree n ≥ 1. Define cL = ĥ([(Ω1
X/K)⊗n ⊗

(L ∨)⊗(2g−2)]) ≥ 0.
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(1) If cL > 0, then Bogomolov conjecture for jL : X → JX holds.

(2) If cL = 0 and ω̂2 > 0, then the Bogomolov conjecture for jL holds.

Therefore for curves with good reduction, ω̂2 > 0 implies Bogomolov’s conjec-
ture.

Note that cL = 0 just means that there are m, ` ≥ 0 such that L ⊗n ∼=
(Ω1)⊗l. Also, Bogomolov’s conjecture holds for jL if and only if it holds for
jL⊗l for some ` ≥ 1. So for (2), I can only focus on L = Ω1.

Proof of (2). Let’s get started. Suppose that the Bogomolov conjecture fails
for j = jΩ1 . We want to show that ω̂2 = 0, or just ω̂2 ≤ 0. Actually for
suitable L/K we will bound ω̂2

L. By Cauchy–Schwartz, we note that |〈x, y〉NT| ≤
ĥ(x)ĥ(y).

Let ε > 0. Take P ∈ X(K) with ĥ(j(P )) < ε. By Mordell–Weil, we
know that as ε → 0 we have [κP : K] → ∞. Let P1 = P, P2, . . . , PN be the
Galois conjugates of P/K. Take L to be the field of definition of Pi. Note that

ĥ(j(Pi)) = ĥ(j(P )). The key idea is that if P,Q ∈ XL(L) so that they are
sections, we have

−(DP , DQ) ≤ −(DP , DP )∞ =
∑

σ:L→C
logG(Pσ, Qσ).

But this can’t be too small by the Faltings–Elkies bound.
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We were talking about small points. We were doing part (2).

32.1 Bolgomorov’s conjecture for L = Ω1

(2) If cL = 0 (we may assume L = Ω1) and ω̂2 > 0 then Bogomolov’s
conjecture holds.

Proof. We assume that Bogomolov’s conjecture fails for j = jΩ1 . Let ε > 0 be
small and consider P = P1, . . . , PN ∈ X(K) Galois orbit with

• N as large as we want,

• ĥ(j(P )) < ε (i.e., ĥ(j(Pk)) < ε for all k).

We will show that ω̂2 = ω̂L
2
/[L : K] is small, where L/K. We have

−ε < −ĥ(j(P )) =
1

2[L : Q]
(ω̂L − (2g − 2)DP,L)2

L

=
1

2[L : Q]
(ω̂2
L − 4g(g − 1)DP,L.ω̂L)

by adjunction on XOL . This shows that

−(2g − 2)DP,Lω̂L > −
[L : Q]ε

g
− ω̂2

L

2g
.

By Cauchy–Schwartz, we have

|〈j(Pi), j(Pk)〉NT| ≤ ε.

Then

ε2[L : Q] > −〈j(Pi), j(Pk)〉NT2[L : Q]

= (ω̂L − (2g − 2)DPi,L.ω̂L − (2g − 2)DPk,L)L

= ω̂2
L − (2g − 2)(DPi,L +DPk,L).ω̂L + (2g − 2)2DPi,L.DPj ,L.

By the bound we had before, we get(
1 +

1

g

)
2[L : Q]ε >

(
1− 1

g

)
ω̂2
L + (2g − 2)2DPi,L.DPk,L.

If DPi,L.DPk,L are always nonnegative, we will be able to get ω̂2
K → 0 as

[L : Q]→∞ and then we are done. But Arakelov intersection doesn’t work this
way, and so we average over i 6= k. Then(

1 +
1

g

)
2ε >

(
1− 1

g

)
ω̂2 +

(2g − 2)2

N(N − 1)[L : Q]

∑
i6=k

(DPi,L.DPk,L)L

>
(

1− 1

g

)
ω̂2 +

(2g − 2)2

N(N − 1)[L : Q]

∑
i6=k

∑
L↪→C

− logGσ(Pσi , P
σ
k ).
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Note that XL ⊗σ C really only depends on σ|K , because it is biholomorphic to
XK ⊗σ|K C. By Faltings–Elkies, we can estimate

=
(

1− 1

g

)
ω̂2 − (2g − 2)2

N(N − 1)[L : Q]

∑
σ:L→C

∑
i 6=k

logGσ|K (Pσi , P
σ
k )

>
(

1− 1

g

)
ω̂2 − (2g − 2)2

N(N − 1)[L : Q]

∑
σ:L→C

cσ|KN logN

>
(

1− 1

g

)
ω̂2 − cK

(2g − 2)2

N(N − 1)
N logN

for some constant cK depending only on K. As N →∞, we get ω̂2 ≤ 0 and so
ω̂2 = 0.

For (1), let’s just look at the case when L = O(P ) for P ∈ X(K) (after
base change). For all Q ∈ X(K), we have

jΩ(Q) = (2g − 2)jP (Q) + jΩ(P ).

So if ĥ(jP (Q)) → 0 for some sequence of Q, then the Néron–Tate distance
between jΩ(Q) and jΩ(P ) goes to 0.

Note that cL > 0 just means that ĥ(j(P )) > 0. Let Q = Q1, . . . , QN be

Galois conjugates with ĥ(jP (Q)) very small. Then we have

−〈j(P ), j(Q)〉2
(

1 +
1

g

)
[L : Q] =

(
1− 1

g

)
ω̂2
L + 4(g − 1)2(DP .DQ)L.

But because j(P ) and j(Q) are very close, the pairing on the left hand side is

essentially ĥ(j(P )) > 0. We’ll pick up next time.
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Last time we had the map jP : X → JX for P ∈ X(K) and L = O(P ). We

have 0 < cL = ĥ(j(P )) where j = jΩ1 . First we have

j(Q) = (2g − 2)jP (Q) + j(P )

and we have

−2[L : Q]〈j(Q1), j(Q2)〉NT = (ω̂L − (2g − 2)DQ1
, ω̂L − (2g − 2)DQ2

)L

= ω̂2
L + 4(g − 1)2DQ1

.DQ2
− 2(g − 1)(DQ1

+DQ2
).ω̂L.

On the other hand, −2[L : Q]ĥ(j(Q)) = ω̂L − 4g(g − 1)DQ.ω̂L by adjunction.
Then

2[L : Q]{ĥ(j(Q1)) + ĥ(j(Q2))− 2g〈j(Q1), j(Q2)〉NT}
= 2(g − 1)ω̂2

L + 8g(g − 1)2(DQ1
.DQ2

)L

≥ 8g(g − 1)2(DQ1 .DQ2)L,∞.

Take N large so that [L : K] → ∞. Choose Q1, . . . , QN ∈ X(L) (not
necessarily Galois conjugates!) different with dNT(Qi, P ) < ε. Then for suitable
ε > 0, we get

2g〈j(Qi), j(Ql)〉−ĥ(j(Qi))−ĥ(j(Ql)) > (1−ε′)(2g−2)ĥ(j(P )) > (g−1)cL > 0.

Then

cL < −4g(g − 1)

[L : Q]
(DQi .DQl)L,∞.

Averaging over Qi as before gives cL ≤ 0.
You can ask about the essential minimum of {ĥ(P ) : P ∈ X(K)}. One can

get estimates for this, but the sharp number is not very accessible.

33.1 The computation revisited

Now let us do the same computation again, but not with Bogomolov’s conjecture
in mind. Here, we don’t assume everywhere good reduction. Let X/K be our
curve and let X/OK be the semi-stable regular model. Again, assume gX ≥ 2.
Take P,Q ∈ X(K) be rational points and look at

ω̂ − (2g − 2)DP − ΦP ∈ V ⊥Q , ΦP = Φ(ω̂ − (2g − 2)DP ) ∈ V 0
Q .

This is the correct thing to look at because we might not have everywhere good
reduction. Then because of orthogonality,

−2[K : Q]〈j(P ), j(Q)〉 = (ω̂ − (2g − 2)DP − ΦP , ω̂ − (2g − 2)DQ − ΦQ)

= ω̂2 + 4(g − 1)DP .DQ − 2(g − 1)(DP +DQ).ω̂ − ΦP .ΦQ.
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For P = Q, by adjunction

−2[K : Q]ĥ(j(P )) = ω̂2 − 4g(g − 1)DP .ω̂ − Φ2
P .

We can cancel the DP .ω̂ terms by adding the two equations together, and then

2[K : Q]{ĥ(j(P ))− ĥ(j(Q))− 2g〈j(P ), j(Q)〉}
= 2(g − 1)ω̂2 + 8g(g − 1)2DP .DQ + (Φ2

P + Φ2
Q − 2gΦP .ΦQ).

Here, we can’t say much, but we have some idea of what the components
look like. We have 2(g − 1)ω̂ ≥ 0, and 8g(g − 1)2DP .DQ is bounded below
by some −γ1(X/K) because the Green’s function is bounded. Also, the value
Φ2
P + Φ2

Q − 2gΦP .ΦQ can take only finitely values. So we get

ĥ(j(P )) + ĥ(j(Q))− 2g〈j(P ), j(Q)〉 ≥ −γ(X/K)

for all P 6= Q in X(K).

Theorem 33.1 (Mumford inequality). ĥ(j(P )) + ĥ(j(Q)) − 2g〈j(P ), j(Q)〉 ≥
−γ(X/K) for all P 6= Q in X(K).
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34 April 20, 2018

Last time we had a small computation about sections. Let P 6= Q be rational
points in X/K, and consider DP , DQ.

Theorem 34.1. Define

M(P,Q) = 2gΦP .ΦQ − Φ2
P − Φ2

Q − 2(g − 1)ω̂2 − 8g(g − 1)2DP .DQ

where ΦP = Φ(ω̂ − (2g − 2)DP ) ∈ V 0
Q . Then

(1) M(P,Q) can be bounded above by “Arakelovian” invariants of X̂, indepen-
dently of P,Q. (This seems to have no content if you invoke Faltings’s
theorem, but you can do a computation even for algebraic points. It is
going to be complicated so I will not do this here, but then the statement
has content if we don’t know Faltings.)

(2) ĥ(j(P )) + ĥ(j(Q))− 2〈j(P ), j(Q)〉NT = − 1
2[K:Q]M(P,Q).

Let n ≥ 1 and g ≥ 2. Let 〈−,−〉 be an inner product on Rn, which induces
a norm. Consider c ≥ 0 fixed, and suppose x, y ∈ Rn \ {0} satisfy

‖x‖2 + ‖y‖2 − 2g〈x, y〉 ≥ −c.

Let λ > 0 be such that ‖y‖ = λ‖x‖, and consider θ the angle between x and y.
Then dividing by ‖x‖‖y‖ gives

1

λ
+ λ− 2g cos θ ≥ − c

‖x‖‖y‖
= − c

λ‖x‖2
.

If we assume ‖x‖2 ≥ c, then we get

2g cos θ ≤ λ+
2

λ
.

You can do the algebra and you get the following: there exists a θ0 > 0, uniform,
such that

y /∈ Rx = {z ∈ Rn : ‖x‖ ≤ ‖z‖ ≤ 2‖x‖,∠(x, z) ≤ θ0}.

These observations are called Mumford’s gap principle.

34.1 Counting points in j(X(K)) of bounded height in JX

Define the counting function

N(x) = #
{
P ∈ X(K)) : ĥ(j(P )) ≥ − γ(X)

2[K : Q]
, ĥ(j(P )) ≤ x

}
.

Proposition 34.2. For constants γ1(X) and γ2(X), we have

N(x) ≤ γ1(X) + γ2(X)rk(JX(K)) log x.
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Proof. Let R by any constant with R ≥ − γ(X)
2[K:Q] . Then the number of points

that can be in
{P ∈ X(K) : R ≤ ĥ(j(P ))1/2 ≤ 2R}

is going to be at most Brk JX(K) for some uniform constant B. This is because
we know that any two such points should have different θ. Then we can put
something like log x-many annuli we need.

We can compare this is with the ambient space. We have

#{Q ∈ JX(K) : ĥ(Q)1/2 < x} ∼ ζ · xrk J(K)

for some regulator ζ, just by counting points in regions.
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35 April 23, 2018

Today I am going to give you some context of small points on the Jacobian,
although it is not Arakelov theory.

35.1 Curve with infinitely many torsion points

Theorem 35.1 (Ihara–Serre–Tate). (A reference is Lang, Division points on
curves) Let X ⊆ G2

m over Q be an irreducible algebraic curve, passing through
the neutral element 1 = (1, 1). If X contains infinitely many torsion points of
G2
m, then X is a subgroup of G2

m (which in particular implies that gX̃ = 0).

Proof (after Tate). If X contains infinitely many torsion points, then X/k for
some K = Q(ζm). Write X = {F (x, y) = 0} for F ∈ K[x, y] irreducible over K.
Let ε = (ε1, ε2) ∈ X be a torsion point and let N be the order of ε. Of course,
N can be arbitrarily large. If we look 〈ε〉, this contains the Galois conjugates of
ε. So L = L(ε) is Galois over K and

# Gal(L/K) = [L : K] ≥ ϕ(N)

m
.

Moreover, because we understand Galois theory of cyclotomic extensions very
well, we see that if d > 1 satisfies (d,N) = 1 and d ≡ 1 mod m then there exists
a σd ∈ Gal(L/K) such that σd(ε) = εd.

Let’s count. Note that the Galois orbit of ε is contained in X ∩Xd, where

Xd = {F (xd, yd) = 0}.

Consider degX = degF . By Bezout, either X ⊆ Xd which means F | Fd, or
#(X ∩Xd) ≤ (degX)2d. In the latter case,

(degX)2d ≥ #X ∩Xd ≥ # Gal(L/K) ≥ ϕ(N)

m
.

We have a lower bound and an upper bound and we want to get a contra-
diction. By Dirichlet, there exist infinitely many p such that p ≡ 1 mod m and
moreover ∑

p≡1 mod m,p≤x

log p ∼ 1

ϕ(m)
x.

If N is divisible by all these primes, then

logN ≥
∑

p≡1 mod m,p≤x

log p ≥ 1− ε
ϕ(m)

x

and this implies N > exp( 1−ε
ϕ(m)x). For N large, we can let x = 2ϕ(m) logN and

this shows that there is some prime p ≡ 1 mod m with p ≤ x such that p does
not divide N . Then

(degX)22ϕ(m) logN ≥ ϕ(n)

m
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is a contradiction as N →∞.
This shows that we should have X ⊆ Xd, i.e., F (x, y) | F (xd, yd). From this

one gets that X is a subgroup, because if you test on complex points you can
choose something with dense orbit and so on.

Consider S = X(1)×X(1). The Andu–Oort conjecture states that if Y ⊆ S
is an irreducible point with infinitely many CM points, then Y is special. Here,
special means

(1) Y is vertical/horizontal

(2) Y = Γ(j, jN ) is the image of some higher level modular curves.
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