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1 January 22, 2018

The three main topics we will cover are:

• 4-manifolds

• Gauge theory (Donaldson’s work in the 1980s)

• 3-manifolds, knots, trivalent spatial graphs

1.1 Topology of smooth 4-manifolds

Before Donaldson’s work, nothing was know about 4-manifolds. Here, we mean
smooth oriented closed 4-manifolds. The π1(X) can be any finitely generated
group. We also have

H2(X;Z) ∼= H2(X;Z) ∼= {complex line bundles over X}

via the Chern class c1(L). This isomorphisms also can be thought this way.
Given a line bundle L and a section s, the vanishing locus s−1(0) is going to be
an oriented 2-dimensional submanifold. Its homology class will be in H2.

Proposition 1.1. Every σ ∈ H2(X;Z) is represented by a 2-dimensional sub-
manifold Σ2 ↪→ X4.

The group H2 carries a quadratic form, the intersection product, and this is
equivalent to H2 with the cup-square

H2 ×H2 → H4(X;Z) ∼= Z.

This is symmetric and unimodular on H2/torsion. In H2, this is the count of
intersection points, with suitable orientation:

[Σ1][Σ2] =
∑

Σ1∩Σ2

(±1).

In particular, [Σ][Σ] is the degree of the normal bundle, i.e., the Euler class.
This can be seen by deforming Σ to Σ′ along a section of the normal bundle ν.

Because this is a symmetric unimodular form, we can consider its rank and
signature:

b2 = b+ + b−, σ = b+ − b−.

But unimodular indefinite forms over the integers is not classified by its signa-
ture. Unimodular indefinite forms are either

• odd forms λ(1)⊕ µ(−1) or

• even forms λ( 0 1
1 0 )⊕ µ(±E8).

Even forms have the property that x · x is always even.
So the fundamental question we ask are:
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• Which quadratic forms arise from 4-manifolds?

• Does the quadratic form determine the 4-manifold if π1(X) = 0?

Here are some examples of 4-manifolds.

• X = S4: Here Q = 0.

• X = S2 × S2: Here, the two S2 intersect once, and each have trivial
normal bundle. So Q = ( 0 1

1 0 ).

• X = CP 2: The rank is 1 and Q = (1).

• X = CP 2, with the opposite orientation: Here, Q = (−1).

Now note that taking connecting sums of manifolds give the direct sum of in-
tersection forms. This gives us all the odd forms.

To get E8, we need something more interesting. Take X a K3-surface, and
we are going to look at its tangent bundle. But let’s take a step back. Given a
general X4, we can consider w2(X) ∈ H2(X;Z/2), p1(X) ∈ H4, e ∈ H4. In the
π1 = 0 case, we have

w2(X) ` y = y ` y.

So if H2(X;Z) is torsion-free, every y ∈ H2(X;Z/2) has an integer lift. So
w2(X) = 0 if and only if [Σ][Σ] is even for all Σ (i.e., when the quadratic form
is even). Also, we have

p1(X)[X] = 3σ, e(X)[X] =

4∑
0

(−1)ibi(X).

by the Hirzebruch signature theorem.
Going back to the K3-surface, we see that c1(TX) = 0 and c2(TX) =

e(X) = 24. From w2 = c1 (mod 24) and p1 = c21 − c2, we obtain rankQ = b2 =
22. Also, σ = −8. This shows that

QX = 3( 0 1
1 0 )⊕ 2(−E8).

Unsolved question. Which of λ( 0 1
1 0 ) ⊕ µ(−E8) arise as QX? In particular,

is always λ ≥ 3
2µ?

It can be shown that µ is even. If w2 = 0 then σ is divisible by 16.
For a smooth complex surface, you can blow up at a point. This is taking

the connected sum with CP 2. So we define

X ′ = X#CP 2

as the blow-up in general. In particular, X = K3#CP 2 has rank b2 = 23 and
signature σ = −17. This is now odd, and

QX = 3(1)⊕ 20(−1).

Going back to our uniqueness question, we can ask ifK3#CP 2 ∼= 3CP 2#20CP 2.
The answer is no, and the deep reason comes from gauge theory.
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1.2 Connections

Now we are going to study gauge theory. The main set up is

• a n-manifold X,

• a vector bundle E → X,

• and a connection A on E.

This connection is a map

∇ : Ω0
X(E)→ Ω1

X(E) = Γ(Λ1
X ⊗ E)

satisfying ∇(fs) = f∇(s)+(df)⊗s. Given two vector bundles E,E′ and a map
u : E′ → E, we can pull back the connection A on E, and get a connection
u∗(A) on E′. From now, I will consider objects (E,A), a bundle together with
a connection.
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2 January 24, 2018

I’m not talking about bundles and connections because I want to start from
scratch, but because I want to make sure we’re talking about the same things.
Let G be a Lie group and g be the left-invariant vector fields. Let π : P → X
be a principal bundle so that G acts on P on the right. We have a subbundle
V ⊆ TP given by V = kerπ∗.

Definition 2.1. A connection is a subbundle H ⊆ TP such that V ⊕H = TP
at every point and is G-invariant.

So given any path γ on X, there is a unique horizontal lift to P . This is
parallel transport. We also have H as the kernel

θ : TP → V ∼= g · P,

so where θ is a g-valued 1-form on P .
Consider the associated vector bundle E → X, coming from a finite-dimensional

representation of G. Then we get a map

∇ : Ω0
X(E)→ Ω1

X(E).

This is another way to think about connections. A representation is a map
g→ End(RN ), so we get a map

gP → End(E),

where gP is the associated vector bundle with fiber g. In particular, if G =
SU(N) and E = CN then gP ⊆ End(E) is the traceless skew-symmetric endo-
morphisms.

Let ∇,∇′ be two connections in E → X. Then ∇−∇′ is tensorial, because

(∇−∇′)(fs) = f(∇−∇′)s.

So a = ∇−∇′ is in Ω1
X(EndE), and in the principal bundle case, Ω1

X(gP ). If
we consider the space A of all connections in E → X with structure group G,
this is an affine space over Ω1

X(gP ), i.e.,

A = {∇0 + a : a ∈ Ω1
X(gP )}.

2.1 Curvature

Curvature is what connections have. Let xi be local coordinates on X. I can
write a connections as

∇ =
∑
i

∇idxi,

where ∇i send sections of E to sections of E. Now differentiations don’t com-
mute, and we can consider

Fij = [∇i,∇j ] ∈ Γ(End(E)).
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We then can define curvature as

F =
∑
i,j

Fijdx
i ∧ dxj ∈ Ω2

X(gP ).

The curvature is the local obstruction to the connection being trivial.
If Xn is Riemannian and oriented, then it has the Hodge star operator

acting as ? :
∧
p →

∧
n−p or ? : ΩpX → Ωn−pX . In Euclidean space, it is going to

map
?(e1 ∧ · · · ∧ ep) = ep+1 ∧ · · · ∧ en.

We can write this as
α ∧ ?b = (α, β)dvolX .

If n = 2m is even, we have the map ? : Ωm → Ωm, and in particular, for
n = 4 we have

? : Ω2
X(gP )→ Ω2

X(gP ).

In this particular dimension, ?2 = 1, and then the eigenvalues are ±1. So, on
an Riemannian oriented X4, we can decompose∧

2 =
∧

2
+ ⊕

∧
2
−

with respect to the eigenvalues of ? being 1 and −1. We can then decompose
Ω2 = Ω2

+ ⊕ Ω2
−. These are called self-dual and anti-self-dual parts.

We can do this for the curvature. That is, we can write F = F+ +F− where
F+ ∈ ω+

X(gP ).

Definition 2.2. A connection is anti-self-dual if its curvature has ?F = −F ,
i.e., F+ = 0.

Example 2.3. There are flat connections. Here, parallel transport along the
path is unchanged as the path homotopes. That is F = 0, and you can even
take this as the definition. Here, the data that determines the connection is the
homomorphism ρ : π1(X)→ G.

Example 2.4. On S4 with the standard orientation and round metric as a unit
sphere, there is a Levi–Civita connection on TS4, and also on

∧
2. Take E =

∧
2,

which is going to be a rank 3 vector bundle, so have fibers R3. But R3 ∼=
so(3). This is confusing. The original Levi–Civita connection has curvature in
Ω2
S4(so(4)), and The curvature of E =

∧− is a map
∧

2 → End(E), and it is todotodo
going to be the projection

∧
2 →

∧−. In particular, F annihilates
∧

+.
Every SO(3) bundle on S4 lifts to SU(2). So we get an anti-self-dual con-

nection for G = SU(2) on S4 as well. This is a “standard 1-instanton”.

The reason for this is the following. The ? operator is conformally invariant
on Ω2 on X4. So the condition F+ = 0 depends only on the conformal class.
Now consider the conformal map S4 → R4. If we look at the density |F |2 this
is going to have a peak at a point and decay away from this point.
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On S4, we had a SU(2)-bundle by taking the double cover. These are clas-
sified by Z via c2(P )[S4], i.e., c2(E)[S4] where E has fiber C2. Ditto, on a
connected oriented closed X4, the Chern class is classified by k = c2(P )[X].
The Chern class is also computed in terms of the curvature F . This is an
example of the Chern–Weil formula. For an SU(2)-bundle, we can compute

k =
1

8π2

∫
X

Tr(F ∧ F ).

Here, F is a 2× 2-matrix-valued 2-form. So when I write F ∧ F , we are multi-
plying matrices and wedge producting the 2-forms. Then F ∧ F is going to be
2× 2-matrix-valued 2-form. Then taking the trace gives a 4-form.

Note that −Tr(ab) is the standard inner product (Killing form) on su(2).
Also, the Hodge star turns wedge products to inner products. So we can write

k = − 1

8π

2 ∫
X

(F, ?F )dvol =
1

8π2

∫
X

(|F−|2 − |F+|2)dvol.

The L2-norm of F is

1

8π2
‖F‖2 =

1

8π2

∫
X

(|F+|2 + |F−|2)dvol.

Corollary 2.5. We have
1

8π2
‖F‖2 ≥ k,

and equality holds if and only if the connection is anti-self-dual.
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3 January 26, 2018

So we have a Riemannian oriented closed 4-manifold X4. We also have a prin-
cipal G-bundle P → X, where often G = SU(N), and this will be associated
to a bundle E → X with fiber CN . We want to look at the automorphisms
g : E → E, which is called the gauge group G. This is going to just be the
sections of Gp.

3.1 Moduli spaces of connections

Fix a E, and let A be the space of all connections on E. This is an affine space,
and consider B = A/G. We can think of it as parametrizing pairs (E′, A′) up
to isomorphism of pairs, with E′ ∼= E. If we write k = c2(E)[E], then we can
consider it as

B =
⋃
k

Bk.

The anti-self-dual connections form a subset Mk ⊆ Bk. This k is called the
instanton number. For any A ∈ A, we get [A] ∈ A/G the equivalence class.
Then

Mk = {[A] : F+
A = 0}

is the moduli space of anti-self-dual connections.

Example 3.1. On S4, with the round metric, and G = SU(2), the moduli
space Mk is a smooth non-compact of dimension 8k−3 for k ≥ 1. What is M0?
We’ve seen that the Yang–Mills functional is

‖F‖2L2(X) ≥ 8π2k

with equality for anti-self-dual connections. So if k = 0, every anti-self-dual
connection should be flat, and the bundle is trivial if π1 = 0.

3.2 Elliptic operators

Consider a subset Ω ⊆ Rn, and an operator on CN -valued or RN -valued func-
tions on Ω. In other words, we consider a differential operator D : ΓΩ(V ) →
ΓΩ(W ) where V and W are trivial bundles. Assuming that D is first-order, we
can write D as

Dv =

n∑
i=1

ai
( ∂

∂xi
v
)

+ bv

where ai, b ∈ HomΩ(V,W ). Replacing ∂/∂xi with ξi gives a symbol P . Then
the leading part is

σD =
∑
i

aiξi : T ∗ → Hom(V,W ).

Definition 3.2. D is said to be elliptic if σD(ξ) is invertible whenever ξ 6= 0.
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For instance, consider the Cauchy–Riemann equations ∂f = 0, where f =
f1 +

√
−1f2. Then

σj(ξ) =

(
ξ1 −ξ2
ξ2 ξ1

)
is elliptic because the determinant is ξ2

1 + ξ2
2 .

Definition 3.3. For r ≥ 0 an integers, we define the Sobolev norm as

‖f‖Lpr =
∑
|α|≤r

‖Dαf‖Lp .

Let Ω1 ⊆ Ω be open sets where the closure Ω1 is in Ω. If D is a first-order
elliptic operator, then we have inequalites

‖f‖Lpr+1(Ω1) ≤ C(‖Df‖Lpr(Ω) + ‖f‖Lp(Ω)).

To get an intuition for this estimate, consider the Cauchy–Riemann equations.
Then for a holomorphic function f , we can compute f (r)(z) by taking a contour
integral around z. So

|f (r)(z)| ≤ C sup
w∈γ
|f(w)|.

If Df = 0 and f ∈ Lp1, then you can show that f is smooth if D is elliptic.
Let’s look at connections. Consider a trivial bundle over Ω in R4. If we write
∇ = d+A, then

F = dA+A ∧A ∈ Ω2(g).

So the self-dual part will be

F+
A = d+A+ (A ∧A)+,

where d+ : Ω1 → Ω+ is the composition Ω1 d−→ Ω2 π−→ Ω+. So the equation we
want to solve is

d+A+ (A ∧A)+ = 0.

The problem is that d+ is not elliptic. You can expect this, because a very
large group G acts on solutions. So we need to impose additional “gague-fixing”
conditions on A.

3.3 Linear gauge-fixing

Let us take G = S1 and g = iR. Then ∇ = d + ia where a ∈ Ω1. The usual
condition you want to impose on A is the Coulomb gague-fixing condition.
This is given by

d∗a = 0

where d∗ = ?d? : Ω1 → Ω0. Now we have the equation d+a = d∗a = 0. Then
the equation

d+ ⊕ d∗ : Ω1 → Ω+ ⊕ Ω0
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is an elliptic operator. If you look at the ranks, Ω1 has rank 4 and Ω+⊕Ω0 has
rank 3 + 1. This is a natural condition for ellipticity. You can actually check
this using

σd+(ξ) = {η 7→ (ξ ∧ η)+}, σd∗(ξ) = {η 7→ ξ · η}.

We need to show that (ξ ∧ η)+ = 0 and ξ · η = 0 implies either ξ = 0 or η = 0.
To see this, note that |ω+| = |ω−| if ω∧ω = 0. So (ξ∧η)+ = 0 means ξ∧η = 0,
i.e., they are linearly dependent in

∧
1.

So how do we do this impose this Coulomb gauge? A g ∈ G is an S1-valued
function. So we seek a g : d + a 7→ d + a′ such that d∗a′ = 0. Take a trivial
bundle over X4 a closed Riemannian manifold. We have

a′ = a− g−1(dg),

so if we write g = exp(iϕ) then a′ = a− idϕ. The equation d∗a′ = 0 means

−∆ϕ = d∗dϕ = −id∗a.

The Friedholm alternative says that this can be solved if the right hand side is
orthogonal to the kernel, i.e., ∫

X

(d∗a)dvol = 0.

This follows from the divergence theorem. So after the gauge-transformation,
we can use the elliptic package to get smoothness, regularity, etc.

For the SU(N) case, what should we do? If we seek g = exp(ϕ), where ϕ is
a section of gP . If this sends

∇ = dA0 +A 7→ dA0 +A′,

then we can also impose the Coulomb condition relative to A0,

d∗A0
A′ = 0.

The equation we want to solve becomes

d∗A0
dA0ϕ+ (non-linear terms) = (given in terms of A,A0).

We need a framework in which we can say that the non-linear terms don’t
matter.
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4 January 29, 2018

So we are working in the Sobolev spaces Lpk with 1 < p < ∞. Let Xn be a
closed manifold and V → Xn be a vector bundle.

4.1 Sobolev embeddings

For ∇ any smooth connection and s a section we define

‖s‖Lpk =

k∑
0

‖∇rs‖Lp ,

and Lpk(X,V ) is going to be the completion of Γ(X;V ). There is a Sobolev
embedding

Lpk ↪→ C0

if k − n
p > 0, and also embeddings

Lpk ↪→ Lq`

if k ≥ ` and k− n
p ≥ `−

n
q . So in dimension 4, we have L2

3 ↪→ C0 and L2
1 ↪→ L4.

Beyond that, we want multiplication theorems. Once k − n
p > 0 (so that all

sections are continuous), we have a bilinear map

Lpk × L
p
k → Lpk

induced from any V1 ⊗ V2 → V3. Likewise, we have

Lpk × L
q
` → Lq`

if k − n
p > 0 and Lpk ↪→ Lq` . If you’re below the borderline so that k − n

p < 0
and `− n

q < 0, we have

Lpk × L
q
` → Lrm

when k−n
p+`−n

q = m−n
r and k, ` ≥ m. For 4-manifolds, we have L2

1×L2
1 → L2.

Also, L2
3 is an algebra and L2

2 is an L2
e-module. Given that L2

1 ↪→ L4, it actually
follows from Cauchy–Schwartz that L2

1 × L2
1 → L2.

Now let G the L2
3-gauge transformations of an SU(2)-bundle E → X4. This

is a Banach Lie group, with Lie algebra

Lie(G) = L2
3(X; gP ),

with the Lie algebra structure coming from the pointwise Lie algebra structures.
Consider the space of connections

A = {A0 + a : a ∈ L2
2(X; gP )},

where A0 is C∞. Here, we need one less, because g acts as g ◦ (dA0
+ a) ◦ g−1,

and the g(dg−1) term comes in. So noe G acts on the affine Banach space A.
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Given any A and A + a with ‖a‖L2
2

small, there exists an g ∈ G such that
g : A+ a 7→ A+ a′ with d∗Aa

′ = 0. Let me describe this pictorially. Consider

S = {A+ a : d∗Aa = 0}.

This is a linear space in A, and what this statement says is that every nearby
G-orbit meets S. (The intersection is actually a single point for generic A.) This
is some kind of a implicit function theorem.

4.2 Moduli space of anti-self-dual connections

We were interested in the moduli space M ⊆ B = A/G of anti-self dual connec-

tions. It is quite a direct argument, but elliptic regularity states that M ⊆ BL2
2

can be considered as M ⊆ BC∞ . That is, every anti-self-dual L2
2 connection is

L2
3-gauge equivalent to a smooth one.

If we assume that any G-orbit close to A intersects S at a single point, we
have that a neighborhood of [A] in M is isomorphic to

{A+ a : A+ a ∈ S, F+
A+a = 0, ‖a‖L2

2
< ε}.

So the equation we want to solve is{
d∗Aa = 0,

d+
Aa+ (a ∧ a)+ = 0.

This is not a linear equation because of a ∧ a, but we can consider the direct
sum

δA = d∗A ⊕ d+
A : L2

2(
∧

1 ⊗ gP )→ L2
1(
∧

0 ⊕
∧

+).

It turns out that δA is an elliptic operator, and the elliptic package tells us that

• ker(δA) is finite-dimensional,

• the formal adjoint δ∗ is also elliptic,

• ker(δ∗) ∼= coker(δ).

For the quadratic part, we have a 7→ (a ∧ a)+ which is L2
2 → L2

1 because
L2

2 × L2
2 → L2

1.
If δA is surjective, the implicit function theorem tells us that the solutions

to d∗a = 0 and F+
A+a = 0 form a smooth manifold near a, with tangent space

ker δA. So M is a smooth (finite-dimensional) manifold near A if

• the G-orbits near A meet S at one point,

• d∗A ⊕ d
+
A is surjective.

Consider the stabilizer

ΓA = {g : g ◦ dA ◦ g−1 = dA} = {g : dAg = 0}
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of A. These are parallel gauge transforms. If we define

HolA = {holγ(A) : γ} ⊆ SU(2),

then ΓA is the centralizer of HolA in SU(2). The interesting case is ΓA ∼= S1,
when HolA(S) ⊆ S1 but is not in {±1}. This happens when E splits as E =
L⊕ L−1 and HolA preserves the decomposition.

First of all, ΓA always acts on A, and ±1 acts trivially. So ΓA/(±1) ⊆
G/(±1) acts on A, fixes A, and acts on S. This means that G-orbits near A
meet S in orbits of ΓA.

Because ΓA is finite-dimensional, its Lie algebra is

Lie(ΓA) = {u : dAu = 0}

and u ∈ L2
3(X; gP ). The picture can be summarized in a complex

0→ Ω0(gP )
dA−−→ Ω1(gP )

d+A−−→ Ω+(gP )→ 0.

The statement d+
A ◦ dA = 0 is equivalent to the fact that F+

A = 0. These are
smooth sections, and we take the completion to L2

3, L2
2, and L2

1.
Let us compute the cohomology groups. We have

H0
A = Lie(ΓA),

and this is 0 if ΓA = ±1, i.e., A is irreducible. The second cohomology H2
A

vanishes if and only if d∗A ⊕ d
+
A is onto, which is the hypothesis for the implicit

function theorem. The first cohomology H1
A is interesting. This is

H1
A =

ker d+
A

im dA
= (ker d+

A) ∩ (ker d∗A) = ker(d+
A ⊕ d

∗
A).

So if H0 = H2 = 0, then this is the tangent space to M .
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Let X4 be a Riemannian manifold. Last time we had a complex

0→ Ω0 d−→ Ω1 d+−−→ Ω+ → 0.

There are the dual maps d∗ : Ω+ → Ω1 and d∗ : Ω1 → Ω0. Here,

coker(d+) = ker(d∗|Ω+) = ker(∗d ∗ |Ω+
) = ker(∗d|Ω+) = ker(d|Ω+

).

On Ω2, we have the harmonic 2-forms H2 ∼= H2
dR, of dimension b2. Under

∗, this decomposes into eigenspaces H2 = H+ ⊕H−. Then their dimension can
be written as b2 = b+ + b−. Then we can write

Ω1 d∗⊕d+−−−−→ Ω0 ⊕ Ω+

with kernel H1 and cokernel H0 ⊕H+. Its index would then be b1 − 1 − b+ if
X is connected.

For an anti-self-dual connection A, we had

0→ Ω0(gP )
dA−−→ Ω1(gP )

d+A−−→ Ω+(gP )→ 0.

Then H0
A = Lie(ΓA) and H2

A is the kernel of the linearization of the equation
F+
A = 0 in the Coulomb gauge, and H2 is the cokernel. If A is irreducible and

surjective, we have H0
A = H2

A = 0 and

d = dimH1
A = index(δA).

If A is the trivial connection, the index is the dimension of g times the
(−b+ + b1 − b0). In the case of a general SU(2)-bundle E, by some index
theoremwe get todotodo

index = (const)c2(E)[X]− 3(b+ − b1 + b0) = 8k − 3(b+ − b1 + b0).

Here, k is the second Chern number. In general, for a SU(N)-bundle, the index
is going to be

4Nk − (N2 − 1)(b+ − b1 + 1).

Example 5.1. Consider the 1-instanton on the round X = S4. Here, b+ = 0
and b1 = 0 and so the dimension of the moduli space is dim = 8k − 3 = 5.
But anti-self-duality is preserved under conformal transformation on S4. On R4

under stereographic projection, it is going to be determined by its center and
scale. It turns out that the moduli space is the open 5-ball B5.

Example 5.2. Consider X = CP 2, with b+ = 0 and b− = 1. Here, dimMk =
8k − 3. (By dimension I mean formal dimension index(δA), which actually will
be the dimension in nice cases.) Then M1 is 5-dimensional and will be a cone
on CP 2 with a singularity at the vertex. The local model there will be C3/S1.
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5.1 Reducibles on M

In the case ΓA = SU(@), we have that A is flat, and that holonomy is contained
in {±1}. Then c2 = 0 automatically. This is not interesting.

In the case ΓA = S1, we have a splitting E = L⊕ L−1. Here, the curvature
also splits as FA = ( ωL 0

0 −ωL ), and ωL ∈ Ω2(X; iR). We need to ωL ∈ iH− for
FA to be anti-self-dual. But the Chern–Weil formula states that

i

2π
ωL

represents c1(L) with real coefficients. So the question is whether c1(L) is
contained in the linear subspace H− ⊆ H2 ∼= H2(X;R). This condition c1(L) ∈
H− will be equivalent to the anti-self-dual equation we are trying to solve.

Consider the space Met of Riemannian metrics on X and Grass of b−-
dimensional subspaces of H2(X;R). There is a map given by

Met→ Grass; g 7→ H−g .

Then there is a subspace N ⊆ Grass given by subspaces H ∈ Grass that contain
c1(L).

Lemma 5.3 (Donaldson). The mapMet→ Grass is transverse to N if c1(L) 6=
0. So

“bad metrics” = {g ∈Met : c1(L) ∈ H−(g)}

has codimension b+ inside Met.

Corollary 5.4. If b+ > 0 then for a generic Riemannian metric, there do not
exist reducibles in M with c1(L) 6= 0.

If b+ > 0, then it will hold for a generic path of metrics. Here, c1(L) = 0
over R means that c1(L) is torsion, and so L and L⊕L−1 are flat bundles, with
c2(E) = −c1(L)2 = 0, so k = 0.

The other thing we need to worry about is whether H2
A = 0, i.e., whether

the linearization of F+
A = 0 is surjective.

Theorem 5.5 (Freed–Uhlenbeck, for SU(2)). Let M∗ ⊆M be irreducible solu-
tions. For a generic Riemannian metric g, δA is onto for all [A] ∈M∗(g).

Together with the previous discussion, we get the following corollary.

Corollary 5.6. If b+(X) > 0 and k 6= 0, then for generic g, the moduli space
M is smooth, has no reducibles, and dimM = 8k − 3(b+ − b1 + 1).
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Today we are going to talk about Uhlenbeck’s compactness theorem. We looked
at X = S4 and k = 1, and saw that the moduli space is M1 = B5, which is
noncompact. If we look at the curvature density on S4, these are going to
look like things concentrated around a specific point. Then as we move to
the boundary of M1, we get a small concentrated distribution around a point.
The theorem states roughly that this is the only way that can happen in the
non-compactness.

6.1 Uhlenbeck’s compactness theorem

Definition 6.1. A ideal connection with c2 = k on X is a configuration
([A′], x1, . . . , xl) where [A′] is anti-self-dual with c2 = k − l and xi ∈ X. (Here,
we consider (x1, . . . , xl) ∈ X l/Σl.)

Suppose E → X has c2 = k, and An for n ∈ N be anti-self-dual connections.
We say that

[An]→ ([A′], x1, . . . , xk)

weakly converges if

• A′ is an anti-self-dual (smooth) connection E′ → X with c2 = k − l,
• on X◦ = X \ {x1, . . . , xn}, there are isomorphisms gn : E′|X◦ → E|X◦ so

that g∗n(An)→ A′ in the C∞(K)-topology for all compact K ⊆ X◦,
• if µn = 1

8π2 |FAn |2, then as measures there is a weak convergence

µn → µ′ +

l∑
1

δxi

where µ′ = 1
8π |FA′ |

2.

Weak convergence here means that

1

8π2

∫
|FAn |2ψ dvolX →

1

8π2

∫
|FA′ |2ψ dvolX +

∑
ψ(xi)

for any test function ψ ∈ C0(X). Given a bounded sequence of holomorphic
functions on the disk, there is a subsequence that converges uniformly on com-
pact sets to a holomorphic function. These are solutions to the Cauchy–Riemann
equations, and we are looking at solutions to the anti-self-duality equation. The
difference is that the Cauchy–Riemann equations is elliptic, while the anti-self-
duality equation is not elliptic until you put the Coulomb gauge condition.

Theorem 6.2. Given [An] ∈ Mk a sequence, there exists a subsequence that
converges weakly in this sense, to some ([A′], x1, . . . , xk).
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Consider a flat ball B4
1 and take a trivial bundle. A connection is d+A for

A ∈ Ω1(g), and then the anti-self-duality equation is

F+
A = d+A+ (A ∧A)+ = 0.

Theorem 6.3 (Uhlenbeck). There exists a universal constant η such that if
1

8π2

∫
B4 |FA|2 < η then

• there exists a gauge transformation g such that if Ã = g(A) then d∗Ã = 0,

• there exists a universal C such that ‖Ã‖L2
1
≤ C‖FA‖L2

(and there are also
bounds higher derivatives because it solves an elliptic equation).

Suppose we had a d∗A = 0. How will we get the estimate on |A|L2
1
? Say we

do this on X with H1(X) = 0 and E = X × C2. Then

δ = d∗ + d+ : Ω1 → Ω0 ⊕ Ω+

has no kernel. If we look at the anti-self-duality equation δA+ (A ∧ A)+ = B,
its linear equation is already δA = B. So ‖A‖L1 ≤ C‖B‖L2 and then

‖A‖L2
1
≤ C(‖B‖L2 + ‖(A ∧A)+‖L2) ≤ C ′(‖B‖L2 + ‖A‖2L2

1
)

by the Sobolev multiplication. So if ‖A‖L2
1
≤ 1

2C′ (which is a universal bound),
then we can say

1

2
‖A‖L2

1
≤ C ′‖B‖L2 .

So this gives a local solution for the Coulomb gauge fixing problem. To
make this global, we use the method of continuity. On B4, We can always find
a family At of connections such that A0 = 0 and A1 = A. This can be done by
looking at the map ×t : B4 → B4 and pulling back the connection.

We can solve our problem for t = 0, so we aim to show that the space
{t : can solve} is both open and closed in [0, 1]. To show that open, we use the
implicit function theorem. To show that it is closed, we use estimates.

Recall that we have said that for any [An] ∈Mk, there exists a subsequence
weakly converging ([A′], x1, . . . , xl). To prove this, consider the measures

µn =
1

8π2
‖FAn‖2dvolX .

It is a general fact that there exists a weak-∗ convergent subsequence µn′ → µ∞.
If x0 ∈ X has a ball neighborhood B4

ε , then µ∞(B4
ε ) < η, then we get a

convergence on this neighborhood from the local result, because

1

8π2

∫
B4
ε

|Fn|2 < η.

(Here, note that ‖F‖L2 is scale-invariant, so η does not depend on the radius.)
Now where this fails cannot be infinite, because the total energy we have is
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always µ∞(X) = k, which is the second Chern class. So there is just a finite
number of points where we can’t do this.

Now outside these points, we locally have these connections, and we need to
patch them together. This is not fun, because there can be some horrible gauge
transformations. So we use a removability of singularities statement.

Proposition 6.4. One B4, given a A on B4 \{0} with |FA|2 ≤ η1 and F+
A = 0,

there exists a gauge transformation g on B4 \ {0} such that Ã = g(A) extends
smoothly to B4.
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7.1 Uhlenbeck compactification

On a 4-manifold X4, we were looking at the moduli space Mk of anti-self-dual
connections on a vector bundle with c2 = k. When we compactify, we need to
attach the ideal

([A′], x1, . . . , xl) ∈Mk−l × syml(X).

So the compactifiaction of Mk is going to be given by

Mk ⊆Mk ∪ (Mk−1 ×X) ∪ (Mk−2 × sym2(X)) ∪ · · · ∪ (M0 × symk(X)).

The right hand side becomes compact, and the closure Mk in this space is
called the Uhlenbeck compactification. In most cases, the closure is going
to contains all factors Mi × symk−i(X) for i > 0. If you think about the
dimension, formal dimension goes down by 8 from Mi to Mi−1 and then gains
4 by multiplying by X. But at the last term M0 × symk(X), we have that M0

is a point and so actual dimension of M0× symk(X) is 4k. This means that the
dimension doesn’t match, so that we shouldn’t expect Mk to be everything.

Example 7.1. For the round sphere S4, the Uhlenbeck compactification M1

is the closed 5-ball. For CP 2
with the Fubini–Study metric, its Uhlenbeck

compactification is the cone CP 2 × [0, 1]/ ∼.

Example 7.2. If we have a manifold with b+ = 1 and b1 = 0, then dimM1 =
8k−6 = 2, but dimM0×X = dimX = 4. So the space M1∪ (M0×X) is going
to look like a 2-dimensional thing attached on a 4-dimensional thing. For the
Uhlenbeck compactification M1, we only need to add the boundary part of the
2-dimensional thing.

This picture can be established more generally.

Theorem 7.3 (Taubes, Donaldson, Taubes’s collar theorem). If π1(X) = 0
(so that M0 = ∗) and b+(X) = 0, then a neighborhood of M0 × X ⊆ M1 is a
5-manifold with boundary X. That is, it contains a collar.

The idea is to actually construct solutions. In particular, this theorem tells
us that M1 is nonempty.

Corollary 7.4. There is no smooth compact oriented 4-manifold with π1 = 1
and QX = −rE8 with r > 0 (or indeed any nonzero even form with b+ = 0).

Proof. In this case, we can show that M1 has no reducibles. Suppose that E
with c2(E)[X] = 1 can be reduced to E = L⊕ L−1. Then we have

1 = c2(E) = c1(L) · c1(L−1) = −c1(L)2,

but c1(L)2 should be even because the form is even.
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So this shows that there are no reducibles, and then M1 is a smooth 5-
manifold. By Taubes’s collar theorem, this shows that X is a boundary of a
smooth 5-manifold. Now cobordism theory shows that a 4-manifold X is an
oriented boundary if and only if σ(X) = 0, i.e., b+ − b0 = 0. But this can’t
happen unless b+ = b− = 0.

This is essentially Donaldson’s thesis.

7.2 Three-manifolds and the Chern–Simons functional

I want to think a bit about 3-manifolds. Let Y 3 be a closed, oriented, Rieman-
nian manifold. In this case, we make it into a 4-manifold by taking the product
R × Y 3. The coordinates will be denoted (x0, x1, x2, x3) or (t, y1, y2, y3). If
E → R× Y is a SU(2)-bundle, it is always trivial because E → Y is trivial.

For A a connection on E → R× Y , we can think of it as d+A with

A ∈ Ω1(su(2)).

Let us write this as

A0dt+

3∑
1

Aidy
i.

We say that A is in temporal gauge if A0 = 0. Given A, there always exists
some g so that Ã = g(A) is in temporal gauge. The way to do this is to trivalize
the bundle by parallel transport along the t-line.

If there is no A0 terms, we can think of this as a connection on Y with
t-dependence. That is, I take it as

B(t) ∈ Ω1
Y (su(2)).

Or I can just regard them as connections on R × Y in the temporal gauge.
We denote by the time-dependent connection on Y by d + B. This distinction
matters, because when I look at the 4-dimensional curvature on R× Y , we get

(dX +B)(dX +B) = dXB +B ∧B

= dt ∧ dB
dt

+ dYB +B ∧B = dt ∧ dB
dt

+ FYB .

Now when is B an anti-self-dual connection? We need to think about the
Hodge star. If dt, η1, η2, η3 is an oriented orthonormal frame in Ω1(Y )p, then

?4(dt ∧ η1) = η2 ∧ η3, ?3η1 = η2 ∧ η3.

So we get
?4(dt ∧ α) = ?3α.

We can use this to compute

?4FB = ?3

(dB
dt

)
+ dt ∧ ?3F

Y
B .
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The conclusion is that B is anti-self-dual if and only if

dB

dt
= − ∗Y FYB .

This can be also thought of as an evolution equation, if you’d like.
One issue is that FB and B sits inside difference spaces. The connection B

lies in the Banach space B ∈ L2
3(
∧

1⊗ su(2)), but the curvature sits inside FB ∈
L2

2, not in L2
3. This is formally a gradietn flow equation. For B ∈ Ω1

Y (su(2)), I
want to define the Chern–Simons functional

CS(B) = −
∫
Y

tr
(1

2
B ∧ dB +

1

3
B ∧B ∧B

)
.

This will satisfy

d

dt
(CS(B + tβ))|t=0 = −

∫
1

2
tr(β ∧ dB +B ∧ dβ)−

∫
β ∧B ∧B

= −
∫
β ∧ (dB +B ∧B) = −

∫
β ∧ FB

=

∫
〈β, ?3FB〉dvolY = 〈β, ?FB〉L2 .

So the gradient of CS is ?FB .
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We were looking at the Riemannian manifold Y 3, a bundle C2×Y and a SU(2)-
connection d+B. We introduced the Chern–Simons functional

CS(B) = −1

2

∫
Y

tr(B ∧ dB +
2

3
B ∧B ∧B).

Here, we interpret B ∈ Ω1
Y (su(2)) as something with a L2 inner product. We

compute
grad(CB)B = ?FB

where ? is with respect to Y .

8.1 Chern–Simons functional under gauge transformations

This relates to anti-self-duality on the cylinder [t0, t1]×Y . Given a path B(t) =
B, the anti-self-duality equation ?FB = −FB can be also written as

d

dt
B(t) = − grad(CS)B(t).

For B(t) any path (not necessarily the gradient flow), we can compute

CS(B(t1))− CS(B(t0)) =

∫ 〈dB
dt

(t), ?FB(t)

〉
dt dvol = −

∫
tr
(dB
dt
∧ FB(t)

)
dt.

But because FXB = dt ∧ dB
dt + FYB , we get

CS(B(t1))− CS(B(t0)) = −1

2

∫
tr(FB(t) ∧ FB)dt.

If the connection B is anti-self dual, we get fill infill in

CS(t0)− CS(t1) =
1

2

∫
tr(FB ∧ FB) =

1

2

∫
|FB |2.

This makes sense because B is a downward gradient flow.
Denote byA(Y ) = Ω1(g) the connections on C2×Y and G(Y ) = Map(Y,SU(2))

the gauge group. We note that

π0G(Y ) = [Y,SU(2)] = [Y, S3] ∼= Z.

The Chern–Simons form A ,R is not G-invariant, but it is invariant under
the identity component of G. Here is why. Consider a bath from B to B′ that
have the same connected orbit of G. Note that the gradient grad(CB)B = ∗FB
lies in the Coulomb slice, because we can compute

d∗B(?FB) = ?dB ? (?FB) = ?(dBFB) = 0.
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Now let’s see why the Chern–Simons form is not invariant under non-identity
component gauge transformations. Take a path B(t) on [t0, t1]×Y , with B(0) =
B0 and B(t) = B1. Because B1 is a gauge transformation of B0, we can glue
both sides together to form a torus S1 × Y , and a connection B on a bundle
over this. But then

CS(t1)−CS(t0) = −1

2

∫
S1×Y

tr(FB ∧ FB)dt = −1

2
(8π2c2(E)[S1 × Y ]) ∈ 4π2Z.

From this discussion, we see that the Chern–Simons form descends to

CS : B = A/G → R
4π2Z

.

In the literature, you will normally see the normalization R/Z or R/8π2Z.

8.2 Representation variety

Now we have this map B → S1, and the critical points of CS in A(Y ) will be

{B : FB = 0} = flat connections.

These are flat connections modulo G, and so

R(Y ) =
Hom(π1(Y ),SU(2))

SU(2)

where SU(2) acts by conjugation. This is called the representation variety.

Example 8.1. For Y = S3, the representation variety is R = ∗, which is the
trivial flat connection.

Example 8.2. Consider Y = T 3. Here, π1
∼= Z3, where we use γi as the

generators. So up to conjugation, we can simultaneously diagonalize so that

ρ(γn) =

(
eiθn 0

0 e−iθn

)
.

But we also have ρ(θ1,θ2,θ3) ∼ ρ(−θ1,−θ2,−θ3) and so the representation variety is

R = T 3/(x ∼ −x).

The stabilizer of a point in SU(2) is generically S1 and SU(2) at special points.

Example 8.3. Let P be the Poincaré homology sphere. Consider the symmetry
group of a icosahedron A5

∼= I ⊆ SO(3), and lift it to Ĩ ⊆ SU(2) with |Ĩ| = 120.
Now Ĩ = [Ĩ , Ĩ] and P = SU(2)/Ĩ is a homology sphere.

Now let us look at is representation variety

R =
Hom(Ĩ → SU(2))

∼
.

There is the trivial connection θ, the inclusion α : Ĩ → SU(2), and the map
β : Ĩ → SU(2) coming from the outer automorphism of Ĩ. In B, θ is going to
have nontrivial stabilizer and α and β is going have trivial stabilizer.
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Question. If Y is a homology sphere (H1 = 0) and Y 6= S3, does R always
contain a nontrivial ρ 6= 0?

The answer to this is not known in general. The answer is yes for a rather
large class of manifolds, obtained by surgery on a knot.
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9.1 Gradient flows and PDE

Given a path γ : S1 → C, you can write this in terms of a Fourier series

γ(θ) =
∑
n

ane
inθ.

We can define the energy as

ε(γ) =
1

2

∫
S1

〈γ,∆γ〉dθ =
1

2

∫
S1

|γ̇|2dθ.

If we follow the downward gradient flow of this functional ε, it would be
given by the heat equation

∂γ

∂t
=

d2

dθ2
γ = −∆γ.

Then it would shrink to the origin a0, because

an(t) = e−n
2tan(0).

Here n2 are the eigenvalues of ∆, and is positive. This is why the forward
direction is well-defined, while for backward direction to exist for even short
time, you need rapidly decaying Fourier coefficients.

Compare this with the following example: for γ : S1 → C, consider

S(γ) =
1

2

∫ ∣∣∣γ, i d
dθ
γ
∣∣∣dθ =

1

2
〈γ,Dγ〉dθ.

Then the downward gradient is

∂γ

∂t
= −∂γ

∂θ
,

which is the Cauchy–Riemann equation for [a, b] × S1 → C. If you look at the
spectrum Spec(D), it is Z which is neither positive not negative. So it doesn’t
make sense to talk about the forward flow or even the backward flow. Still, we
can think of bounded solutions on [0,∞)× S1 as holomorphic functions on the
disk, with f(0) = 0.

Let us look at the abelian case. The Chern–Simons function for d+b is given
by

CS =
1

2

∫
Y

〈d, ?db〉dvolY .

If you think about ?d : Ω1 → Ω1, this is symmetric because∫
〈a, ?db〉dvol =

∫
a ∧ db =

∫
da ∧ b.
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Here ?d has a big kernel, and ker d is comparable to im d. But if we restrict ?d
to ker(d∗), its kernel is finite-dimensional.

The linear “flow” is on ker(d∗), but we have neither forward or backward
existence, even on [0, ε). Floer’s insight was that we can really do Morse theory
even though we don’t have the flow. Another problem is that the representation
variety has some singularities.

Half the idea is to pass from SU(2) to SO(3). Consider a SO(3)-bundle P
on Y 3. If we fix w2(P ) = ω, this determines P up to isomorphism. Then we
can look at the representation variety

RωSO(3)(Y ) =
(flat connections)

GSO(3)
P

=
ρ : π1 → SO(3)

SO(3)
.

Example 9.1. Take Y = S2 (or S1×S2 if you really want it to be a 3-manifold).
Let ω non-zero. Then RωSO(3)(Y ) = ∅ while RSU(2)(Y ) = θ.

Example 9.2. Take Y = T 2. Here, we need to consider rθ : Z2 → SO(3). They
can either be rotations about the same axis, in which case they have w2 = 0
and hence lift to SU(2). The other possibility is

ρ(γ1) =

−1
−1

1

 , ρ(γ2) =

−1
1
−1

 .

So we get RωSO(3)(T
2) = ∗.

Let B be the flat SO(3)-connection on T 2. In GSO(3)
P , the stabilizer of the

connected component Γ
SO(3)
B of Hol(B). This is the commutant of the image

of ρ, which is the Klein four group V4. So things get more interesting than in
SU(2).

Here is the other half-idea. Consider

GSO(3)
P = Aut(P ) = sections of G→ Y.

For example, look at Y = T 2. Here, π1 is generated by two loops γ1, γ2, and
this already gives a map

GSO(3)
P → π1(SO(3))2 = Z/2⊕ Z/2.

Note that is an SO(3)-action on SU(2) by conjugations, so there is a bundle

GSU(2) → Y with fiber SU(2). So we can define

G1
P = SU(2)-gauge transformations = {sections of GSU(2) → Y }.

So we get a map

Map(Y,±1)→ G1
P → G

SO(3)
P .

Here, the image is the automorphisms of P → Y which lift to a section of
GSU(2) → Y .
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10.1 SO(3)-bundle as a SU(2)-bundle

Given a SU(2)-bundle P̃ → Y , you get a SO(3)-bundle P → Y by a 2-to-1
covering map. If a bundle lifts, then the space of connections are the same:

A(P̃ ) = A(P )

are both affine spaces of Ω1(Y,R3) where I identify su(2) = so(3) = R3.
But there are bundles that don’t lift, so modulo gauge transformations, they

can be different. Even for flat connections, they can be different. Consider Σ
a genus g surface. A flat connection on a SO(3)-bundle is going to be given by
ai, bi satisfying ∏

i

a−1
i b−1

i aibi = 1 ∈ SO(3).

When we lift this to SU(2), this can be either −1 or +1. If it is −1, then w2 6= 0
and if it is +1, then w2 = 0. If −1, this can be thought of as a flat connection
on Σ \ {p} with holonomy −1 around p.

Let Y be a 3-manifold with ω = w2(P ) with P → Y a SO(3)-bundle. Let
ω be the Poincaré dual of [w] where w is a closed curve in Y . Then on Y \ w,
ω restricts to 0 and so we can lift P to P̃ . Then flat connections in P can be
thought of as flat connections P̃ over Y \w with holonomy −1 ∈ SU(2) around
the link of w.

Example 10.1. Let us consider the example Y = T 2×S1 and w = p×S1. Let
a, b be the two generators of π1(T 2) and c be the generator of π1(S1). Then our
condition becomes

α−1β−1αβ = −1, α−1γ−1αγ = 1, β−1γ−1βγ = 1.

Up to conjugation, there are only the solutions

α = i, β = j, γ = ±1

as quaternions. Then the representation variety Rw(Y ) two points. These are
two irreducible representations.

Consider
Bw(Y ) = Aw(Y )/GSU(2).

Then the Chern–Simons functional is going to have some reducible solutions
and critical points.

Lemma 10.2. If there exists an orientable Σg ↪→ Y and w · Σg is odd, then
Rw(Y ) consists of irreducibles.

Proof. This is because
∏
α−1
i β−1

i αiβi = −1.

So the reducibles stay away from the critical points of the Chern–Simons
form in this case.



Math 283 Notes 31

10.2 Morse theory

Let f be a Morse function on a Riemannian manifold B. At α ∈ Crit(f), we
define the index

index(α) = dim. of unstable manifold

= # of negative eigenvalues of Hess(f) at α.

For α and β critical points, we define the space

M(α, β) = space of flow lines from α to β

= U(α) ∩ S(β).

This flow is called Morse–Smale if U(α)∩S(β) is a transverse intersection. In
this case,

dim(M(α, β)) = dimU(α) + dimS(β)− dimB

= dimU(α)− dimU(β) = index(α)− index(β).

You can think this in terms of differential equations. Let V = ∇f . The
space of flow lines is the space of solutions to

dγ

dt
+ V (γ(t)) = 0.

If u is a vector field along γ, then the line γ + exp(εu) is going to be another
flow line if

du

dt
+ (∇uV )|γ(t) = 0.

This can be phrased as ∇γ̇(t)(u) + H(u) = 0 where H is the Hessian. So the
Morse–Smale condition is equivalent to the surjectivity of

L : u 7→ ∇γ̇(t)u+H(u).

So let us look at the space

L : u 7→ du

dt
+H(t)u

for u : R → Rb and H(t) self-adjoint b × b matrices, which is bounded and
C∞. When is this operator L2

1 → L2 Fredholm? The kernel is clearly finite-
dimensional because it is determined by value at a point. But is the cokernel
finite-dimensional? If we can check that im(L) is closed, then we can just check
that im(L)⊥ is finite-dimensional, which is the same as checking that the kernel
of

u 7→ −du
dt

+H(t)u

is finite-dimensional.



Math 283 Notes 32

Now is im(L) closed? Let us take H ≡ 0 for instance. Here, the operator is

L2
1 → L2; u 7→ d

dt
u.

If we look at v = t
1+t2 , then this can be approximated by things that are

derivatives, but it is not a derivative of a L2 function, because the integral of
t−1 blows up. That is, this operator is not Fredholm.

Now let us look at H ≡ ε where ε is a nonzero 1× 1 matrix. Then you can
solve the equation

du

dt
+ εu = v

explicitly by convoluting u = G ∗ v where G is the Green’s function

G(t) =

{
exp(−εt) t > 0

0 t < 0.

So the operator is invertible, and in particular, Fredholm.
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Let D : ΓY (E) → ΓY (E) be a first-order operator on Y . Assume that this is
elliptic and formally self-adjoint. In particular, consider a situation in which

D : L2
1(Y ;E)→ L2(Y,E)

has no kernel, and hence no cokernel. In this case, ‖Du‖L2(Y ) ∼ ‖u‖L2
1(Y ).

Example 11.1. Let D = i ddθ on S1. Its inverse is

D−1 : L2 → L2
1 ↪→ L2

is a compact operator by Rellich’s lemma. This means that D−1 : L2 → L2

is a compact self-adjoint operator, and we can apply the spectral theorem.
Then L2(Y ) has a complete orthonormal system en and λn ∈ Spec(D). These
eigenspaces are going to be finite-dimensional, with |λn| → ∞ as |n| → ∞.

11.1 Operator on a cylinder

Now consider the operator

Q =
d

dt
+D : L2

1(X;E)→ L2(X;E).

on R × Y = X. (Here, we are assuming that D is translation-invariant in the
t-direction.) I claim that this is Fredholm and invertible. Given any u, we can
write it as

u =
∑

un(t)en

for un : R→ C. Then the equation we are looking at can be written as( d
dt

+ λn

)
un = vn.

If we look at the L2-norm of Qu, we can take the Fourier transform in t and
then write ∑

n

∫
R
|iτ + λn|2|ûn|2 =

∑
n

∫
R

(|τ |2 + |λn|2)|ûn|2.

Then the L2-norm of Qu is

‖Qu‖2L2
X
'
∫
R

∣∣∣du
dt

∣∣∣2 +

∫
R
‖u(t)‖2L2

1
' ‖u‖2L2

1
.

This shows that D is invertible.
We are interested in the operator, on X = R× Y ,

−d∗X ⊕ d+
X : ω1(X)→ Ω0 ⊕ Ω+.
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For a = cdt+ b with c a t-dependent function and b a t-dependent 1-form on Y ,
we can write

−d∗Xa = ċ+ d∗Y b,

2d+a = (ḃ− dc+ ?db) ∧ dt+ ?(ḃ− dc+ ?db).

So this operator is(
c
b

)
7→
(
ċ

ḃ

)
+

(
0 −d∗
−d − ? d

)(
c
b

)
=

d

dt

(
c
b

)
+D

(
c
b

)
.

Here, D is formally self-adjoint. So for this operator

Q : L2
1 → L2,

Q+ ε is invertible if and only if 0 /∈ Spec(D + ε).
Let us first look at the case D = D0 + h(t) where 0 is a 0th order operator

(which is just a multiplication), and D and D0 are symmetric. Let us assume
that h(t) = h∞ for |t| > R, and that 0 /∈ Spec(D0 + h∞). If we write D∞ +
D0 + h∞, then D∞ −D is a 0th order operator supported in [−R,R]. Then

D∞ −D : L2
1 → L2

is compact, and because D∞ is Fredholm, we get that D is Fredholm with
index(D) = 0. (Deformations don’t change index.)

Now let us relax the condition so that h(t) = h+∞ for t > R and h(t) = h−∞

for t < −R, with D0 + h±∞ both 0 /∈ Spec. The strategy is to solve it locally
using a partition of unity, and then gluing them back. Of course, there are
errors, but the point is that the errors are compact.

Consider functions h+(t) and h−(t) with

h+(t) = h+∞ for |t| > s, h−(t) = h−∞ for |t| > s.

Then

Q+ =
d

dt
+D0 + h+(t), Q− =

d

dt
+D0 + h−(t)

falls into the first case. When you try to get the inverse, you have

Pv = γ+P
+η+v + γ−P

−η−v

up to some compact contribution from the partitions of unity.

Example 11.2. Let A be a connection on R× Y , that is translation invariant
on [R,∞) (call it A+) and translation invariant on (−∞, R] (call it A−). We
then can say that δA = −d∗A ⊕ d

+
A is Fredholm provded that the 3-dimensional

operators don’t have kernel (when 0 is not in the spectrum of A+ and A−).
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Last time we looked at the standard theory of a differential operator on the
cylinder. Let D = D(t) : L2

1(Y,E) → L2(Y,E) be a differential operator on Y
with D = D0 + h(t), where D0 and h are symmetric. Write Q = d

dt .
Assume that h = h− for t ≤ −R and h = h+ for t ≥ R. Assume that 0 /∈

Spec(D±) = Spec(D0 + h±). Then what we said last time is that Q : L2
1 → L2

is Fredholm.

12.1 Spectral flow

Theorem 12.1. The index of Q is the spectral flow of D(t) for t from −∞ to
∞.

As we flow form D− to D+, we will sometimes hit 0. So we should look
at the set of h such that D0 + h has 0 in the spectrum. If we suppose that
(D0 + h)U = 0 with ‖U‖L2 = 1, then the eigenvalue will move as we change H,
so we will have

(D0 +H + εh)(U + εu) = ελU + εh).

Let H be a real Hilbert space. If ker(D0 + H is 1-dimensional, then in a
neighborhood Ω of H, there exists a Λ : Ω→ R with dΛ 6= 0, such that Λ(H+h)
is an eigenvalue of H + h with Λ = 0 at H. (We’re not worrying about 0 being
a repeated eigenvalue, because this is a codimension 4 condition and a generic
path won’t have such a case.)

So to prove this theorem, we only need to check it in the case of one eigen-
value moving from negative to positive, and check that the index of Q is 1.

12.2 Negative gradient flow

A Morse function is a function with nondegenerate Hessian at critical points.
The equation can be written as

γ̇ +∇f = 0.

Then
d

dt
f(γ(t)) = −‖∇f |γ(t)‖2.

Suppose that γ(t)→ b and for simplicity assume f(b) = 0. If f is nondegenerate
at that point, then

‖∇f‖2 ≥ c‖γ(t)− b‖2

and so d
dtf ≤ −cf . This shows that we have exponential decay in the distance.

This is not true for degenerate critical points. You can image a bowl-shaped
LP record with the groove infinitely extending toward the center. Then the
negative gradient can be made to converge as slow as you want.
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Now let us look at the space B = A/G on Y , of connections module gauge
equivalences. Assume that β is a critical point that is irreducible. Formally, we
can say that

TBβ = “Coulomb slice” = ker d∗B ⊆ Ω1(Y, g).

We also have Hess(CS) = ?dB , on TB|β . For this to be nondegenerate, we
want 0 /∈ Spec(?dB). Last time, we saw that

Q =
d

dt
+

(
0 d∗B
−dB ?dB

)
.

todotodo
So for flat irreducible connections α, β ∈ BY , we can formally at the gradient

flow lines converging to α, β at −∞,∞. This connection can be thought of as a
connection on A on R× Y and F+

A = 0. If we suppose that∫
R×Y
|FA|2 <∞,

we can slice them up into connections A(n) on I × Y . By Uhlenbeck’s theorem,
there then exists a converging subsequence

[A(n′)]→ [A∞]

on I◦×Y as n′ →∞. But by the finite energy condition, we have ‖FA(n)‖ → 0.
This shows that A∞ is flat. Moreover, if it has finite energy, it can’t move from
one neighborhood of a critical point to another neighborhood of a critical point
infinitely often. Then [A(t)]→ β in BY , as t→∞. If β is nondegenerate, then
?db has no kernel in TBβ and CS(A(t))− CS(B) has exponential decay.

So we can describe the space of flowlines M(α, β) as the following. Let
α, β be irreducible nondegenerate. Choose any connection A0 on R × Y that
is in temporal gauge on (−∞,−R] and [R,+∞) and constant [A0(t)] = α and
[A0(t)] = β on the two intervals. Then

M[A0](α, β) = {A = A0 + a : F+
A = 0, ‖a‖L2

3,A
0 <∞}/G.
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13.1 Morse homology

Let B be a compact finite-dimensional manifold and f : B → R be a Morse
function. This means that Hess(f)α is non-degenerate for all critical α, and this
implies that there are finitely many critical points. For two critical points α, β
we defined the space of flowlines as

M(α, β) = {ζ : R→ B with ζ̇ = −∇f} = Uα ∩ Sβ

There is a free action of R on M(α, β) by translations, and we can define

M(α, β) = M(α, β)/R.

We said that the function f is Morse–Smale if the intersection Uα ∩Sβ is trans-
verse for all α, β.

The transversality condition can be thought of as a linearization equation.
An infinitesimal change gives a linear operator

δ : L2
1(R; ζ∗(TB))→ L2(R; ζ∗(TB)),

given by
δu = ∇∂/∂tu−Hu

where H : TB → TB is the Hessian.
The Morse–Smale condition implies that the dimension of the intersection is

dimM(α, β) = ind(α)− ind(β)

This can be thought of as the change of the number of negative eigenvalues. So
it is the spectral flow of H along ζ.

Using this, we can define Morse homology. Let C∗ be the F2-vector space
with basis Crit(f) (which is a finite-dimensional vector space). The grading is
such that if α ∈ Crit(f) has index i, then α ∈ Ci. The differential here is given
by

∂ : Ci → Ci−1; ∂α =
∑

ind(α,β)=1

nαββ

where nαβ is the number of elements in the 0-dimensional manifold M(α, β).
We need to check that this number nαβ is finite, using some compactness. We
also need to check that ∂2 = 0. Then

Proposition 13.1. Hi(C∗, ∂) ∼= Hsing
i (B;F2).

The easiest way to check this is to use the Morse flow to get an actually cell
decomposition of B. This also shows that the Morse homology is independent of
the choice of the Morse function, and also the Riemannian metric. In fact, give
a triangulation of a manifold, you can construct a Morse function such that the
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0-simplices are local minima, the barycenters of 1-simplices are index 1 critical
points, the barycenters of 2-simplices are index 2 critical points, and so on.

What about in over Z? We first need to choose orientations for each Uα.
Then each Sα gets a co-orientation from Uα, i.e., an orientation of the normal.
This gives an orientation on Uα ∩ Sβ . In particular, M(α, β) acquires an ori-
entation, and so does M(α, β). Because it is 0-dimensional, it’s a collection of
points with signs. So we just need to modify the definition of nαβ so that it is
the number of points with sign in M(α, β).

13.2 Morse theory on the space of connections

So what can we say in the instanton case? Let Y 3 be a oriented closed Rie-
mannian manifold, and fix P → Y 3 an SO(3) bundle with ω = w2(P ) = PD[w]
where w ⊆ Y is 1-dimensional. Let A be the space of connections on P , and
let GSU(2) be the SU(2)-gauge group transformations. This maps into the total
gauge group Aut(P ). Then we defined

Bw(Y ) = A/GSU(2).

There is a Chern–Simons functional

CS : Bw(Y )→ R/(4π2Z) = S1,

and the critical points Crit(CS) = Rw(Y ) are the flat connections. Suppose
that w is admissible, that is, there exists a surface Σ2 ⊆ Y such that wΣ is odd.
Then the critical points are irreducible:

Rw(Y ) ⊆ Bw(Y )∗.

Suppose that the Chern–Simons functional is Morse. (We will later get rid
of this condition by adding a small perturbation.) In other words, assume that
Hessα(CS) has no kernel for all α ∈ Crit(CS). If we write α = [B], then this
means that

?dB : ker(d∗B)→ ker(d∗B)

has no kernel. This also means that(
0 d∗B
−dB ?dB

)
is elliptic and invertible. Now we can compute the index difference between α
and β as

indζ(α, β) = spectral flow of Hess(CS) along ζ.

We might worry about indζ(α, β) being dependent on ζ. We know that
GSU(2) ' Z, and A is contractible, with the reducible being finite codimension.
So

B∗ = A∗/GSU(2) ' B(GSU(2)/(±1)).

This shows that π1(B∗) ∼= Z.
So what is the spectral flow of a closed loop in B∗? Let η be a nontrivial

loop. We should look at
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(a) the spectral flow of Hess(CS), and

(b) the total drop −
∫ 1

0

d

dt
(CS)dt in the Chern–Simons functional.

If we cut this path η at a point, we can think of this of, in A∗, as moving from
one connected component of a G-orbit to another connected component of the
same G-orbit. Then it can be considered as a bundle Pη → S1×Y . The spectral
flow is the index

index(−d∗Aη ⊕ d
+
Aη

) = index(linearized ADS with Coulomb gauge)

= 8c2(Pη)− 3(b+ − b1 + 1) = 8c2(Pη).

The total drop in the Chern–Simons functional is

1

2

∫
tr(FAη ∧ FAη ) = 4π2c2(Pη).

The upshot is that indζ(α, β) makes sense, as well as the change in the Chern–
Simons functional.

What is the Morse–Smale condition here? Let ζ ∈ M(α, β) be a formal
gradient flow line. Near ζ, what is the structure of M(α, β)? The flow line ζ is
some connection Aζ on R× Y in temporal gauge. The Morse–Smale condition
is the surjectivity of the linearized opeartor

δu =
d

dt
u+DAηu =

d

dt
u+

(
0 d∗A−η
−dAη ?dAη

)
as L2

k,Aη
→ L2

k−1,Aη
.

The Morse–Smale condition implies that near ζ, the spaceM(α, β) is smooth,
and its dimension is indζ(α, β), which is defined as the spectral flow.
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For Y a 3-manifold, we said that [w] = PD[w2(P )] is admissible if there exists
an oriented Σ2 such that w ·Σ is odd. Then the representation variety Rw(Y ),
the set of critical points of CS, is contained in the irreducibles B∗. We want to
look at the condition that CS is Morse, and the flow is Morse–Smale.

14.1 Instanton Floer homology

Let ζ be a formal gradient-flow line in B∗ from α to β. For a fixed z ∈
π1(Y ;α, β) = π0(paths α→ β), we have

M(α, β) = Mz(α, β).

Here we can define ind(α, β) = spectral flow. We showed last time that

κ(z) =
1

4π2
(drop in CS along z) =

1

8π2

∫
R×Y

tr(FA ∧ FA).

Both of them makes sense for η a loop instead of a path. In this case,

ind(η) = 8κ = 8c2(P̃ )

where P̃ is on S1 × Y . Because π1(B∗) = Z, we can consider z + 1 for z ∈
π1(Y, α, β)), and we will have κ(z + 1) = κ(z) so that

ind(z + 1) = ind(z).

This shows that
Ind(α, β) = indz(α, β) (mod 8)

is well-defined in Z/8. So we can think of index ind(α) ∈ Gr(Y,w) as inside
some (Z/8)-torsor.

The Morse–Smale condition can be written as

dimMz(α, β) = indz(α, b),

and so
dimMz(α, β) = indz(α, β)− 1.

In this case, we can again define the Morse complex

C∗ = F2-vector space with basis Rw(Y )

with F2-coefficients. Then we have a differential

∂ : C∗ → C∗; ∂α =
∑
β

nαββ
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where again we define

nα,β =
∑

z∈π1(B∗;α,β),ind(z)=1

#Mz(α, β).

Certainly ∂ : C∗ → C∗−1 for ∗ ∈ Gr(Y,w). After justifying all this definition,
we will be able to define the instanton Floer homology as

Iw(Y ) = H∗(C∗, ∂).

We will first need to show that nα,β is finite. Then we want to show that
∂2 = 0. We also need to show that this is independent of the Riemannian
metric, and that for a generic metric the Chern–Simons functional actually is
Morse and Morse–Smale. Let’s first deal with the compactness problem.

14.2 Uhlenbeck compactification of the space of flow lines

Suppose α and β are critical points. An ideal trajectory ζ+ from α to β is
the data of

([A], x1, . . . , x`)

where [A] is an anti-self-dual connection on R× Y corresponding to a path ζA
from α to β, and the bubbles xi ∈ R× Y . We can then define

MUhl
z (α, β) = {ζ+ : z = [ζA] + `}.

We can also formally define κ(ζ+) = κ(ζA) + ` and ind(ζ+) = ind(ζA) + 8`.
If I have a sequence [An] ∈ Mz(α, β), we say that [An] converges weakly

to some ζ+ = ([A], x1, . . . , x`) if gn(An) → A on compact subsets of R × Y \
{x1, . . . , x`}.

Let us think about what this means. Suppose a flow line α→ β approaches
a broken flow line α→ α′ → β′ → β. Then it is spending more and more time
near α′ and also β′. Depending on the parametrization, this can be thought of
as converging to α′ → β′, or α → α′. Define the broken trajectories (without
parametrization)

BrM
Uhl

z (α, β)

as the collection of (ζ
+,1
, . . . , ζ

+,s
) where these are

ζ+,r ∈MUhl
zr (αr−1, αr), α0 = α, αs = β,

and
∑s
r=1 zr = z. Note that here we have bubbles, whereas in the finite dimen-

sional case we don’t
Now what does it mean for [An] with paths ζn ∈Mz(α, β) and ζn ∈Mz(α, β)

to converge to some broken trajectory? We say that it converges to

(ζ
+,1
, . . . , ζ

+,s
) ∈ BrMUhl

z (α, β)

if there exists a sequence of translation Tn,r : R→ R such that T ∗n,r(ζn)→ ζ+,r

weakly. To make sure I’m not cheating by looking at the same thing multiple
times, I need to make sure that Tn,r+1(0)− Tn,r(0)→∞ as n→∞.
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Theorem 14.1. If ζn ∈ Mz(α, β), then there exists a subsequence ζn′ which

converges in this sense to (ζ
+,1
, . . . , ζ

+,s
) ∈ BrM

Uhl

z (α, β).

This is not true of a non-Morse function, even in the finite-dimensional case.
Imagine a circle being a critical set, and a sequence of flow lines that just circles
around this critical set a long time and then flowing down. They might be
converging to a flow line α → α′ and β′ → β, where α′, β′ lie on this circle.
Then there is no flow line from α′ to β′.

The first application is that nα,β is well-defined. This is because Mz(α, β) is
compact if it is 0-dimensional. If 1 = ind(z) =

∑s
r=1 ind(ζ+,r) then ind(ζ+,r) ≤

0 for some some r and Mzr = ∅.
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We were talking about the downward gradient flow for f : B → R/Z. We had
a compactness theorem for the flowlines γn : R→ B with γ̇n = −∇f . Consider
the hot regions |∇f | ≥ ε and the cold regions |∇f | ≤ ε. Given a sequence γn,
we can find a subsequence (n′) ⊂ (n) such that γn′ have the same hot/cold
sequence and have the same cold regions. This can be used to show that nα,β
are finite numbers.

15.1 Proof of compactification

A more interesting statement is that ∂2 = 0 on our chain complex. We have

∂∂α0 = ∂

(∑
α1

nα0α1
(α1)

)
=
∑
α2

∑
α1

(nα1α2
nα0α1

α2.

The coefficient of α2 is just∑
α1

nα1α2
nα0α1

= #broken flow lines ≡ 0 (mod 2).

This is because M(α0, α2) =
⋃

ind(z)=2Mz(α0, α2) is a smooth 1-manifold, with
a compactification

BrM(α0, α2)2.

Lemma 15.1. BrM(α0, α2) is a compact 1-manifold with boundary. Its bound-
ary is exactly ⋃

α1

M(α0, α1)1 ×M(α1, α2)1,

which is a 0-manifold.

This is not a tautology. For instance, it includes the statement that every
broken trajectory is a limit of an unbroken trajectory. This is an example of
finite-dimensional gluing. Near a Morse critical point 0 ∈ NN of f : RN → R,
At 0, the Hessian Hess(f) has a +-eigenspace K+ and a −-eigenspace K−. Let
S be the stable manifold, and U the unstable manifold. Take a neighborhood
Ω of 0. The claim is that the apace

M(T ) = {flow-lines defined on [−T, T ] which remains in Ω}

approximates S × U for T large.

Proposition 15.2. Let k+ ∈ K+ and k− ∈ K−. If T is large and k± are
small, then there exists a unique u ∈M(T ) such that

πK+u(−T ) = k+, πK−u(+T ) = k−.
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So for large T , M(T ) is parametrized by K+ ×K−, and so by S × U . We
can use this to show that the compactification of M(α0, α2) is what we expect.

Let me also say a bit about perturbing the Chern–Simons functional. If this
is not Morse, we don’t have Morse theory. Given Y,w, we seek a function

f : B → R

or f : A → R invariant under gauge transformations, such that

• our analysis for the PDE Ḃ = −∇CS|B becomes an equation with similar
analytic properties, like its linearization being Friedholm, having Uhlen-
beck’s compactification, etc,

• there is a large enough choice for f to achieve that CS + f is formally
Morse and Morse–Smale.

In SU(2)-gauge theory, over a 3-manifold Y with B a connection, we have
Holq(B) ∈ Aut(Eq(0)) for any loop q. Then we can consider a map B 7→
tr(Holq(B)). Next time I will try to explain how to make this idea useful.
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I want to return to the question of perturbing Morse functions.

16.1 Good space of perturbations

Let me begin with ordinary Morse theory. Let B be a Riemannian manifold
(mostly finite-dimensional), and g : B → R not a Morse function. We seek a
perturbation g + f which is Morse. Let Π be a big linear space of functions,

Π 3 π 7→ fπ ∈ C∞(B).

We want there to exist π ∈ Π such that g + fπ is Morse.
Let us denote W = grad(g) and Vπ = grad(fπ). Then we can consider

W : Π×B → TB; (π, b) 7→ (W + Vπ)(b),

with the trivial points
Crit = W−1(0).

The slices of Crit are the critical points of g + fπ.
The idea is that

(A) if Π is big, then Crit is a submanifold,

(B) Crit→ Π is a projection, and

(C) if π is a regular value, then g + fπ is Morse.

For (A), we want DW to be onto at all (π, b) ∈ W−1(0). For instance,
consider (0, b). Then b is a critical point of g and the derivative is

DW : ‘P × TbB → TbB; (p, β) 7→ Vp(b) +H(β).

If it is not surjective, then there exists a U ∈ TbB such that U ⊥ im(H) and
U ⊥ Vp(b) for all b. This does not happen if Π is big enough. That is, if for all
b ∈ B and U ∈ TB there exists p ∈ Π such that ∇Ufp|b 6= 0.

For (B), both spaces Crit and Π are Banach spaces.

Theorem 16.1. If P : E → F is a map of Banach manifolds (with E and F
modeled on separated Banach spaces) and

(i) P is smooth (C∞),

(ii) P is Fredholm (i.e., DP |e is a Fredholm operator for all e ∈ E)

then regular values exist.

So we are going to apply this theorem to the projection Crit→ Π. Near the
critical points, this W needs to be smooth. That is,

(π, b) 7→ Vπ(b) +W (b)
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should be smooth. Here, we need Vπ to be a smooth vector field, and so for all
π, fπ should be a smooth function.

We also want Π to be a Banach space as well. We can take Π to be the
Banach space of C∞ functions. Here is the idea. Choose a countable a collection
of functions fi so that for all b, U there exists an i with ∇Ufi 6= 0 at b. Then
we are going to write

fπ =

∞∑
i=1

πifi

for πi ∈ R. Then we define

Π = {π = (πi) :
∑
Ci|πi| <∞}

where Ci is a rapidly increasing sequence, so that all such fπ is C∞.
In our gauge theory situation, recall that we want (at (a, b))

(p, β) 7→ Vp(b) +Hb(β)

to be onto. But note that im(Hb) already has finite codimension. So for DW
to be onto, we want there not to exist U with U |Vp(b) for all p ∈ Π.

For B = A/G, let us work on A for a moment. Consider the Banach space A`
which is the L2

` -completion. Take W = grad(CS) and identify A → Ω1(Y, g).
Then it can be considered as

A` → L2
l−1(Y,

∧
1 ⊗ g).

Example 16.2. Take the function f : C∞([−1, 1]) → R given by a 7→ a(0). If
we compute the L2-gradient of this function, it is going to be the delta function
δ. This is bad.

16.2 Holonomy perturbation

So we use the idea of holonomy. Let q : D2 × S1 → Y be an embedding, and
consider q(z,−) a loop. Given a connection B, a group G, in a bundle P we
can take the holonomy

Holq(z,−)(B) ∈ Aut(Pq(z,0)).

This in G is well-defined up to conjugation. So if we take a conjugation-invariant
function h : G→ R, we get a well-defined

h(Holq(z,−)(B)).

So given a bump 2-form on D2, we can integrate and get

B 7→
∫
D2

h(Holq(z,−)(B))µ.
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Take G = S1 and an arbitrary h : G → R. Consider this as a periodic
function R → R. Then we pull back to D2 × S1 via q. Given a connection
1-form b on D2 × S1, we are taking

f(b) =

∫
D2

h

(∫
z×S1

b

)
µ.

The derivative of f at b can be computed as

β 7→
∫
D2

H(b, z)

(∫
z×S1

β

)
µ,

where

H(b, z) = h′
(∫

z×S1

b

)
.

We can write this as

〈β, H̃(b)〉L2 where H̃(b) = (H(b,−)) ∗ µ ∈ Ω1(S1 ×D2).

So this is really a nice L2 function. This is how it works in the abelian group
S1 case.
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Last time we looked at how a holonomy perturbation looks like in the abelian
case G = S1 = R/Z. On the trivial bundle, let b be a connection 1. We also
needed an embedding q : D2 × S1 ↪→ Y and h : G → R or h : R → R a
conjugation-invariant function. Then we were able to define

f(b) =

∫
D2

h

(∫
z×S1

b

)
µ

for µ ∈ Ω2(D2) compactly supported. This gave a function

f : A → R

with grad(f) : A → TA = Ω1(Y ; g) given by

V |b = grad(f)|b = ?

(
h′
(∫

z×S1

b

)
µ

)
.

17.1 Critical points of a holonomy perturbation

Let us look at the critical points of the perturbation. This is going to be

grad(CS + f)|b = ?Fb + V |b = 0.

That is, we need Fb = ?V (b). We know that Fb = 0 means flat connection.
But how do we understand this? First it is going to be flat outside the torus
q(D2 × S1). Given two points z, z′ ∈ D2, the difference between the holonomy
around z × S1 and z′ × S1 can be computed by integrating the curvature on
a surface joining to two loops, and this is zero because the curvature is pulled
back from ?V = H(b)µ. So

Holq(z,−) = Holq(z′,−) .j

Now consider a loop c going around the torus like ∂D2 × 0. Also, write
e = ∗ × S1 be the other loop. In this case, we have

Holc(b) = −
∫
D2×0

H(b)µ = −H(b)|z = −h′
(∫

e

b

)
= h′(Hole(b)).

Therefore solutions to Fb + ?V (b) = 0 are flat on Y \ (D2 × S1) and satisfy

Holc(b) = h′(Hole(b)).

If we write Holc(b) = eiψ and Hole(b) = eiϕ, then the equation becomes

ψ = h′(ϕ).
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This generalizes to the non-abelian case. For a conjugation-invariant func-
tion h : G→ R and so h′ : G→ g, we can define

f(B) =

∫
D2

h(Holq(z,−)(B))µ.

Then H(B) is a now section of gP supported on D2 × S1 ⊆ Y . We get
h′(Hol(B)) ∈ Γ(D2 × S1; gP ) and so

V (B) = ?(h′(Hol(B))µ) ∈ Ω1(Y ; gP ).

This is going to be C0-bounded in B.

17.2 Checking the bigness criterion

If you remember, our criterion for “big” was that for any tangent vector U ,
there exists a π ∈ Π such that DUfπ 6= 0. This is something like distinguishing
points, so for [B1] 6= [B2] we want a fπ such that fπ(B1) = 0 and fπ(B2) = 1.

Let q = (q1, . . . , qr) be a number of loops in Y . For each loop, we can look
at the holonomy, and get

(Holq1(B), . . .Holqr (B)) ∈ Gη0 × · · · ×Gη0 .

Pick a function
h : G× · · · ×G→ R

that is invariant under simultaneous conjugation. Because we want smooth
perturbation, we fatten s = 1, . . . , r to qs : D2 × S1 → Y , and we require
qs = qs′ on D2 × [−ε, ε]. Now we define

f(B) =

∫
D2

h(Holq1(z,−)(B), . . . ,Holqr(z,−)(B))µ.

If two connections are not gauge equivalent, there is going to be some loop where
the holonomy differ.

If we only require h to be invariant under separate conjugation, it might
not be able to distinguish even flat connections. Let us consider the free group
〈g1, . . . , gr〉 = π1, and let ρ, ρ′ : π1 → G be two representations. Suppose that
for all words w, then ρ(w) is conjugate to ρ′(w). Does it follow that ρ ∼ ρ′

independent of w? That is, can we simultaneous conjugate? The answer is yes
if G = SU(N), but no for general Lie groups G.

Anyways, given data q = (q1, . . . , qr) and h : G × · · · × G → R we get an
f : A → R that is gauge-invariant. A countable collection of such (q, h) giving
fi is enough to separate the points on any tangent vectors in A/G. Then we
can define

Π = {fπ =
∑
iπifi}

where πi are rapidly decreasing so that fπ is smooth.
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A completes to A2
l , which is the L2

l -connections, and fπ : Al → R is C∞. If
we consider the formal L2-gradiant

Vπ = grad(fπ) : Al → TAl,

it is a C∞ vector field on Al and invariant under G.
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We have seen that holonomy perturbations have nice formal properties. But
we haven’t talked much about mapping properties of perturbations. Consider
V = grad(fπ) be a holonomy perturbation. Then our modified gradient flow
was

Ḃ = − ? FB + V (B).

We then had that − ? FB + V (B) = 0 are critical points. But is it going to be
Morse?

18.1 Morse–Smale condition of perturbations

Before perturbation, we had the operator

H =

(
0 −d∗B
−dB ?dB

)
acting on (

∧
0⊕

∧
1)(Y ; g). This is a 1st order elliptic symmetric operator L2

1 →
L2 on Y , and is Fredholm. If we perturb, we have to deal with the operator(

0 −d∗B
−dB ?dB + L

)
where L is the derivative at V at A(Y ).

Considering V as a map A → Ω1(Y ; g), we can complete it to Al and
differentiate respect to B. Then we will get from V : Al → L2

l (Y ;
∧

1 ⊗ g),
its derivative DV : Al → Hom(L2

l , L
2
l ) and then so on.

You can calculate DV and see that it extends to a smooth map Al →
Hom(L2

k → L2
k) for k ≤ l. Let us look at the abelian case with r = 1. For

b ∈ L2
l a 1-form, consider b+ εβ for β ∈ L2(Y ). Then we compute

(b̄+ εβ̄)(z) =

∫
z×S1

(b+ εβ).

Then the derivative with respect to β is h′(b̄)β.
We may write the perturbation as (H + L) : L2

1 → L2, where L is the DV
term. Here, L : L2

1 → L2 is compact, because it factors through a bounded
operator L2 → L2. That is, it is a compact perturbation of Fredholm operator.

So we can make a perturbation so that the resulting function is Morse.
Another question is whether we can make its Morse–Smale. We first make a
perturbation so that the function is Morse, and then make another perturbation
Vπ′ is Morse–Smale. Here, we let Vπ′ = grad(fπ′) where fπ′ = 0 near critical
points. Recall that Morse–Smale is surjectivity of the linearized equation. So
for any b on a flowline satisfying

− d

dt
b+H(t)b = 0,



Math 283 Notes 52

we need to find a π′ such that 〈Vπ′ , b〉L2(R×Y ) 6= 0.
What happens to Uhlenbeck compactness for the perturbed Chern–Simons

functional? Flowlines corresponded to connectionsB on R×Y in temporal gauge
satisfying the 4-dimensional equation F+

B = 0. If we perturb the functional, we

get F+
B = V̂ (B), where

V̂ : A(R× Y )→ Ω+(R× Y ; g); V̂ = dt ∧ V + ?V.

Take a sequence Bn of connections, and assume that |F (Bn)| grows near the
point (t, y0). If this is not on the holonomy loop, then we know what is hap-
pening. If it lies inside this tube, then we will have

d

dz
Hol(z,−)� 0

for z ∈ D2. Because Lp2 ↪→ C0 for p ≥ 2, we can take todotodo

18.2 Comparing Floer homology

So we have holonomy perturbations fπ such that the functional becomes Morse,
Morse–Smale, Fredholm, and with Uhlenbeck perturbation. Let Y be a 3-
manifold with w a 1-cycle with w2(P ) = PD[w]. Consider A the connections
and G the SU(2)-gauge transformations. From the Morse theory of CS+fπ, we
get a Morse complex

C∗ =
⊕

crit α

F2, ∂ : C∗ → C∗.

Then we can define homology

Iw(Y, g, π) = H∗(C∗, ∂),

which depends on the Riemannian metric g and a perturbation π.
In the finite-dimensional case, why was H∗(f) = H∗(C∗, ∂) independent of

f and g? One reason was that this was isomorphic to singular homology. But
this is not available to us now. Another thing to do is change f and see how
this changes the Morse complex. There are going to be some cancellations or
generations of critical points, and you can compare homology by chain homo-
topies, or do handle decompositions or whatever. A smarter thing to do, which
is what Floer did, is given f− and f+ two Morse–Smale functions on B, pick a
interpolating family ft for t ∈ R such that

ft =

{
f− t� 0

f+ t� 0.

Consider the non-autonomous differential equation for a path in B:

d

dt
γ(t) = − grad(ft).
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Note that this is not translational invariant. Such a flowline will start from a
critical point α− of f− and end at a critical point α+ of f+. So we have the
space

M(α−, f∗, α+)

of solutions. If α− and α+ have the same index, and transversality holds, then
dimM(α−, f∗, α+) = 0. Then we set mα−α+

to be the number modulo 2. This
can be considered as a matrix, which is a chain map C∗(f−)→ C∗(f+).
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Let Y 3 be w-admissible, where w is a 1-cycle of a 1-manifold with wΣ odd for
some w. Then we can look at the instanton homology groups Iw(Y, π, g).

19.1 Cobordism

Let X be a cobordism between (Y0, w0) and (Y1, w1). This is going to be a
compact 4-manifold X with boundary

∂X = (−Y0)q Y1

and v ⊆ X a smooth 2-manifold with ∂v = w0 qw1. More formally, we can ask
that we are given a (orientation-preserving) diffeomorphism r : (−Y0) q Y1 →
∂X, so that we can think of diffeomorphisms as cobordisms with X = [0, 1]×Y .
We say that (X, v, r) is isomorphic to (X ′, v′, r′) if there exists a diffeomorphism
(X, v)→ (X ′, v′) commuting with r and r′.

Consider the category C with

• objects (Y,w) with (π, g) with π a perturbation and g a Riemannian met-
ric,

• isomorphism classes of cobordisms (X, v).

Theorem 19.1. Instanton Floer homology gives a functor

C → F2-vector spaces.

This includes the statement that instanton Floer homology does not depend
on the choice of perturbation and metric. If (Y,w) is given, and π0, g0 and π1, g1

are two perturbations, then there is a morphism (X, v) = (I × Y, I × v) in both
ways.

So let X be a cobordism between Y0 and Y1 (really (Y0, w0, π0, g0) and
(Y1, w1, π1, g1)). Attach manifolds on both ends to get a non-compact cylin-
drical manifold

X+ = (−∞, 0]× Y0 ∪X ∪ [0,∞)× Y1.

Choose Riemannian metrics gX on X, equal to dt2 + g0 and dt2 + g1 on ends.
We want to look at the perturbed anti-self-duality equation for connections on
X+. For the SO(3)-bundle P with w2 = PD[v], we can consider a SU(2)-bundle
P̃ on X \ v. Then A a connection in P is the same as a connection in P̃ with
holonomy −1 around the link of v.

On X, consider the perturbation F+
A + V X(A) = 0 where on [0,∞)× Y1, it

looks like
V X(A) = β(t)Vπ1

(A)

with β(t) a cut-off function, and on (−∞, 0]×Y2, it looks like some cut-off times
Vπ2

. Let α0 and α1 be critical points on Y0, Y1 for the perturbed Chern–Simons
form. The moduli

Mv(α0, X, α1)
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will be flowlines with finite energy (finite change in CS + fπ) such that [A|t]→
α0, α1 as t→ −∞,+∞. At a solution A, the linearized equation will look like

δA : L2
`,A(X+,

∧
1
X ⊗ g)→ L2

`,A(X+,
∧+
X ⊗ g).

So the moduli space is “cut out transversely” (we call this regular) if this δA
is surjective. This will imply that Mv(α0, X, α1) is smooth and its dimension is
equal to the index. Because B(Y ) is not always simply connected, we are going
to have d+ 8k-dimensional parts

Mv(α0, X, α1)d+8k

for k ≥ 0.
To make this all work, we need to make sure that we can achieve regularity.

So far, we just made a cut-off perturbation on both ends, so we need to do more.
If we have g+f+ and g+f− Morse functions on B, we want to interpolate them
by g+ ft. We first used a cut-off function, but this might not be enough, so we
can just introduce small perturbations in small time intervals.
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Right now the objects in my category are (Y,w, π, g) decorated with a pertur-
bation and a metric. Given a morphism (Y−, w−, π−, g−) → (Y+, w+, π+, g+)
which is a cobordism (X, v), we equip this with an extra little perturbation π0

and gX . We can form the moduli space

M(α−, X, α+)d

of d-dimensional moduli space, regular on account of π0.

20.1 Compactification of flowlines

We need to think about what broken flowlines should mean in this context.
Take [An] ∈M(α−, X, α+)d a sequence of connections. If there are no bubbles,
convergence should mean

[An]→ [A∞]

on compact subsets of X+, with [A∞] ∈ M(α′−, X
+, α′+)d′ for d′ ≤ d. In the

limit, we will recover some critical points

α0
− = α−, α

1
−, . . . , α

k
− = α′−, α′+ = αl+, α

l−1
+ , . . . , α0

+ = α+,

and the broken flowlines can be thought of as

Md0−
(α0
−, α

1
−)×Md1−

(α1
−, α

2
−)× · · · ×M(α′−, X, α

′
+)d′ × · · · ×Md0+

(α1
+, α

0
+)

where d = d′ +
∑
di+ +

∑
di−.

If there are bubbles, they can occur anywhere throughout our manifold X+.
In this case, we should have

d = d′ +
∑

di− +
∑

di+ + 8(bubble− count).

If d < 8 there never can be bubbles. Also, di−, d
i
+ ≥ 1 and d′ ≥ 0.

For d = 1, we can compactify M(α−, X, α+) by adjoining

M(α−, α
1
−)1 ×M(α1

−, X, α+)0 and M(α−, X, α
1
+)0 ×M(α1

+, α+).

Furthermore, the compactification BrM(α−,M, α+)1 is a 1-manifold with bound-
ary, where the boundary is as described above.

As before, let

n−αβ = #M(α, β)1 = matrix entries of ∂Y− for Iw(Y−),

and n+
αβ the same thing for Y+. Also set

mα−,α+
= #M(α−, X, α+)0.

We can regard mα−,α+
as matrix entries for the linear map

m : C∗(Y−)→ C∗(Y+).
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Lemma 20.1. m is a chain map. That is, ∂Y+ ◦m = m ◦ ∂Y− .

Proof. We can only check that matrix entries. Fix β− and β+, and if we count
the boundary points, we get

0 = #
⋃
α−

M(β−, α−)1 ×M(α−, X, β+)0 ∪
⋃
α+

M(β−, X, α+)0 ×M(α+, β+)1.

That is,

0 =
∑
α−

mα−,β+
n−β−,α− +

∑
α+

n+
α+,β+

mβ−,α+
.

These are just the matrix entries.

We put an auxiliary metric gX and a perturbation π0. Suppose we replace
these with g′X and π′0, and suppose everything is still regular. Then we get a
new chain map m′ between the same complexes.

Lemma 20.2. m and m′ are chain homotopic. That is, there exists an K :
C(Y−)→ C(Y+) with

m−m′ = ∂Y+
◦K +K ◦ ∂Y− .

We are essentially going to use the same idea. Consider a family of metrics
{gs} = G on X, from gX to g′X where s ∈ [0, 1]. (We are actually doing the
same thing with πs, but we are going to omit this for now.) Consider

M(α−, X, α+)G0+1 =
⋃

s∈[0,1]

M(α−, X, α+)gs0 .

Some transversality argument shows that if we choose G suitably, then the total
space is going to be a 1-dimensional manifold. The endpoints at s = 0 is mα−,α+

,
and the endpoints at s = 1 is m′α,α+

. So it seems like at have proven

m = m′

modulo 2. But we have not done this, because M(α−, X, α+)G0+1 might not be
compact. So we have

m−m′ = contributions from non-compactness in the interior of (0, 1).

If we look at the proof of Uhlenbeck’s compactness theorem, nothing bad
happens for a one-dimensional family. Suppose we have [An] ∈M(α−, X, α+)

gsn
0 .

The limits here are going to look like

MY−(α−, α
′
−)1 ×M(α′−, X, α+)−1

or similarly with the + entries. Here, M(α′−, X, α+)−1 looks like a−1-dimensional
space, but in the space G, it really is

M(α′−, X, α+)G−1+1
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a set of points.
Define

K : C(Y−)→ C(Y+); Kα−,′,α+ = #points in M(α′−, X, α+)G−1+1.

Then the number of boundary points in M(α−, X, α+)G0+1 being 0 means that

0 = ∂K +K∂ +m+m′.
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There is one remaining thing to talk about instanton homology as a functor
I : C → F2−Vect, where C has (Y,w) as objects and isomorphism classes of
cobordisms as morphisms. What we have not proved is that composites are
sent to composites. Here, note that having w in the homology class isn’t good
enough, because then we don’t know how to glue the cobordisms v together.
We are going to need to specify w as an actual loop.

Now let (X1, v1) be a cobordism from (Y0, w0) to (Y1, w1) and (X2, v2) be
a cobordism from (Y1, w1) to (Y2, w2). Let (X, v) = (X1, v1) ∪ (X2, v2), and
denote

X+ = (−∞, 0] ∪X ∪ [0,∞).

Then the chain map Iv(X) is going to be given by M(α0, X
+, α2). To compare

it with the composite, we put a metric gR on X+ so that the part between X1

and X2 looks like a long cylinder [−R,R] × Y1. For finite R, there is going to
be a chain homotopy between g1 and gR. For R� R0, you can show that

Mv(α0, X
+, α2)gR0

is independent of R are homeomorphic to
⋃
α1
M(X1)×M(X2).

Example 21.1. Consider Y = T 3 and w = ∗ × ∗ × S1. Then Rw(Y ) had two
points

a =

(
i 0
0 −i

)
, b =

(
0 1
−1 0

)
, c = ±

(
1 0
0 1

)
.

So what is the relative grading between these two α and β? The answer is that
ind(α, β) = 4. We might have a cleaner way to see this, but there is a symmetry
here. There is a flat line bundle ξ with holomony −1 along the c-loop such that
α = β ⊗ ξ as SU(2)-connections over T 3 − w. This will give an isomorphism
M(α, β)0

∼= M(β, α)0, and anyways the index is either going to be 0 or 4. In
any case, ∂ = 0 nad so

Iw(T 3) = F2 ⊕ F2.

This is really the only way case you will be able to compute instanton ho-
mology by hand, because the boundary map is going to be hard to compute.

21.1 Marked bundles

Now we are going to look at the hybrid between GSO(3) and GSU(2).

Definition 21.2. A marking data µ is a (open) subset Uµ ⊆ Y and a given
SO(3)-bundle Eµ → Uµ. A µ-marked bundle with connection on Y is a
SO(3)-bundle E, a connection A in E, and an isomorphism σ : Eµ → E|Uµ .

So far, nothing has happend because w2(E) is not specified except that
w2(E) = w2(Eµ) on Uµ. We then say that (E,A, σ) ∼= (E′, A′, σ) if there exists
an isomorphism τ : E → E′ on Y such that τ∗(A′) = A and (σ′)−1 ◦ τ ◦ σ :

Eµ → Eµ on Uµ lifts to G
SU(2)
Eµ

on Uµ.
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Example 21.3. Take T 3 with a, b, c generators. In the old story, we had w
parallel to c. In the new picture, there is a torus Ta,b transverse to the c-circle,
and Uµ a neighborhood of Ta,b. We then take Eµ → Uµ the SO(3)-bundle with
w2 · Ta,b = 1.

Here, marked flat connections (E,A, σ) formR(Y, µ). At least when w2(Eµ) =
0, these are the conjugacy classes of SO(3)-representations of π1, with lifts to
SU(2) on π1(Uµ).

Definition 21.4. The marking data is said to be strong if R(Y, µ) contains
no flat (E,A, µ) with non-trivial automorphisms.

Example 21.5. µ is strong if there exists some orientable Σ2 ⊆ Y with Σ2 ⊆ Uµ
and w2(Eµ) · Σ2 = 1.
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Let Σ be a Riemann surface of genus g. Here are two ways you can look at the
moduli space of these Riemann surfaces. The first one is to look at {(Σ, J)}
can quotient out by the equivalence relation (Σ, J) ∼ (Σ′, J ′) if there exists a
τ : Σ → Σ′ such that τ∗(J ′) = J . The other way you can do is to fix the
manifold Σ0. Then we can look at the set of complex structures {J on Σ0} and
quotient out by the diffeomorphisms Diff(Σ0).

The second approach allows you to do more general stuff easily. We can take
a subgroup H ⊆ Diff(Σ0) can quotient out by H instead of the entire Diff(Σ0).
This is equivalent to having some “marking”. In terms of the first approach, we
are taking the set of all diffeomorphisms σ : Σ0 → Σ and divide by equivalence
classes τ : Σ→ Σ′ satisfying τ∗(J ′) = J and (σ′)−1 ◦ τ ◦ σ ∈ H.

22.1 Marking on a torus

Let’s go back to the case of 3-manifolds. We have defined

B(Y )SO(3) = {(E,A) : A connection on SO(3)-bundle E}/ ∼

where ∼ means σ : E → E′ and σ∗(A′) = A. To fix only one E, we need
to specify the topological type of E, which is determined by w2(E) = PD[w].
Then we looked at

Bw(Y )SU(2) = {A connection on P}/ ∼

where A ∼ A′ if there exists τ : E → E with τ∗(A′) = A and τ lifts to
GSU(2) → GSO(3). This is equivalent to

B2(Y )SU(2) = {Ã connection in P̃ : A = im(Ã) extends to P,Hol(Ã) = −1 ∈ SU(2)}/GSU(2)

where P̃ is the SU(2)-bundle lifting P on Y \ w. The marking is supposed to
do Bw(Y )SU(2) on some subset of the manifold, and B(Y )SO(3) on the entire
manifold.

A marking µ is a subset Uµ ⊆ Y with Eµ or Pµ a SO(3)-bundle on Uµ such

that P̃µ lifts to Pµ a SU(2)-bundle on Uµ \wµ, such that wµ(Pµ) = PD[wµ]. A
connection is then (E,A, σ) where (E,A) is an SO(3)-bundle with connection on
Y , and σ : Eµ → E is on Uµ. The equivalence relation (E,A, σ) ∼ (E′, A′, σ′)
means that there is a map τ : E → E′ such that τ∗(A′) = A and (σ′)−1 ◦ τ ◦ σ :
Eµ → Eµ lifting to GSU(2). Or we can say that our data is (E,A,A0, σ where A0

is a connection in Eµ and the equivalence relation is as before bur also requiring
τ∗(A) = A0 on Uµ.

Let us write B(Y ;µ) the µ-marked connections up to equivalence, and Bw(Y ;µ)
those with given w2 = PD[w] on Y .

Example 22.1. Let us take Y = T 3 and w = c. If we take Bw(Y )SO(3), the
representation variety is one point with automorphism group {1, i, j, k}. If we
take Bw(Y )SU(2), this is two points with trivial automorphism group. If we take
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Uµ the neighborhood of the 2-torus in the a, b direction, then the representation
variety is one point with trivial automorphism group. Thus Iw(Y ;µ) for Y = T 3

is going to be F2, which is 1-dimensional.

Recall that we say that µ is strong when R(Y ;µ) has only elements with
trivial automorphism group. This happens when there is a Σ ⊆ Uµ such that
w2(E)(Uµ) = 1.

Given any closed oriented 3-manifold Y , and look at the connected sum
Y#T 3. Take w to be the ordinary (pt)× S1 inside the T 3 part, and also let us
take µ to be the usual Uµ the neighborhood of a torus. We can then define

IT (Y ) = Iw(Y#T 3, µ).

Actually, to form Y#T , we need a basepoint y0 ∈ Y and a frame e1, e2, e3

at y0. This is not just being pedantic, because we want diffeomorphisms of
(Y, y0, {e1, e2, e3}) toe act on IT (Y ) and also cobordisms to work functorially.

Example 22.2. By definition, IT (S3) = F2 as we have previously computed.

If we look at the representation variety Rw(Y#T 3, µ), this is going to be

• a representation ρ : π1(Y )→ SO(3),

• a unique flat connection on T 3 with no automorphism,

• identified at the base point.

So these are the same as flat SO(3)-connections (E,A) on Y together with a
trivialization Ey0 → R3. Although this looks complicated this is just the same
as

Rw(Y#T 3;µ) ∼= Hom(π1(Y, y0),SO(3)),

not up to conjugation.
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Let us look at our 3-manifold Y and its representation variety R as a SO(3)-
representation variety without any decorations. Then

R = R̃/SO(3); R̃ = Hom(π1(Y ),SO(3)).

The stabilizer of p ∈ R̃ is just the centralizer CSO(3)(im(p)). So it is either 1,
(1, i), (1, i, j, k), SO(2), O(2), or SO(3), up to conjugacy. Here we can compute

CSO(3) ⊇ (1, i) iff im(p) ⊆ O(2),

CSO(3) ⊇ (1, i, j, k) iff im(p) ⊆ (1, i, j, k),

CSO(3) ⊇ SO(2) iff im(p) ⊆ SO(2),

CSO(3) ⊇ O(2) iff im(p) ⊆ (1, i),

CSO(3) ⊇ SO(3) iff im(p) = (1).

If we take Y = Y1#Y2, then π1(Y ) = π1(Y1)∗π1(Y2), and we get R̃1×R̃2 =
R̃. But it is not the case that R = R1 ×R2. Imagine a (unrealistic) situation
in which R is a orbit of a single p with trivial stabilzer. In this case, we will
have

R =
R̃1 × SO(3)

SO(3)
= R̃1.

We were able to do this using markings. If we take Y1#T 3, we used marking
and non-trivial w2 on T3 to engineer R̃T 3 = SO(3). These can be considered as
bundles E → Y with a connection and an identification Ey ∼= R3. Then we are
looking at the space A/G◦. Here, G◦ is the gauge transformations u : E → E
with u(y) = 1Ey .

23.1 Orbifolds

Definition 23.1. An orbifold is a topological space with charts

Ũy/Hy
ϕ−→ Uy

around each point y, such that Ũy ⊆ Rn and Hy is a finite group acting faithfully

and linearly on Bn ∼= Ũy fixing ϕ−1(y) = 0. It is called orientable if Hy ⊆
SO(n). We want this to satisfy some compatibility condition, like if y′ ∈ Uy
then ϕ−1

y (y′) ∈ Ũy has stabilizer Hy′
∼= H ′ ⊆ Hy.

For Y̌ an orbifold, we take its singular locus sing(Y̌ ) = {y : Hy 6= 1} and
Y̌ ◦ = Y̌ \ sing(Y̌ ). In the oriented case, sing is going to have codimension at
least 2. So, in dim = 2 the model is R2/〈g〉 where gk = 1. We say that it is a
bifold if k = 2 at all singular points.
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Example 23.2. In dimension 3, there are going to be codimension 2 strata and
codimension 3 strata. The codimension 2 strata is going to look like R×(R2/〈g〉),
which is a cone. There are also going to be codimension 3 strata. For instance,
it can look like Uy homeomorphic to a cone on S2/I where I is the icosahedral

group. This look like a cone on Š ∼= S2 where Ŝ has three singular points of
order 2, 3, 5. Topologically Uy looks like a ball, but it has three 1-dimensional
singular strata coming out of the singular point, with order 2, 3, 5.

The three cases of codimension 3 strata are I (icosahedral group, 2, 3, 5), O
(octahedral group, 2, 3, 4), T (tetralhedral group, 2, 3, 3), D2k (dihedral group,
2, 2, k).

So you can think of a 3-dimensional orbifold as a 3-dimensional manifold and
inside it specifying a trivalent embedded graph K ⊆ Y , possibly with no vertices
and only loops. Then each edge is labeled by natural numbers k ≥ 2, and we
require that each vertex looks like one of I,O,T,D. We say that a 3-dimensional
orbifold is a bifold if k = 2 on all edges.

Example 23.3. Let’s think about 4-dimensional bifolds. The codimension 2
strata will be R2 × (R2/〈g〉), and codimension 3 strata should look like R ×
(R3/V4). For the codimension 4 strata, we only allow one case: B4/V8. Then
this looks likes a cone on the bifold coming from (S3,K). This is a edges of a
tetrahedron, so we will get a tetrahedral point, which looks like coning off the
tetrahedron at the center.
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So we were looking at closed oriented “bifolds”. These Y̌ corresponded to (Y,K)
where Y is a 3-manifold and K is a trivalent graph K or a “web”, which is the
singular set. The edges are locally modeled on B3/〈1,−1,−1〉, and the vertices
are modeled on B3/V4.

24.1 Examples of bifolds

Example 24.1. A K ⊆ R3 ⊆ S3 can be

(i) an unknot, or any knot or link,

(ii) the θ-web with two vertices,

(iii) the tetrahedron with 4 vertices,

(iv) the cube with 8 vertices,

(v) the dodecahedron with 20 vertices,

(vi) handcuffs with 2 vertices,

(vii) start with any two-component link and take any arc between them, and get
a different embedding of a handcuff with 2 vertices (e.g., Hopf’s handcuffs
by doing this on the Hopf link),

(viii) start with a trivial link and take an interesting arc, etc.

If you take S3/C2 by (1, 1,−1,−1), then you will get an unknot. If you take
S3/V4, you will get a θ-web. If you take T 3/H, you will get a cube, and the
dodecahedron will come from some quotient of H3. All these are finite quotients
of compact 3-manifolds, except for the (vi).

In 4-dimensions, we said that X̌ corresponds to (X,S) where S is the singular
set, which is a 2-dimensional structure (or a “foam”).

Example 24.2. A foam in R4 ⊆ S4 can be

(i) the standard S2 ⊆ R4, coming from R4/C2, or knotted or linked surfaces,

(ii) the Θ-foam, which is a D2 ∪ S2,

(iii) to the Θ-foam, adding an additional vertical half-disc in the northern
hemisphere, which is the double of a cone on a tetrahedron.

We can talk about oriented 4-bifolds with boundary, ∂X̌ = Y̌ . So we may
consider a category where

• objects are closed oriented 3-bifolds,

• morphisms are isomorphism classes of 4-bifolds as cobordism.

For example, we can think of a special case where the objects are webs in
R3 ⊆ S3, and forms with boundary are in [0, 1]× R3.
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Example 24.3. A closed 4-form is a morphism from ∅ to ∅. If we chop up the
Θ-foam into half, we are going to get a morphism θ → ∅.

Note that foams don’t have to be oriented.

Example 24.4. If we quotient CP 2 by complex conjugation σ, we are going to
get Fix(σ) = RP 2. Then CP 2/σ = (S4, S) where S is an RP 2.

24.2 Analysis on bifolds

We want to do analysis on orbifolds. First of all, what is a smooth function
f : X̌ → R? This should mean that if ϕx : Ũx → R is a chart, then f ◦ ϕx is
smooth for all x. Another way to say this is that it is a smooth function

f : X̌◦ = X̌ \ Sing(X̌)

such that each f ◦ ϕx extends to a smooth function on Ũx. More generally,
we can say that a smooth p-form on X̌ is a ω ∈ Ωp(X̌◦) such that ϕ∗x(ω)
on Ũx \ ϕ−1

x (Sing) extends smoothly to ω̃ ∈ Ωp(Ũx). Similarly we can define
Riemannian metrics.

A bundle with connection is a (E,A) on X̌◦ such that for all x, the bundle
(ϕ−1
x (E), ϕ∗x(A)) on Ũx \ ϕ−1

x (sing) extends to a bundle with connection (Ẽ, Ã)
on Ũx. This makes sense, because if we have a bundle with connection away
from some bad set, there is a unique way to extend it. Here, the extended
bundle (Ẽ, Ã) will have a Hx-action, so Hx should act on Ẽx. In other words,
orbifold bundles or rank r come with local data

Hx → G = SO(r) or other groups.

We will look at SO(3)-bundles with connection on X̌4 and Y̌ 3. Here, we
require that for x with Hx = C2, the map Hx = C2 → SO(3) is nontrivial. We
are going to call them bifold bundles with connection.

In a web, let us see what happens at a vertex. From a bifold bundle, we get
a homomorphism

ε : Hx = V4 = 〈1, a, b, c〉 → SO(3)

This should satisfy the requirement that ε(a), ε(b), ε(c) are not 1. Then up to
conjugation, it has to be

a 7→

1
−1

−1

 , b 7→

−1
1
−1

 .

So let us consider

B(Y ) = all isom. classes of bifold bundles with connection (E,A) on Y̌ .

Inside there, there is the representation variety R(Y̌ ) ⊆ B(Y̌ ) of flat conections,
which is

R(Y̌ ) = R̃(Y̌ )/ SO(3).
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Here, we have

R̃(Y̌ ) = {ρ : π1(Y̌ ◦)→ SO(3) : for every edge e, ρ(me) has order 2}

where me is the meridian around the edge ε. Note that we don’t have to worry
about things happening at vertices, because

〈a, b, c = ab | a2 = b2 = c2 = 1〉

is the Klein four group.
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We have a web K ⊆ R3 ⊆ S3, and we are looking at representations

R̃(K) = {ρ : π1(R3 \K)→ SO(3) : ρ(me) have order 2 for all e}.

This sits inside

Hom
(π1(R3 \K)

m2
e = 1

,SO(3)
)

= Hom(π1(Y̌ ),SO(3)).

25.1 Fundamental group of a bifold

This π1(Y̌ ) is the orbifold fundamental group, which classifies coverings in the
orbifold sense. It is going to look like

π1(Y̌ ) = 〈me | m2
e = 1,me1me2me3 = 1 at vertices〉.

This something similar to the Wirtinger presentation of a knot complement.
First we project the K onto R2, but keep track of over-crossings and under-
crossings. Then π1(Y̌ ) has generators me for each “arc” of the diagram, with
relations

m2
e = 1, me1me2me3 = 1, me′ = m−1

f memf

if e and e′ is an under crossing of f .
Here, rotations in SO(3) of order 2 are determined by the axis of rotation.

So what we have is actually a map

{arcs} → RP 2.

The condition me1me2me3 = 1 means that the three points me1 ,me2 ,me3 to
three orthogonal points. The condition me′ = m−1

f memf is going to mean that
the axes me and me′ have equal spacing between mf , with them lying on a great
circle.

Example 25.1. So let’s look at some examples of R̃(K).

(1) If K = ∅, then it is {1}.
(2) If K is an unknot, then it is RP 2. If it is an unlink, it is just (RP 2)#c.

(3) If K is the θ-web, then R̃(K) is the space of 3 orthogonal axes, which is
SO(3)/V4 = F3.

(4) If K is the tetrahedral web, then R̃ = F3 because actually the non-meeting
arcs are going to be sent to equal points in RP 2.

(5) If K is the Hopf handcuffs, then the complement is homotopic to a punc-
tured torus. Then the representation variety is a pair of axes x1, x2 such
that the commutator has order 2. This just means that the angle between
them is 45◦. Then R̃ = SO(3)/{1, i} = L(4, 1) is the space of unit tangent
vectors on RP 2.
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(6) If K is the “twisted handcuffs” on a unlink, this one is interesting because
there is a representation with image the octahedral group. Then R̃ =
SO(3).

(7) If K is the cube web, we can put i, j, i, j on the outer square. Then this
forces four edges to be k, and in the inner square, we can put any i′, j′, i′, j′

where i′, j′, k are orthogonal. But there are three ways to do this. So at
the end, you are going to get something like R ∼= [0, 1]q0 [0, 1]q0 [0, 1].

(8) If K is just the Hopf link, the two me1 and me2 commute. So either
x1 ⊥ x2 or x1 = x2. So R̃ = F3 q RP 2.

25.2 Anti-self-duality equation on an orbifold

We want to look at anti-self-duality equations on these. Let X̌ be a closed
oriented 4-dimensional bifold, and S = sing(X̌). These look like (X,S) where
S is a foam. More generally, we can take X̌ to be an orbifold.

Consider S4 ⊆ R2×R3 and the cyclic group Cm acting on R2. Then the fixed
point set is S2 ⊆ R3. The quotient is still going to be a 4-sphere, with S = S2,
but with order m. (This is going to be a bifold if m = 2.) We know what an
orbifold bundle with connection (E,A) is. Put the orbifold-Riemannian metric
on X̌, coming from the round metric. Now we can look at the anti-self-duality
equation F+

A = 0 on X̌. Define

κ =
1

C

∫
tr(F ∧ F )

normalized so that κ = 1 for the standard 1-instanton. Then we have

δA = d+
A ⊕ d

∗
A : Ω1(X, gE)→ Ω+ ⊕ Ω0,

and the index is the formal dimension of the moduli space M , which is dimH1
A−

dimH0
A + dimH2

A.

Example 25.2. Consider the trivial connection. Then κ = 0, and

ind(δA) = 0− dim(stabilizer) = 0− 1 = −1.

Example 25.3. Now consider the standard instanton, divided by Cm. Here,
we get a solution on X̌, and it is going to have κ = 1

m . Now,

ind(δA) = dim(moduli) = 3

because we are looking at the Cm-invariants of the original moduli space of
instanton, which is B5.

The reason we are going this is to find out whether we still have this equation

ind(δA) = 8κ+ i(X̌).

But we see that κ increases 1/m, while the index increases by 4. So we are
going to have this kind of a thing only for m = 2.
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We had looked at various examples of bifolds S4/H. If H = 1, we get the trivial
S4. If H = C2, we get (S4, S2). If H = V4, we get a θ-foam. If H = V8, we get
a tetrahedral foam, which is like a suspension of a tetrahedral web. A bifold
connection is a given (E,A) on S4 and H-action such that E has fiber R3, and
for h ∈ H of order 2, on each s ∈ Fix(〈h〉), h acts on Es = R3 as an actual order
2 element.

26.1 Index between points

We have the 0-instanton on S4, which is flat on S4, and also the 1-instanton on
S4, which is Λ− → S4. Then we can tabulate the index and κ for each of the
cases above. Note that ind(δA) is the dimension of the moduli space minus the
dimension of the stabilizer.

H 0-instanton 1-instanton
ind(δA) κ ind(δA′) κ′

1 −3 0 5 1
C2 −1 0 3 1/2
V4 0 0 2 1/4
V8 0 0 1 1/8

Table 1: Dimension and κ

Here, you can notice that

ind(δA′)− ind(δA) = 8(κ′ − κ)

in all cases. In general, we claim that in general, if we compare (E,A) and
(E′, A′) on X̌ = (X,S) then this still holds.

Let me sketch the prove assuming w2(E) = w2(E′). Note that we can take
the orbifold connected sum

X̌ = X̌0#̌X̌1

of two orbifolds. Now assume that

(E,A) = (E0, A0)#̌(E1, A1), (E′0, A
′
0)#̌(E1, A1).

Then “excision” for index says that

ind(∆A′)− ind(δA) = ind(δ′A0
)− ind(δA0

).

So we apply it to the case

X̌0 = S4/H, E0 = (0-instanton)/H, E′0 = (1-instanton)/H.

Because a bundle is determined by its w2 and c2, we can change the bundle by
these operations. Also, excision and the verification we did above shows that
the comparison works out at each step.
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Similarly, we can discuss Uhlenbeck compactness for Mk(X,S). This is the
same as in the smooth manifold case, with additional point. If the bubble is
at x ∈ X̌, for x ∈ Sing(X̌), the change in κ should be a multiple of 1

|Hx| =

1, 1/2, 1/4, 1/8.
Consider now a 3-dimensional bifold Y̌ 3 = (Y,K). We want to do Morse

theory on the space B(Y̌ ) of bifold connections modulo gauge, with the Chern–
Simons functional. Take two paths z, z′ from α to β. Then we have the relative
index indz′(α, β)− indz(α, β). This will be essentially the change in the Chern–
Simons functional

indz′(α, β)− indz(α, β) = c(∆z′(CS)−∆z(CS))

up to some constant c. So we will also have, on a closed loop z,

spct.flow(z) = 8(change in Morse function).

Now we can start defining instanton Floer homology. Let Y̌ = (Y,K) be a
bifold equipped witha Riemannian orbi-metric. Then we can look at

B(Y̌ ) =
bifold connections

(SO(3) gauge
.

Then we can look at the Chern–Simons functional B(Y̌ ) → S1 with critical
points being flat bifold connections R(Y,K).

Suppose for now thatR(Y,K) consists of connections all of which have trivial
stabilizer. (For instance, the twisted handcuffs.) You can check that holonomy
perturbations are Morse–Smale. We now define

(C, ∂) =
⊕
α

F2, ∂α =
∑
β

nαββ

where
nαβ = #(M(α, β)1).

We need to check that ∂2 = 0. Here we need to look at the boundary of
M(α, γ)2. Here, we now have to worry about additional noncompactness, be-
cause now bubbles can have dimension drop that is 2.
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We want to check that ∂2 = 0. Here, the issue is with bubbling.

27.1 Anti-self-duality on connected sum

Consider X = X0 ∪Y X1 where there is a cylindrical neck Y times an interval
of length R. As this neck grows longer, anti-self-dual connections will look like
A0 on X+

0 and A1 on X+
1 . Here, the connection will look like

[A0|t]→ [B] as t→∞, [A1|t]→ [B] as t→ −∞.

Here, B is going to be a flat connection. This is non-degenerate, but might have
stabilizer ΓB in GY , like the trivial connection on S3.

For R � 0, we can construct solutions on X by gluing solutions on each
side. Choose a gauge so that A = B + a0 where a0 is exponentially decaying.
Now take a cut-off function β and take

A′0 = B + β0(t)a0, A′1 = B + β1(t)a1.

Then we can actually glue the two connections together to get a connection [A′],
and using Newton’s method, we can find an anti-self-dual connection [A] near
[A′] on X.

Here, we made a choice when we glued these two connection. This gluing
map ψ is an element of ΓB = Aut(E,B).

Proposition 27.1. A neighborhood of [A] in M(X, gR) (the moduli space of
Riemannian metrics) is isomorphic to N0 × (ΓB) × N1 where Ni is a neigh-
borhood of [Ai] in M(X+

i , [B]) (assuming ΓAi = {1}, so that the choice of an
automorphism on the B side fixes the automorphism on the Xi side).

Example 27.2. Consider X = X0#X1 and X0 = S4. Then this is conformal
to having a thin neck, and ΓB = SO(3).

Example 27.3. We can do a similar thing for orbifold connected sum. We can
write a 4-bifold X̌ as

X̌ = (S4/C2)#̌X̌.

Here, we’re gluing along Y̌ = (S3, S1), so that the neck will look like R × Y̌ .
Then the gluing parameter is ΓB = S1 = CSO(3)(C2).

Example 27.4. We can also take connected sum along a seam. We can take

X̌ = (S4/V4)#̌X̌

at a seam of X. Then Y̌ = (S3/V4) is a θ-web, and then ΓB = V4 = CSO(3)(V4).

Consider now an 1-instanton on X̌0 = S4/V4, which is just the standard
1-instanton divided by V4. A neighborhood of [A] is then homeomorphic to

N0 × ΓB ×N1 = D2 × (4 point)×N1,
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where N1 is a neighborhood of [A1]. Conformally, for R � 1, this looks like a
bubble (on a seam) with small radius, and κ = 1

4 at the bubble.

We apply this to a cylindrical X̌, and here consider ∂2 = 0. Take X̌ = R× Y̌
and look at the moduli Mz(α0, α2) that is 2-dimensional and Mz(α0, α2) that
is 1-dimensional. Here, we regard M ⊆M by normalizing so that the center of
mass of |F!|2 is at t = 0.

Recall the old proof of ∂2 = 0. Here, the space Mz(α0, α2) was an 1-manifold
with a compactification ⋃

α1

Mz0(α0, α1)×Mζ1(α1, α2).

Now we have new ends, with κ = 1/4 bubbles. In this case, the weak limit is

Ma′(α0, α2)

where the index is indz′(α0, α2) = indz(α0, α2) − 8( 1
4 ) = 0. This means that

α2 = α2 and z′ is the constant path (with the pulled-back flat connection).
Then locally,

Mz(α0, α2) ∼= D2 ×Mconst(α0, α0)× V4.

So new solutions actually come in groups of 4. Then we are find because we are
working modulo 2. Maybe ∂2 = 4 idC if we work with Z-coefficients.

27.2 Instanton homology on bifolds is a functor

There is a similar issue if you try to show that 4-dimensional cobordisms give
chain maps that are identity on homology. Again, the category is given as
objects are closed oriented 3-dimensional bifolds Y̌ = (Y,K) with the constraint
that R(Y̌ ) consists of bifold SO(3)-connections with Γ = (1). Morphisms are 4-
dimensional oriented bifold cobordisms X̌ = (X,S) up to isomorphism relative
to the boundary.

Proposition 27.5. Instanton homology (with SO(3)-gauge groups) gives a func-
tor J : C → VectF2 .

A special case of Y̌ is webs K ⊆ R3 ⊆ S3. Then we can consider the category
of webs and foams.

Example 27.6. Take the twisted handcuffs THC. Given K ⊆ R3, we may
consider K q THC. Because

R(THC) = 1 point with trivial stablizer,

we have

R(K q THC) ∼= R̃(K) = {ρ : πorb
1 (R3,K)→ SO(3) | ρ(me) order 2}
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Now R(K q THC) always satisfies the condition that R(Y̌ ) has trivial sta-
bilizers. So we can look at a new category

C = all webs in R3

with all morphisms beings forms. On this category, we have a functor

J# : C → VectF2
.

Example 27.7. J#(∅) = J(THC) = F2. This is because the complex has one
generator.
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Let’s pick up where we were. For K or a bifold Y̌ , we have J(K) or J(Y̌ )
defined if Γ = (1) for all elements of R. But this is not always satisfied. So we
used Y̌THC = (S3, THC) and defined

J#(K) = J(K q THC).

Here is a more general formulation. Given a general bifold (Y̌ , y0) with
basepoint in the smooth part, y0 ∈ Y̌ \ sing, and a framing of Ty0 Y̌ , we can take
Y̌ #̌Y̌THC. Then we are defining

J#(Y̌ ) = J(Y̌#Y̌THC).

Then J#(S3) = F2. The key part in this definition is that Y̌THC is “atomic”,
that is, R is a point and the stabilizer is the point so that R̃ = SO(3).

28.1 Atomic bifolds (with markings)

There are other things with this atomic property. We could use T 3 with marking
as before, but this is a bit cumbersome.

Example 28.1. Consider θ inside S3. The representation variety R is going to
be a point, given by π1(Y̌ )→ V4, but the stabilizer is the stabilizer of V4, which
is V4.

Now take a marking µ = (Uµ, Eµ) where Uµ ∼= B3 is a neighborhood of θ

and Eµ is a trivial bundle. Then we are looking at lifts ĩ, j̃, k̃ ∈ SU(2) such

that ĩj̃k̃ = 1. This now has trivial stabilizer. So this (Y̌θ, µ) = ((S3, θ), µ) is a
alternative “atom”. That is, we may define

J#
θ (Y̌ ) = J(Y̌#Y̌θ, µ).

Example 28.2. Another example is the Hopf ring H in S3. Here, we take
the marking data as Uµ ∼= B3 a neighborhood of H and Eµ the bundle which
has Stiefel–Whitney the Poincaré dual of a arc w joining the two components.
Then the representation variety is a representation variety for the 2-torus with
w being a point, which is ĩ, j̃ ∈ SU(2) with [̃i, j̃] = −1. Then this is one point
with trivial stabilizer. So we can also define

J#
H (Y̌ ) = J(Y̌#Y̌H , µ).

It turns out that
dim J#

θ = dimJ#
H = dim J#

for all Y̌ . This is something that works for all atomic bifolds, by general non-
sense.
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28.2 Grading of instanton Floer homology

In the smooth manifold case, we had a 8-periodic grading on the instanton
Floer homology. Let Y be a smooth 3-manifold, and look at B(Y ) the SO(3)-
connections up to gauge transformation. For z a closed loop, we looked at
the spectral flow of Hess(CS) along z. If SF (z) ∈ dZ for all z, then the index
ind(α, β) is well-defined modulo d. This happened to be 8 for SU(2)-connections,
because

∆z(CS) = c

∫
[0,1]×Y

tr(F ∧ F ) = κ.

Then by proportionality, we had

SF (z) = 8κ(z) = 8∆z(CS).

On a closed 4-manifold X, we have for Ẽ an SU(2)-bundle the Chern class
c2 = k. If E an associated SO(3)-bundle, we have p1 = −4c2(Ẽ) if it comes
from a SU(2)-bundle. So for an SO(3)-bundle, we have κ = − 1

4p1(E).
For an SO(3)-bundle on X, we have p1(E) and w2(E) ∈ H2(X;Z/2). There

is something called Pontryagin square that lifts to

w2
2 ∈ H4(X;Z/4Z).

Then we have p1(E)[X] = w2(E)2[X] modulo 4.

Corollary 28.3. If QX is even then p1(E) is even and κ ∈ 1
2Z (otherwise 1

4Z).
If QX = 0, then p1(E) is a multiple of 4 and κ ∈ Z.

Now QX is even if X = S1 × Y . So κ(z) ∈ 1
2Z and so SF (z) ∈ 8 1

2Z = 4Z
for all loops z in B(Y ). This means that SO(3) instanton Floer homology only
has a Z/4Z-grading.

But what about bifolds S1 × Y̌ ? What is the smallest κ(z) for z a loop?

Example 28.4. Let’s first look at the case where Y̌ = (S3,unknot). We have
a connection [A] on S1 × Y̌ = S1 × (S3/C2). Then we can pull back to [A∗]
on S1 × S3, and here κ(A∗) ∈ Z because QX = 0. So κ(A) ∈ 1

2Z and this is
Z/4-graded.

Example 28.5. Consider the θ-graph Y̌ = S3/V4. Using a similar argument,
we similarly get κ ∈ 1

4Z and so it is going to be Z/2-graded.

Example 28.6. In the tetrahedral graph Y̌ = S3/V8, we only have κ(z) ∈ 1
8Z

and its now Z/1-graded.
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Consider Y̌ = (S3,K). For K an unknot, this was Z/4-graded. For K a θ-
graph, this was Z/2-graded. For K a tetrahedral graph, this was Z/1-graded.
This is related to the fact that θ is bipartite where as the tetrahedral graph is
not bipartite. Consider (S3, H, µ) where w2(Eµ) is the Poincaré dual of w an
arc connecting the two components. Then B(S3, H, µ) is Z/4-graded.

Let us use now Y̌0 = (S3, H, µ) and

J#(Y̌ ) = J(Y̌#Y̌0, µ).

Recall that the dimension of the homology theories are going to be the same.
But this gives more grading. For instance, if Y̌ = (S3, knot), this is going to be
Z/4-graded.

Let us writeR#(Y̌ ) = R(Y̌#Y̌H ;µ) ∼= R̃(Y̌ ). Similarly, let us write B#(Y̌ ) =
B(Y̌#Y̌H ;µ).

Example 29.1. Let us compute J#(unknot). Recall that

R#(unknot) = R̃(unknot) = Hom(π1(Y̌ ),SO(3) : ordm = 2) ∼= RP 2.

Now the set of critical points is not discrete. So we need to choose a holonomy
perturbation f and look at CS+f instead. We are going to be make this so that
f = O(ε) and f |RP 2 is the standard Morse function on RP 2, which has three
critical points. After perturbation, there will be three critical points α0, α1, α2.
You can see that there will be two flowlines from α2 to α1 and two flowlines
from α1 to α0 as in RP 2.

Because the grading is Z/4, we have that

indz(αj , αi) = j − i+ 4d.

But j− i ≥ −2 and so j− i+ 4d = 1 only when d = 0. This means that index 1
trajectories have ∆(CS + f) = O(ε). Uhlenbeck compactness then tells us that
the only trajectories are flowlines of grad(f). The upshot of this is that

J#(unknot) ∼= H∗(RP 2;F2) = F3
2.

29.1 Operators on J#(K)

Consider finite-dimensional Morse theory. Suppose I have a double cover φ :
B̂ → B, which is a sphere bundle of a R-bundle. Then with F2-coefficients, I
have a Gysin sequence

Hj(B)→ Hj(B̂)→ Hj(B)
u−→ Hj−1(B)→ · · ·

where u is given by cap product with [w1(L)].
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Let’s describe this in the Morse complex. Take a cycle
∑
nαα and look at

p−1(α) = {α̂, α̂′} in B̂. Pick one and consider (∂
∑
nαα̂) ∈ Cj−1(B̂). Then we

have ∂
∑
nαα̂ =

∑
mβ(β̂ + β̂′). Then we can define

u
(∑

nαα̂
)

=
∑

mββ.

Now let us look at B(Y̌ )∗, which is the Γ = 1 locus. We use ν a marking
data, consisting of Uµ a neighborhood around some point x ∈ e, and Eµ the
trivial bundle. Then we have

B(Y̌ , ν)∗ → B(Y̌ )∗.

This is a double cover, so we get for each x ∈ e ⊆ K, an operator

ue : J#(K)→ J#(K)

of degree −1. Here, C2 acts on Ẽx by (−1,−11) so there are +1-eigenspaces
L̃x ⊆ Ẽx.

Using this, we can construct a line bundle

L2 → B(Y̌ )#

with fiber L̃x at [E,A]. The double cover is just going to be S(Lx).
Given a vertex on K with edges e1, e2, e3, each of them gives u1, u2, u3 on

J#(K). This gives three line bundle L1,L2,L3, and L1 ⊕ L2 ⊕ L3 is an SO(3)-
bundle. So you can check that

∑
wi(Li) = 0. Therefore

u1 + u2 + u3 = 0.

Example 29.2. Let’s see what happens to K = unknot. There is only one line
bundle L, and it’s not hard to see that L restricted to RP 2 is nontrivial. So we
are taking cap product with w1(L) ∈ H1(RP 1;F2). This is going to send the
generator α2 to α1, and the generator α1 to α0.

Suppose we have a functor S from K to K ′. Given a point x ∈ Face(S), we
can take the composite

T : J#(K)→ J#(K1/2)
ux−−→ J#(K1/2)→ J#(K ′).

This composite depends on the face only. So “foams with dots” provide mor-
phisms in an enriched category.
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For Θ the Θ-foam, we are trying to evaluate

J#(Θ) : J#(∅) = F2 → J#(∅) = F2.

More generally, for a, b, c the number of dots on the three faces, we want to
evaluate J#(Θ(a, b, c)) ∈ F2.

30.1 Computation of the operators

Let Y̌0 = ((S3, H);µ) be an atom. Then we are looking at X̌+ = (R ×
Y̌0)#(S4,Θ). Then the moduli space is Mκ = Mκ(α0, X̌, α0) for the unique
α0 and κ ∈ 1

4Z. Then we can write

J#(Θ(a, b, c)) = #(Mκ ∩W1 ∩ · · · ∩Wa+b+c)

where each Wi is codimension 1 which is Poincaré dual to w1(Li).
M0 is the flat connections, and this is

{ρ ∈ Hom(π1(S4 \Θ),SO(3)) : ρ(m) order 2, . . .}
= {(i, j, k) : orthogonal lines in SO(3)} = SO(3)/V4 = F (3).

If any of a, b, c ≥ 3, then we get J#(Θ(a, b, c)) = 0 by the knot argument we
gave last time. For a + b + c, we have tautological line bundles L1, L2, L3 on
F (3), corresponding to classes w1, w2, w3. Then direct analysis gives

J#(Θ(a, b, c)) = (wa1w
b
2w

c
3)[F (3)].

Because wj(L1 ⊕ L2 ⊕ L3) = 0, we can compute these.

Corollary 30.1. J#(Θ(a, b, c)) = 1 if (a, b, c) = (2, 1, 0) or permutations, and
0 otherwise.

We can do a finer analysis. We can decompose the operator into the first
half and the second half, and consider J#(Θ(a, b, c)) as a composition of

J#(Θ+(a, b, c)) ∈ J#(θ), J#(Θ−(a′, b′, c′)) ∈ J#(Θ)∗.

Then the paring is given by Θ(a + a′, b + b′, c + c′). You can check that
J#(Θ+(a, b, c)) for 0 ≤ a ≤ 2 and 0 ≤ b ≤ 1 and c = 0 are independent.

Corollary 30.2. dim J#(θ) ≥ 6.

But actually we also know that the dimension is at most 6. The reason is
that

R#(S3, θ) ∼= R̃(S3, θ) ∼= F (3)

and there is a Morse function F (3)→ R with 6 critical points.
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Corollary 30.3. J#(θ) ∼= H∗(F (3);F2) as vector spaces. Moreover, ui acts as
a wi for i = 1, 2, 3.

More generally, let S be a foam-cobordism from K0 to K1, and let f1, f2, f3

be faces incident along a seam. Let S(a, b, c) be S with dots a, b, c on these three
faces. Then

• S(3, 0, 0) = 0,

• S(1, 0, 0) + S(0, 1, 0) + S(0, 0, 1) = 0,

• S(1, 1, 0) + S(1, 0, 1) + S(0, 1, 1) = 0,

• S(1, 1, 1) = 0,

• all of these after adding auxiliary dots.

Proof. We know them for S = Θ+ and K0 = ∅ and K1 = θ. In the general
case, we can manipulate the cobordism so that instead of K0 → K1/2 → K1

we have K0 → K1/2 q Θ → K1. The first map can be thought of as J#(S) ⊗
J#(Θ(a, b, c)). Then we check this for Θ(a, b, c).

30.2 Nonvanishing theorem for webs

Theorem 30.4. We have J#(K) 6= 0 for any web K ⊆ R3, provided that K is
not 1-splittable (i.e., there does not exist a 2-sphere meeting K transversely at
one point).

This 1-splitting is clearly necessary, because if there is this 1-splitting edge,
then the meridian should be order 2 and trivial, so R(K) = ∅. This dimension
dim J#(K) has some properties in common with the number of Taie colorings
of K. These are edge 3-colorings

{(c : Edges→ {1, 2, 3}) : c(e) 6= c(e′) if e, e′ meet at a vertex}.

Theorem 30.5. If K is planar, i.e., K ⊂ R2 ⊂ R3, then dim J#(K) ≥
#Tait colorings.
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Given a bifold ∂P 4 = Q3 with boundary, we can puncture it can consider it as

J#(P \B4) : R2 → J#(Q).

So we can write this as J#(P ) ∈ J#(Q).

31.1 Relations between operators

Given a cobordism X1 between Y1 and Y ′1 , and a cobordism X2 between Y2 and
Y ′2 , suppose that there is a cobordism between Y = Y1#Y2 and Y ′ = Y ′1#Y ′2
that comes from gluing X1 and X2 together. Then excision tells us that

J#(Y ) J#(Y ′)

J#(Y1)⊗ J#(Y2) J#(X1)⊗ J#(X2)

∼=

X

∼=
X1⊗X′1

commutes.
So if we have a cobordism X : Y → Y ′, and P is a region inside X with

Q = ∂P , we can factor it as

Y = S3#Y
Z−→ Q#Y → Y ′

where Z is a split cobordism to S3 → Q and Y → Y .

Corollary 31.1. J#(X) factors through J#(P )⊗ 1 : F2 ⊗ J#(Y )→ J#(Q)⊗
J#(Y ).

Corollary 31.2. If J#(P ) = 0 in J#(Q) then J#(X) = 0.

In particular, if the cobordism X contains dots, we see that
∑
J#(Pi) =

0 ∈ J#(Q) implies
∑
J#(Xi) = 0.

Suppose our bifold (X,S) is such that the foam S contains some I × S1 ⊆
B3 ⊆ B4 ⊆ X. Then we can cut this neck and call that S′. We can put dots
on S′ on either sides, and look at S′(n,m).

Proposition 31.3. J#(S) = J#(S′(2, 0)) + J#(S′(1, 1)) + J#(S′(0, 2)).

Proof. We can check this for S = I×S1 in B4. We can check this manually.

There is also the bubble busting relation. Suppose S looks locally like a soap
bubble with S2 ∪ (R2 × {0} \ B2. We want to compare this to just R2 \ {0},
so that we are left with a burst bubble. We can look at S(k1, k2) which has k1

dots on the upper hemisphere and k2 dots on the lower hemisphere, and we can
also look at S′(k) which has k dots on the plane. Then the relations are

• S(1, 0) = S′(0)
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• S(2, 0) = S′(1)

• S(2, 1) = S′(0)

• S(1, 1) = 0

• S(0, 0) = 0.

To check these relations, we can again just check equality in J#(L1) where L1

is the unlink. We know that J# is a 3-dimensional vector space, so we check the
pairing with the dual basis, which are given by D(n). Then we can manually
check them.

Using these, we can now come back to the case of webs. Let K be a web
that at some point looks locally like S1 ∪ (R×{0} \B2). Then we can compare
this with K ′ that just looks like R× {0}.

Proposition 31.4. J#(K) ∼= J#(K ′)⊕ J#(K ′).

This is why J#(Θ) has dimension 6 for 3-dimensional J#(unknot). If we
look at two bigons on an unknot, we can directly see from the representation
variety that dim ≤ 12. But this actually shows that the dimension is equal to
12.

Consider cobordisms A,B : K → K ′ with A no dots and B one dot on the
front foam. Likewise consider C,D : K ′ → K such that C has one dot on the
back and D has no dots. Then we may consider maps

J#(K ′)⊕ J#(K ′)

(
C D

)
−−−−−−→ J#(K)

A
B


−−−−→ J#(K ′)⊕ J#(K ′).

We check that they are mutually inverses. To check that the composition is the
identity on J#(K ′)⊕ J#(K ′), we use the bubble bursting relations. The other
thing we need to check is that AC +BD is the identity on J#(K). But we can
check this on J# of the two-bigon unknot. Because we know how to generate
the dual of J#, we can check this.
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Last time we talked about the bigon relation, which says that the dimension
doubles when you introduce a bigon. There are similar relations.

32.1 More relations

Proposition 32.1 (square relation). For K a that locally looks like a square,
we have

J#(K) = J#(K ′)⊕ J#(K ′′)

where K ′ is one that removes two edges of the square and K ′′ is one that removes
other two edges of the square.

Proposition 32.2 (triangle relation). For K that locally looks like a triangle,
we have

J#(K) = J#(K ′)

where K ′ is one that removes an edge of a triangle.

Note that for the triangle relation, we have R#(K) ∼= R#(K ′). For the
square relation, we again define maps

A′ : J#(K)→ J#(K ′), A′′ : J#(K)→ J#(K ′′)

by looking at a cobordism and likewise B′, B′ by their mirror images. The claim
is that (

A′

A′′

)(
B′ B′′

)
=

(
1 0
0 1

)
,
(
B′ B′′

)(A′
A′′

)
= 1.

The first you can verify explicitly using bubble bursting and neck cutting. Then
for the other direction, we look at bounds on the dimension as we did for the
bigon relations. Recall that the representation variety of the cube web looks
like I q0 I q0 I. If you look at a perturbation, there are going to be four critical
points, and you can work this out pretty explicitly. Then R#(K) is going to be
4 copies of F (3), and so there will be 24 critical points.

All these relations hold for Tait colorings of trivaletn graphs as well. If we
denote by Tait(K) the number of Tait colorings, we have the

• bigon relation,

• triangle relation,

• square relation.

These rules alone do not determine the Tait colorings. It is determined by

• multiplicative for disjoint unions,

• 0 for K which is 1-splitable,

• the unknot has 3,

• the Tutte relation.
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The Tutte relation does not hold, because then dimJ#(K) = Tait(K) for all
K, which can’t be true because the number of Tait colorings do not depend on
the embedding. What is possibly true is that the Tutte relation holds if K lies
in a plane. In fact, one can prove that dim J#(K) ≥ Tait(K) for planar K.
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The following is Floer’s version of excision.

33.1 Excision

Suppose Y ′ and Y ′′ are two T 3 with T1 and T2 be two T 2 sections. Then we
can form Y by cutting Y ′ and Y ′′ along T1 and T2, and then gluing.

Consider X that is a cobordism from Y to Y ′, and assume that T 3 is em-
bedded in X. Inside T 3 = T 2 × γ, there is a path wT 2 = point × γ. Then we
can look at the representation variety

R(T 2 × γ, µ)w = point, no automorphism

where Uµ = T 3 and the representation variety will be [ã, b̃] = −1 in SU(2) and
c̃ = ±1 in SU(2). Now inside X, we have T 2×V ⊆ Uν a neighborhood of T 2×γ.
Here, w is points times Σ in this neighborhood. The surface T 2× γ cuts V into
two parts, and let us call these two pieces V + and V − in Uν .

In the normal situation we have a map

J(X; ν)w : J(Y ;µ)w → J(Y ′;µ′)w.

But if we cut along T 2 × γ (which is T 3) we get a cobordism from T 3 q T 3 q Y
to Y ′. Then we get a map

J(Y ;µ)w ⊗ (J(T 3;µT 3)wT3 )⊗2 → J(Y ′;µ′)w.

We can also think of it as the operator after we attach caps to the two copies
of T 3, by ∂(T 2 ×D) ∼= T 3. Let us call this new manifold X1 (which is a result
of some surgery on X) with the unique extension of marking data ν1. Then we
can write

J(X, ν)w = J(X1, ν1)w.

Now you can see why this is called excision. Suppose Y is a 3-manifold and it
looks like the disjoint union of Ya∪Yb attached along T 2 and also Yc∪Yd attached
along T 2. Assume the marking region is Uµ which are small neighborhoods of
the attaching T 2, with w being paths transversing along the region Uµ. Now
consider Y ′ which looks similarly, but with (Ya ∪ Yd)q (Yb ∪ Yc).

Theorem 33.1 (excision). J(Y ;µ)w = J(Ya ∪ Yb)⊗ J(Yc ∪ Yd) = J(Ya ∪ Yd)⊗
J(Yb ∪ Yc) = J(Y ′;µ′).

So we see that dimJ(Ya∪Yb)/dim J(Yc∪Yb) is independent of Yb. To prove
this, we consider the following cobordism. First take an octagon Σ+, with four
disjoint edges labeled a, b, c, d in an appropriate order, and take

X+ = (T 2 × Σ+) ∪ (I × Ya) ∪ (I × Yb) ∪ (I × Yc) ∪ (I × Yd).
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This is a cobordism from Y = (Ya ∪ Yb) q (Yc ∪ Yd) to Y ′. The marking data
is going to be Uµ+ being the entire region and w extended appropriately. Then
we get

J(X+;µ+) : J(Y )→ J(Y ′), J(X−;µ−) : J(Y ′)→ J(Y ).

The composite is going to be given by X = X+∪X−. Here, we use the marking
data µ̃X ⊆ µX = µ− ∪ µ+ given by deleting the neighborhood of T 2 × δ. Then
by the observation for 4-manifold we have made, we get

J(X−;µ−)w ◦ J(W+;µ+)w = J(X; µ̃X) = J(X1; µ̃1)w = id .

Note that if we take (S3, H) as Y , and look at the w connecting the two
components, this is precisely our atom Y̌H = (S3, H, µ). So we get

J#(∅)⊗ J#(K1 qK2) ∼= J#(K1)⊗ J#(K2)

by excision.
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34 April 20, 2018

We recall that for the Hopf link and w connecting the two, J# is Z/4Z-graded.

34.1 Deformations of J#

Consider S = F2[[t]]. We consider a complex

(C#(Y )S , ∂S)

of free S-modules. Put t = 0 in this complex, and we can recover the original
chain complex (C#(Y ), ∂) giving J#.

Consider a local system Γ of R-modules. This means that R is a ring (of
characteristic 2) and for each b ∈ B, there is Γb an R-module. For ζ a path from
a to b, there is an isomorphism Γζ : Γa → Γb only depending on the homotopy
class, that is compatible with composition.

In Morse theory, we can define

C(f ; Γ) =
⊕
α

Γα.

If we look at a flowline z : α→ β, we can look at the induced map Γz : Γα → Γβ .
Using this, we can define the differential as the matrix with α→ β entry given
by ∑

z

Γz(#Mz(α, β))

where z runs over index 1.

Example 34.1. Consider R = F2[T, T−1] and let us look at a local system
over S1 = R/Z. Then a local system is the same as a map π1(S1) → R×, and
in particular let us take the generator to T . Here is an explicit description.
The ring R = F2[Z] is a subring of S = F2[R] =

∑
arT

r for r ∈ R. Then for
r ∈ R, the set T r · R ⊆ S is a free rank-1 R-module. On S1 = R/Z, we define
Γx̄ = T x · R. Given a path z from x̄ to ȳ, there is a well-defined change in the
coordinate. Define Γz : Γa → Γb by multiplication by T y−x.

We can look at
B#(Y ) = B(Y#Yθ, µθ)

where Yθ and the marking data is the θ-atom. We are going to define a map
h : B#(Y )→ S1 and pull back Γ.

Let us construct h for B#(S3) = B(Yθ, µθ). This is the V4-quotient of S3

withe orthogonal axes in R3 ∪ {∞}. If we take e1, the bundle Ẽ restricted to
ẽ1, it is going to split as Ẽ|ẽ1 = R⊕K. Then we look at the holomony

K0 → K∞

and look at the rotation angle. This define a map h : B#(Y )→ S1.



Math 283 Notes 88

35 April 23, 2018

We defined Floer homology with coefficients in a local system J#(K; Γ), where
Γ is pulled back from S1 along the map h : B# → S1. For Y̌0 = (S3, θ) the
θ-graph, edges e1, e2, e3, we defined h by looking at the holonomy of R⊕K along
the edges ẽ1, ẽ2, ẽ3. Consider hi : B# → S1 which looks at the holonomy around
ẽi. Then we set h = h1 + h2 + h3.

35.1 Properties of homology with local coefficients

For a path ζ in B#, this can be thought of as a connection Aζ on θ×R. It can

be thought of as a connection Ãζ in R⊕K, and then we get

Γζ = T∆ζh =

3∏
1

T∆ζhi

where ∆ζhi is the change in holonomy i
2π

∫
R×ẽi FK.

Using this, we can construct (C#(K; Γ), ∂). This satisfies:

• ∂2 = 0,

• J#(unknot; Γ) is a free rank 3 module,

• J#(θ; Γ) is a free rank 6 module,

• u3 + Pu = 0 where P = T 3 + T−1 (on unknot and so at any edge),

• u1 + u2 + u3 = 0, u1u2 + u2u3 + u3u1 = P , u1u2u3 = 0 (on θ so at any
vertex).

To show that ∂2 = 0 with the local coefficients, recall that we had these
normal ends that are broken trajectories and also the bubbles. The broken ends
contribute to ∑

z

(# of ends of Mz)Γz = 0

and so there is nothing on the broken ends. For the bubbles, we only need
to worry about κ = 1

4 . But it can only happen for α0 = α2 with counting

by M2(α0, α2)2. This at least shows that ∂2 is a diagonal operator with the
standard basis. If we can show that this diagonal entry is universal, it suffices
to compute the coefficient only for K = ∅.

For u3 + Pu = 0, again we only need to check this for the unknot. But
because u is an operator on a rank 3-module, and u is odd, we have u3 +Qu = 0
for some Q ∈ R. For an unknot, we have u(u2 + P ) = 0, and in the field of
fractions R′ or R, we have 1 = π+π′ = 1

P (u2 +P ) + ( uP )u. Each of these terms
lie in ker(u) and im(u).

For the three θ-relations, the first one is elementary. Recall that at a vertex,
Ẽ looks locally like Ẽ = L1 ⊕ L2 ⊕ L3. Here, ui = w1(Li) formally, and
u1u2 + u2u3 + u3u1 = w2(Ẽ) formally. You can actually compute and then you
get P = T 3 + T−1.
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36 April 25, 2018

Last time we had Γ a system of R = F2[T, T−1]-modules, where R′ = Frac(R).
Then we define J#(K,Γ) as an R-module, and J#(K,Γ ⊗ R′) as an R′-vector
space.

36.1 Instanton Floer homology with coloring

We can write J# ⊗ R′ = V ⊕ V ′ where V = ker(ue) and V ′ = ker(u2
e + P ). checkcheck

Given any subset S ⊆ Edges(K), we can define

W (S) =
⋂
e∈S

Ve ∩
⋂
e/∈S

V ′e

so that
J#(K,Γ⊗R′) =

⊕
S

W (S).

We say that for u1, u2, u3 around a vertex, J# ⊗ R′ = V1 ⊕ V2 ⊕ V3. Here,
V ′1 = V2 ⊕ V3 and so on. In particular, we have

V ′1 ∩ V ′2 ∩ V ′3 = 0, V1 ∩ V2 = 0, . . . .

This shows that in order for W (S) to be nonzero, at each vertex, we need that
there is exactly one edge incident to it that is in S. That is, S has to be a
1-set of the graph, and its complement has to be a 2-set. These are the possibly
nonzero parts.

If we look at the bigon relation, there are going to be three ways we can color
the bigon. There are two ways you can color the picture so that the ends are
both not in S, and this will correspond to just the simple edge that is not in S.
So if we analyze this picture, we have that in R′-coefficients, W (K) ∼= W (K ′)
where K ′ is obtained from K by attaching an S-edge onto a non-S-edge.

Similarly, we can show that if you have 4 points and S-edges between two
of them, you can move the edges around and get another way of trying S-edges
between the 4 points. The W for both of these graphs are going to be equal.
One way you can do this to use a 3-periodic long exact sequence and check that
the third term corresponds to 0 in the appropriate W . Another way you can do
this is to look at the corresponding cobordism and show that it is the identity
map.

In any case, this new relation shows that for the S-edges, only its homology
class matters. At each non-S-cycle, we can make sure there is at most one
S-edge sticking out, because we can cancel off two edges using the relations
described above. In particular, if K is planar, no non-S-cycles are going to be
linked to each other. Note that if there is at least one non-S-cycle with one
S-edge, then we have a splitable handcuff and so W (S) = 0. Otherwise we are
going to have a disjoint union of non-S-cycles, and the dimension of W (S) is
going to be 2n where n is the number of components.
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Proposition 36.1. If K is planar, we have W (S) = 0 unless S is an even 1-set
(i.e., the non-S-edges form even cycles). In this case dimW (S) = 2n where n
is the number of non-S components.

This shows that for planar K,

dim J#(K; Γ⊗R′) =
∑

even 1-set S

dimW (S) =
∑
S

2n(S).

The right hand side can be recognized as the number of Tait colorings of K,
because 2n(S) is the number of ways to color the non-S-edges into two colors.

So J#(K; Γ⊗R′) categorifies Tait colorings of planar graphs. It is unknown
if dimension of J#(K) is the number of Tait colorings. There is a map R→ F2

given by T 7→ 1. Then J#(K; Γ) is going to look like Rrank plus some torsion
parts. If you work out, you will see that

J#(K;F2) = FTait(K)
2 ⊕ (F2)2`

for some ` ≥ 2. The question is whether this interesting torsion behavior does
appear.
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