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1 January 26, 2016

1.1 Outline

This is course is about real and complex analysis. We will cover the following:

1) Rigorous foundation
We will first do differentiation and integration in one dimension. This
will include the fundamental theorem of calculus. Then we generalize
the concepts into higher dimension, and talk about commutation of two
differentiations and integration, differential forms, curvature, and Stokes’s
theorem.

2) Complex analysis
Actually we had a taste of this when we proved the fundamental theorem
of algebra. We will do Cauchy’s theory.

3) Solving differential equations
We solve differential equations using Fourier analysis. We will also go into
partial differential equations with constant coefficients and fundamental
solutions.

1.2 Convergence of a sequence

Now we get down to business. The important thing about analysis is of course
taking limits. At the beginning of last semester, we constructed the real numbers
by looking at Dedekind cuts. This gives us the least upper bound property. In
other words, if A ⊂ R admits an upper bound, then A admits a least upper
bound.

The next main technique is limits.

Definition 1.1. A real sequence {xn} has limit a if and only if given any ε > 0
there exists a positive integer N ∈ Z such that |xn − a| < ε for any n ≥ N .

We can formulate the limit property without having the actual limit.

Definition 1.2. A real sequence {xn} has the Cauchy property if for any
ε > 0 there exists a positive integer N ∈ Z such that |xn − xm| < ε for any
n,m ≥ N .

And in fact, we have the following theorem.

Theorem 1.3. A real sequence {xn} converges to some a if and only if {xn}
is a Cauchy sequence.

We will first use the least upper bound property to prove the following
lemma:

Lemma 1.4. Every infinite sequence {xn} in a bounded subset A of R admits a
convergence subsequence, i.e., there exists an infinite increasing sequence {nk} ⊂
Z+ such that limk→∞ xnk = a.
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Proof. We invoke the existence of the supremum and the infimum. The idea of
the proof is to construct a new sequence {am} defined by

am = sup
n≥m
{xn}.

Then clearly a1 ≥ a2 ≥ · · · , and then we can define a = infn an = limn→∞ an.
For future reference, we will make a definition.

Definition 1.5. For a bounded real sequence {xn}, we define the limit supre-
mum as

lim sup
n→∞

xn = inf
m

sup
n≥m

xn.

So let a = lim supn→∞ xn. Given any integer k > 0, we see that am − 1
k is

not an upper bound. This means that am − 1
k < xn ≤ am for some n ≥ m.

We use the fact that a+ 1
k is not a lower bound of an. Something like this will

prove the theorem.

Proof of theorem 1.3. It can be seen from the triangle inequality that if a se-
quence converges, then it is Cauchy.

We now need to show that if a sequence Cauchy, it converges. Using the
lemma, we see that given any ε > 0 there exists N1, N2 such that |xn− xm| < ε
for any n,m ≥ N1, and |xnk − a| < ε for any k ≥ N2. Then we get for any
k ≥ max{N1, N2},

|xk − a| ≤ |xk − xnk |+ |xnk − a| < ε+ ε = 2ε.

This ends the proof.

1.3 Uniform convergence

Later on, we will start doing integration over higher dimensions, and we will
need to look at sequences that are multi-indexed. We can look at a doubly

indexed sequence {x(m)
n }. Then there are two ways to get a limit. We can first

fix n and get limm→∞ and then get the whole limit, or first fix m. But will
these two limits be the same, or in other words,

lim
n→∞

lim
m→∞

x(m)
n = lim

m→∞
lim
n→∞

x(m)
n ?

It is not true in general, but it is under a certain condition.

Definition 1.6. A sequence of real sequence x
(m)
n → a(m) converges uni-

formly in m as n → ∞ if and only if given any ε > 0, there exists a N = Nε
such that |x(m)

n − a(m)| < ε for any n ≥ N and m.

Theorem 1.7. Assume that x
(m)
n → a(m) converges uniformly, and that for

any fixed m, we have x
(m)
n → an. Then

lim
n→∞

lim
m→∞

x(m)
n = lim

m→∞
lim
n→∞

x(m)
n .

(This includes the fact that the limit exists.)
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Proof. We first show that limn→∞ an exists. Interpreting the uniform conver-
gence condition in terms of Cauchy sequences, we see that for any ε < 0, there
is a N = Nε such that

|x(m)
n − x(m)

k | < ε

for any n, k ≥ N and m. Taking the limit when m → ∞, we get |an − ak| ≤ ε
and thus {an} is a convergence sequence. Let its limit be a.

We now show that limm→∞ a(m) = a. Take any ε > 0. Then there is a N1

such that for any n ≥ N1, we have

|a− an| < ε (1)

for any n ≥ N1. Also, by uniform convergence, we see that there is an N2 such
that

|x(
nm)− a(m)| < ε (2)

for any n ≥ N2 and m. Now we fix a sufficiently large n. Then there is a M
such that

|an − x(m)
n | < ε (3)

for any m > M and the fixed n. Adding up, we get

|a− a(m)| ≤ |a− an|+ |x(
nm)− a(m)|+ |an − x(m)

n | < 3ε.

This shows that limm→∞ a(m) = a.
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2 January 28, 2016

Last time we looked at sequences with double indices. These things are im-
portant, because we want to interchange two limiting processes sometimes. For
instance, whether ∂

∂x
∂
∂y = ∂

∂y
∂
∂x is true, or whether lim

∑
=
∑

lim is true, etc.
These became important in solving differential equations.

The next step is to replace the discrete variable n in xn by a continuous
variable x in f(x).

2.1 Limit of a function

Definition 2.1. Let f be a function defined in (a, b), where a, b ∈ R. For a
point c ∈ (a, b), the equation limx→c f(x) = L means that given any ε > 0,
there exists a δ > 0 such that |f(x)− L| < ε for any 0 < |x− c| < δ.

There is an equivalent formulation in terms of sequences.

Proposition 2.2. Let f : (a, b) → R be a function. Then f(x) → L as x → c
if and only if for any sequence xn → c we have f(xn)→ L.

Proof. We first prove the only if direction. Given a sequence xn → c and a
given ε > 0, there is a δ > 0 such that 0 < |x − c| < δ implies |f(x) − L| < δ.
Then the sequence xn eventually enters that intervals and thus f(xn) converges
to L. (Actually there might be a problem if xn = c but it is a technical detail.)

The other direction can be checked.

Definition 2.3. A function f : (a, b) → R is continuous at c ∈ (a, b) if and
only if f(x)→ f(c) as x→ c.

There are three important properties of continuous functions.

1) The sup and inf of a continuous function f : [a, b] → R is achieved by f
at some point of [a, b].

Proof. Let A = sup[a,b] f , where for now we even allow A = ∞. Then
for some sequence xn in [a, b], such that f(xn) → A. Then since [a, b] is
bounded, there is a convergent subsequence xnk converging to x∗ ∈ [a, b].
This means that f(xnk) → f(x∗) and this has to be A. That is, f(x∗) =
A.

2) Any function f : [a, b] → R is uniformly continuous, i.e., for an arbi-
trary ε > 0, there is a δ such that |x− y| < δ implies |f(x)− f(y)| < ε.

Proof. Suppose it is false. This means that there is an ε > 0 such that
the implication is false for any δ > 0. In particular, let δ = 1/n. Then
there exists two points xn, yn ∈ [a, b] for which |xn − yn| < 1/n but
|f(xn) − f(yn)| ≥ ε. Because xn is an infinite bounded sequence, there
is a subsequence xnk that converges to some x∗ as k → ∞. Then there
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is another subsequence of the subsequence ynkl converging to some y∗ as
l → ∞. Then using the continuity of f , we get |f(x∗) − f(y∗)| ≥ ε. But
since |xn − yn| < 1/n, we have x∗ = y∗. This contradicts that ε > 0.

3) Let f : [a, b]→∞ be a continuous function. Then for any ξ between f(a)
and f(b), there is a c ∈ [a, b] such that f(c) = ξ.

Proof. Suppose that ξ is not in the image of f . Then there exists an ε > 0
such the [ξ − ε, ξ + ε] is not in the image of f . This is because if for
every n there is some xn such that f(xn) ∈ [ξ − 1

n , ξ + 1
n ], then there is a

convergent subsequence, and we can use the continuity of f to show find
that the limit of the subsequence is a solution.

So there is an ε > 0 such that for any x, either f(x) < ξ−ε or f(x) > ξ+ε.
Let

A = {x ∈ [a, b] : f(x) < ξ − ε}, B = {x ∈ [a, b] : f(x) > ξ + ε}.

Then clearly A∪B = [a, b] and a ∈ A and b ∈ B. (We assume without loss
of generality that f(a) < f(b).) Let c = supA. We observe that c cannot
be in A, because if c ∈ A, then f(c) < ξ− ε and then there is a δ > 0 such
that again f(c+ δ < ξ − ε and then c+ δ ∈ A and then it contradicts the
assumption that c is the supremum of A. On the other hand, if c ∈ B this
means that for any n there is an xn ∈ A and c − 1/n < xn < c and this
sequence converges to c as n → ∞ and thus f(xn) → f(c) but because
c ∈ B we have f(c) > ξ + ε but f(xn) < ξ − ε for any n. This is clearly a
contradiction.

2.2 Differentiation

Definition 2.4. Let f : (a, b) → R be a real function. For an c ∈ (a, b), we
define the derivative of f at c as

f ′(c) = lim
x→c

f(x)− f(c)

x− c

if it exists.

The most important property of the derivative is the following.

Theorem 2.5 (Mean value theorem). Let f(x) : [a, b] → R be a continuous
function at suppose that f ′(x) exists on (a, b). Then there is a c ∈ (a, b) such
that

f ′(c) =
f(b)− f(a)

b− a
.

Geometrically, this means that for any continuous graph, there is a line tan-
gent to the graph which is parallel to the line connecting (a, f(a)) and (b, f(b)).
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Proposition 2.6 (Critical point property). Let f : (a, b)→ R be a continuous
function, and assume that either f(c) = sup f or f(c) = inf c for some c ∈ (a, b).
If f ′(c) exists, then f ′(c) = 0.

Proof. The proof is simple. For instance, suppose that f(c) = sup f . Then we
have (f(x)− f(c))/(x− c) ≤ 0 if x > c and (f(x)− f(c))/(x− c) ≥ 0 if x < c.
Then as x approaches c, we see that f ′(c) = 0.

Proof of the mean value theorem. We first consider the simpler case f(a) =
f(b) = 0. (This is Rolle’s theorem.) By the extremal property, sup f and
inf f are both achieved somewhere. If both are zero, then f ≡ 0 and thus we
can set any c. If either sup or inf are nonzero, the derivative becomes zero at
that point.

Now we consider the general case. We do an interpolation to get the general
case from the special case. Let

F (x) = f(a)
x− b
a− b

+ f(b)
x− a
b− a

.

Then we have F is a linear function, and F (a) = f(a) and F (b) = f(b). Apply
Rolle’s theorem to f(x)− F (x) and we get some c ∈ (a, b) such that

f ′(c) = F ′(c) =
f(b)− f(a)

b− a
.

This is needed to prove the fundamental theorem of calculus. As a corollary,
we get the following.

Corollary 2.7. Let f : [a, b]→ R be a continuous function. If f ′ ≡ 0 on (a, b),
then f is a constant function on [a, b].

2.3 Riemann integration

A function f : [a, b] → R is given. For simplicity, let us assume that f is
continuous on [a, b].

Definition 2.8. A partition P of [a, b] means a finite sequence

a = x0 < x1 < · · · < xn−1 < xn = b.

Definition 2.9. Given a partition P , let us choose ξj ∈ [xj−1, xj ] for each
j = 1, . . . , n. Then then Riemann sum is defined as

n∑
j=1

f(ξj)(xj − xj−1).

The upper sum and the lower sum are defined as

U(P, f) =
∑f
j=1

(
sup[xj−1,xj ]

)
(xj − xj−1),

L(P, f) =
∑f
j=1

(
inf [xj−1,xj ]

)
(xj − xj−1).
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Proposition 2.10. Assume that f : [a, b]→ R is continuous. Then

inf
P
U(p, f) = sup

P
L(p, f),

and we define this value as∫ b

a

f(x)dx = inf
P
U(p, f).

Proof. This follows from the uniform continuity of f . Given any ε > 0 there
exists a δ > 0 such that |x − y| < δ implies |f(x) − f(y)| < ε. Then if
max1≤j≤n(xj − xj−1) < δ, then we have

0 ≤ U(P, f)− L(P, f) < ε(b− a).

Then the infimum of U(P, f) and supremum of L(P, f) cannot be different.

Theorem 2.11. Let a < b < c be real numbers and f : [a, c]→ R be a continu-
ous function. then ∫ b

a

f(x)dx+

∫ c

b

f(x)dx =

∫ c

a

f(x)dx.

The key to proving this theorem is the refinement of partitions. Let P be
the partition

a = x0 < x1 < · · · < xn−1 < xn = b

and Q be
a = ξ0 < ξ1 < · · · < ξν−1 < ξν = b.

We say that Q is a refinement of P if {ξ0, . . . , ξν} ⊃ {x0, . . . , xn}. We observe
that if Q is a refinement of P , then

L(P, f) ≤ L(Q, f) ≤ U(Q, f) ≤ U(P, f).

We will prove this theorem next time.
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3 February 2, 2016

Let us recall some things from last class. If f is continuous on [a, b], then we
define ∫

f = inf
P
U(P, f) = sup

P
L(P, f).

Theorem 3.1. Let f : [a, b] → R be a continuous function and let a < c < b.
Then ∫ b

a

f(x)dx =

∫ c

a

f(x)dx =

∫ b

c

f(x)dx.

Proof. For any partition P1 of [a, c] and P2 of [c, b], we can always put them
together to form a partition P on [a, b]. Conversely, given any partition Q of
[a, b] we can refine the partition by sticking in c at some point and dividing it
into a partition Q1 of [a, c] and Q2 of [c, b].

This shows that each side gives a better estimation than the other, and thus
that both values are within ε error for each ε > 0. Therefore the two values are
equal.

3.1 Fundamental theorem of calculus

Theorem 3.2 (Fundamental theorem of calculus). (a) Let f : [a, b] → R be a
continuous function, and let

F (x) =

∫ x

a

f(t)dt.

Then F is differentiable on (a, b) and F ′(x) = f(x) for each x ∈ (a, b).
(b) Let F : (ã, b̃)→ R be a function that is differentiable, and whose derivative
is continuous. Then ∫ b

a

F ′(x)dx = F (b)− F (a).

Proof of (a). The difference quotient is

F ′(x) = lim
h→0

∫ x+h

a
f(t)dt−

∫ x
a
f(t)dt

h
= lim
h→0

1

h

∫ x+h

x

f(t)dt.

Because we want to show that this is f(x), we subtract f(x) and get∣∣∣∣ 1h
∫ x+h

x

f(t)dt− f(x)

∣∣∣∣ =

∣∣∣∣ 1h
∫ x+h

x

(f(t)− f(x))dt

∣∣∣∣
≤ sup
x≤t≤x+h

|f(t)− f(x)|.

But this clearly goes to zero as h→ 0.
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Proof of (b). We let the upper limit b vary. That is, we check instead that

g(x) =

∫ x

a

F ′(t)dt− (F (x)− F (a))

is zero for all x ∈ [a, b]. We can check that g is continuous on [a, b], and is
differentiable on some open interval containing [a, b]. In fact, we have

g′(x) = F ′(x)− F ′(x) = 0

after applying part (a). Thus by the mean value theorem, g is a constant
function on [a, b]. Because g(a) = 0, we see that g(b) = 0.

We have thus finished the logical foundation of real analysis, starting from
the Peano axioms in 55a.

3.2 Partial and total derivatives

Let f(x, y) be a continuous function with two variables x and y.

Definition 3.3. We define the partial derivatives as

D1f(x, y) =
∂

∂x
f(x, y) = lim

h→0

f(x+ h, y)− f(x, y)

h

D2f(x, y) =
∂

∂y
f(x, y) = lim

h→0

f(x, y + h)− f(x, y)

h
.

We want to prove something like D2D1f = D1D2f .
There is also a notion of total differentiation. But let us first define the limit

in higher dimension.

Definition 3.4. Let f : (a, b) × (c, d) → R be a function, and choose a point
(ξ, η) ∈ (a, b)× (c, d). We say

lim
(x,y)→(ξ,η)

f(x, y) = L

if given any ε > 0, there is a δ > 0 such that |f(x, y) − L| < ε whenever
0 < ‖(x, y)− (ξ, η)‖ < δ.

Definition 3.5. We say that f(x, y) is continuous at (ξ, η) if and only if

lim
(x,y)→(ξ,η)

f(x, y) = f(ξ, η).

Differentiation can be viewed as an approximation to order higher than 1.
By definition, we have f ′(a) = limx→a(f(x)− f(a))/(x− a). If we write

f(x) = f(a) + f ′(x)(x− a) + E(x)(x− a)

then this just means that limx→aE(x) = 0. That is, the derivative f ′(x) is just
an approximation of f as a linear function.

This interpretation can be also applied in higher dimensions. the total dif-
ferentiation of f at (a, b) is a linear polynomial in x and y of degree at most 1
that approximates f to order higher than 1. That is, it is the tangent plane.
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Definition 3.6. A function f(x, y) is (totally) differentiable if and only if
there exists a polynomial C +A(x− a) +B(y − b) such that

lim
(x,y)→(a,b)

f(x, y)− (C +A(x− a) +B(y, b))√
(x− a)2 + (y − b)2

= 0.

If you specialize to y = b, then we get the partial derivative. That is,

∂f

∂x
(a, b) = A,

∂f

∂y
(a, b) = B.

That is, if we have the total derivative, then we automatically get the partial
derivatives. The next question is when will we be able to do the converse. We
will need additional assumptions.

But I want to say something about complex functions.

Definition 3.7. Let f : C→ C be a complex function. Then

f ′(c) = lim
z→c

f(z)− f(c)

z − c
.

The complex version is far more restrictive than the R2 → C one, because

(D + iE) + (P + iQ)(z − c) = (D + iE) + (P + iQ)(x− a) + (iP −Q)(y − b)

where c = a+ ib and z = x+ iy. This links to the J operator we were looking
at in the previous semester.

Let f(x+ yi) = u(x, y) + iv(x, y) be a differentiable function in the complex
sense. Then we can look at the 2× 2 matrix

T =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
.

This should satisfy

JT = TJ, where J =

(
0 −1
1 0

)
.
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We introduced differentiation and integration. We now go into the case of high
dimension. We recall that a function f(x, y) is differentiable at (a, b) if there
are A and B such that

lim
(x,y)→(a,b)

f(x, y)− f(a, b)−A(x− a)−B(y − b)√
(x− a)2 + (y − b)2

= 0.

This linearizes the function, and we can compose them as

L(f ◦ g) = (Lf) ◦ (Lg).

This is left as an homework.

4.1 Total differentiability from partial differentiability

Now we look at the relation between total and partial differentiation. If f is
totally differentiable, then we can restrict the domain to one line to get partial
differentiation. But the existence of partial differentiation does not always imply
total differentiability. We need additional assumptions to show that the error

E(x, y) = f(x, y)−
(
f(a, b) +

∂f

∂x
(a, b)(x− a) +

∂f

∂y
(a, b)(y − b)

)
is small enough. We estimate this error using the “TV-antenna” method. Using
the mean value theorem, we have

f(x, y)− f(a, b) =
(
f(x, y)− f(x, b)

)
+
(
f(x, b)− f(a, b)

)
= (D2f)(x, η)(y − b) + (D1f)(ξ, b)(x− a)

for some b < η < y and a < ξ < x, and thus

E(x, y) = ((D1f)(x, η)− (D1f)(a, b))(x−a)+((D2f)(ξ, b)− (D2f)(a, b))(y− b).

If we assume that both D1f and D2f are continuous at (a, b), there is an δ such
that

|(Djf)(σ, τ)− (Djf)(a, b)| < ε

for any
√

(σ − a)2 + (τ − b)2 < δ. Then we see that∣∣∣ E(x, y)√
(x− a)2 + (y − b)2

∣∣∣ < 2ε

if
√

(x− a)2 + (y − b)2 < δ. Thus we have the following theorem.

Theorem 4.1. Suppose that f : R2 → R is partially differentiable, and assume
that D1f and D2f are continuous. Then f is totally differentiable.
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4.2 Commutativity of differentiation

Theorem 4.2. Let f : R2 → R. Suppose that D2D1f is continuous at (a, b) and
that D2f exists in a neighborhood of (a, b). Then D2D1f = D1D2f at (a, b).

Let me diverge first. The key point is orientation and boundary. Let V
be a vector space of dimension n over R. An orientation is an ordered basis
e1, . . . , en, or an element e1 ∧ · · · ∧ en ∈

∧
nV = R. Consider a triangle P0P1P2.

Once we write it as P0P1P2, we have given it an orientation. The boundary of
it can be given as

∂(P0P1P2) = P1P2 − P0P2 + P0P1.

More generally, we have

∂(P0 · · ·Pn) =

n∑
j=0

(−1)j(P0 · · · P̂j · · ·Pn).

Now the key is that the boundary of the boundary is always empty.

A(a, b) B(x, b)

C(x, y)D(a, y)

Example 4.3. Consider a rectangle �ABCD. Its boundary is

∂(�ABCD) = AB +BC + CD +DA,

and its boundary

∂2(�ABCD) = (B −A) + (C −B) + (D − C) + (A−D) = 0

disappears.

Now what has it to do with the commutation of derivatives? The reason it
works is because

∂(BC +DA) = ∂(BA+DC) = A+ C −B −D.

Theorem 4.4 (Weaker version). Let f : R2 → R. Suppose that both D2D1f
and D1D2f are continuous at (a, b). Then D2D1f = D1D2f at (a, b).

Proof. We look at

f(x, y)− f(a, y) + f(a, b)− f(x, b) = (f(x, y)− f(a, y))− (f(x, b)− f(a, b)).
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Looking f(x,−)− f(a,−) as a function, we can apply the mean value theorem
twice an get

(f(x, y)− f(a, y))− (f(x, b)− f(a, b)) = (D2(f(x, η)− f(a, η))(y − b)
= (D1D2f)(ξ, η)(x− a)(y − b)

for some a < ξ < x and b < η < y. Likewise, we get

(f(x, y)− f(x, b))− (f(a, y)− f(a, b)) = (D1(f(σ, y)− f(σ, b)))(x− a)

= (D2D1f)(σ, τ)(x− a)(y − b)

for some a < σ < x and b < τ < y. Now sending x→ a and y → b, we get the
result.

How do we get the stronger version? When we move from the different
quotient to the differentiation, there are two choices. First we can, just as we
did, use the mean value theorem and then use the continuity, or we can simply
take the limit and directly get f ′(a). The idea is to use the mean value theorem
twice on one side, and to use the limit twice for the other side.

Proof of the stronger version. Using the σ and τ line of the previous proof, we
have

1

x− a

(f(x, y)− f(x, b)

y − b
− f(a, y)− f(a, b)

y − b

)
= (D2D1f)(σ, τ).

If we send y → b, we immediate get

1

x− a
(
(D2f)(x, b)− (D2f)(a, b)

)
= (D2D1f)(σ, b).

We now send x→ a. Because D2D1f is continuous, we see that the limit exists.
Thus we both get the existence of D1D2f(a, b) and that

(D1D2f)(a, b) = (D2D1f)(a, b).

4.3 Double integration

First let us prove Fubini’s theorem from D1D2f = D2D1f .

Theorem 4.5 (Fubini’s theroem). Suppose that f : [a, b]× [c, d]→ R is contin-
uous. Then ∫ b

x=a

(∫ d

y=c

f(x, y)dy
)
dx =

∫ d

y=c

(∫ b

x=a

f(x, y)dx
)
dy.



Math 55b Notes 17

Before we prove this, we must make sense out of the statement by showing

that
∫ d
y=c

f(x, y)dy is continuous in x. This is, in other words, the commutativity
of the limit and the integral. Because f is continuous, f is uniformly continuous,
and we see that

lim
x→ξ

f(x, y) = f(ξ, y)

converges uniformly. Then given ε > 0 there exists a δ > 0 such that

|f(x, y)− f(ξ, y)| < ε

for any |x− ξ| < δ and any c ≤ y ≤ d. Then we have∣∣∣ ∫ d

y=c

f(x, y)−
∫ d

y=c

f(ξ, y)
∣∣∣ < (d− c)δ

and thus we see that the limit and the integral commutes.

Proof. We look at the function∫ x

s=a

(∫ y

t=c

f(s, t)dt
)
ds,

∫ y

t=c

(∫ x

s=a

f(s, t)ds
)
dt.

If we take the D2D1 of the left hand side, we have from the fundamental theorem
of calculus,

D2D1

∫ x

s=a

(∫ y

t=c

f(s, t)dt
)
ds = f(x, y).

Nest, we take the D2D1 of the right hand side. By using some kind of uniformity
argument again, we see that

D2D1

∫ y

t=c

(∫ x

s=a

f(s, t)ds
)
dt = D2

∫ y

t=c

f(x, t)dt = f(x, y).

Then we get something like D2D1F = D2D1G. We can write this as D2D1(F −
G) = 0, and checking it at y = c, we get D1(F −G) = 0. Then again checking
at x = a, we get F −G = 0.
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Today I am going to prove Fubini’s theorem without using the fundamental
theorem of calculus.

5.1 Double integration

Theorem 5.1 (Fubini). Let a < b and c < d be real numbers, and f : [a, b] ×
[c, d]→ R be a continuous function. Then∫∫

[a,b]×[c,d]

f =

∫ b

a

(∫ d

c

f(x, y)dy
)
dx.

But we have to first define the double integral.

Definition 5.2. Let E be a bounded subset of R2; in particular, let E ⊂
(ã, b̃)× (c̃, d̃). Consider a double partition P of (ã, b̃)× (c̃, d̃), which is some xis
and yis with

ã ≤ x0 < x1 < · · · < xm ≤ b̃, c̃ ≤ y0 < y1 < · · · < yn ≤ d̃.

Denote Rij = [xi−1, xi] × [yj−1, yj ]. For a nonnegative function f : E → R≥0,
we define the lower sum as

L(P, f,E) =
∑
Rij⊂E

(
inf
Rij

f
)
(area of Rij),

and the upper sum as

U(P, f,E) =
∑

Rij∩E 6=∅

(
sup
Rij∩E

f
)
(area of Rij).

If the supremum of the lower sum and the infimum of the upper sum are equal,
we say that f is double integrable, and let its value be the double integra-
tion. If f is not nonnegative, we represent f as a difference of two nonnegative
functions and then calculate each integral.

Outline of proof of Fubini’s theorem. We first note that f is uniformly continu-
ous because its is continuous. So we can make a very fine partition so that the
difference in any two values in a single rectangle is at most ε.

Because I don’t want to write down many indices, I will just write the
Riemann sums as

∑
v,
∑
h, and

∑
rect. First for a given x, we have∣∣∣ ∫ d

y=c

f(x, y)dy −
∑
v

f(x, •)
∣∣∣ < ε(d− c).

Now when we add these inequalities up as the Riemann sum again, we will get,∣∣∣∑
h

∫ d

y=c

f(x, •)−
∑
h

∑
v

f(x, •)
∣∣∣ < ε(d− c)(b− a). (1)
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Also, looking
∫ d
y=c

f(x, y)dy as a function of x, we will have

∣∣∣ ∫ b

x=a

∫ d

y=c

f(x, y)dydx−
∑
h

∫ d

y=c

f
∣∣∣ < ε(d− c)(b− a). (2)

Combining (1) and (2), we have∣∣∣∑
h

∑
v

f −
∑
h

∫ d

y=c

f
∣∣∣ < 2ε(d− c)(b− a)

and thus making ε small enough we get the desired result.

5.2 Idea of Stieltjes integration and differential forms

The motivation for this is to interpret point mass or point charge. Suppose you
have point charges on a line and want to calculate the potential. Then would

want to calculate
∫ b
x=a

log(γ(x))δ(x)dx where δ(x) is the charge density. But
in the point charge case, δ is not actually a function. So instead of looking

at
∫ b
x=a

log(γ(x))δ(x)dx, we let
∫
δ(x)dx = g(x) and look at something like∫ b

x=a
log(γ(x))dg(x).

The derivative can be interpreted as an approximation by a polynomial of
degree at most 1 to order greater than 1.

Definition 5.3. A form is a homogeneous polynomial. If f(x, y) is a differ-
entiable function, then df(x, y) is the homogeneous part of the polynomial of
degree at most 1 which approximates f at (x, y) to order greater than 1. This
is referred to as a differential 1-form.

Note that given a point (x, y), the derivative df : R2 → R is an R-linear
map. For the function f ≡ x, we can look at its derivative dx. Also, we can
look at dy. The chain rule then states that

(df)(x, y) =
(∂f
∂x

)
(x,y)

(dx)(x,y) +
(∂f
∂y

)
(x,y)

(dy)(x,y).

The Leibniz notation is e1 = ∂
∂x and e2 = ∂

∂y . This notation identifies the
directional derivative and the vector. Using the notation, we can write things
like (∂f

∂x

)
(x,y)

= (df)(x,y)

( ∂
∂x

)
(x,y)

, (dx)(x,y)

( ∂
∂x

)
(x,y)

= 1.

We can have things more complicated. If we have a function f : U → G and
g : G → Ω defined on open sets of U,G,Ω of Rm,Rn,Rp, the chain rule states
that

d(g ◦ f) = (dg) ◦ (df).
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6.1 Stieltjes integration

There are three motivations for introducing the Stieltjes integral. The first is to
unify the approach of point charges and continuous charge density. The second
is to introduce Lebesgue integral. The third is to look at differential forms.

Definition 6.1. Let f and g be continuous functions on [a, b]. Given a partition
P

a = x0 < x1 < · · · < xn−1 < xn = b,

we define the upper sum

U(P, f, g) =
n∑
j=1

(
sup

[xj−1,xj ]

f
)
(g(xj)− g(xj−1))

and likewise the lower sum L(P, f, g) for inf. If supL(P, f, g) = inf U(P, f, g),
then we define the Stieltjes integration as

∫
fdg = supL(P, f, g).

Theorem 6.2. Let f be continuous on [a, b] and let g be a nondecreasing func-
tion on [a, b]. Then

∫
fdg exists.

But this nondecreasing condition is too strong. So we relax this condition
in the following way.

Definition 6.3. A continuous function g : [a, b]→ R is called to have bounded
variation if g = g1 − g2 for some nondecreasing functions g1 and g2, or equiv-
alently,

sup
P

n∑
j=1

|g(xj)− g(xj−1)| <∞.

The equivalence part will be left as a homework problem.
If g is differentiable and g′ is continuous, we have∫

fdg =

∫
fg′.

Also in the special case f = h ◦ g, we have∫ b

a

fdg =

∫ b

a

(h ◦ g)g′ =

∫ g(b)

g(a)

h,

that is, if g′ is continuous and positive. In this integration, the role for g is
simply a change of variables.

That property gives rise to the notion of differential forms. We look at
integration on a curve. Let ϕ : [a, b]→ Rn be a continuous function, and let C be
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its image. Consider any continuous functions F1, . . . , FN , G1, . . . , GN : Rn → R.
We define ∫

C

N∑
j=1

FjdGj =

∫ b

t=a

N∑
j=1

(Fj ◦ ϕ)d(Gj ◦ ϕ).

Then this is invariant under a reparametrizaion, and we define
∑N
j=1 FjdGj as

a differential form on an open set U ⊂ Rn. We will get back to this later.

6.2 Higher-dimensional differentiation

A differentiable function on an n dimensional space is a function that is ap-
proximated by a polynomial of degree at most 1 to an order greater than 1.
When given m functions f1, . . . , fm on an open set U of Rn, we can construct a
function f : U → Rm defined as f = (f1, . . . , fn).

Definition 6.4. The derivative of f at a, denoted by (df)(a), is a R-linear
map Rn → Rm, which is the homogeneous part of the approximate polynomial.
That is, if f(x) = f(a) + ((df)(a))(x− a) + E(x), then

lim
x→a

‖E(x)‖Rm
‖x− a‖Rn

= 0.

The chain rule can be stated like this.

Theorem 6.5 (Chain rule). Let a ∈ U ⊂ Rn be an open set and let W ⊂ Rm
also be open. Consider functions f : U → W and g : W → Rl, where f(a) = b.
If f is differentiable at a and g is differentiable at b, then g ◦ f is differentiable
at a, and moreover,

(d(g ◦ f))(a) = ((dg)(b)) ◦ ((df)(a)).

We introduce a notational convention of regrind a vector as a differential
operator. Let v ∈ Rn where v = (v1, . . . , vn), and U be an open set in Rn with
a ∈ U . Consider a line L in Rn through a in the direction of v. Now given a
function ϕ, we can associate a real number as

ϕ 7→ d

dt
ϕ(a1 + v1t, . . . , an + vnt)|t=0 =

n∑
j=1

vj
∂ϕ

∂xj

∣∣∣
a
.

Thus v can be identified with the differential operator ξ : ϕ 7→
∑n
j=1 vj

∂ϕ
∂xj
|a =

ξ(ϕ). The inverse process is also possible. Given a differential operator ξ, we
can let vj = ξ(ϕ) for ϕ ≡ xj . Thus, v can be identified with the operator ξ.

Now note that this gives a coordinate free description of a vector. Given a
map f : U → Rm, we can describe the differential (df)(a) in a coordinate free
manner. How do we do this? Let f(U) ⊂ W be an open set in Rm. For a
function ψ on W , we can simply pull back the map as(

((df)(a))(ξ)
)
(ψ) = ξ(ψ ◦ f).
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6.3 Differential forms

Now let us get back to differential forms. If F is a real function on an open set
U ⊂ Rn, then the derivative

(dF )(a) : Rn → R

is a R-linear map. That is, it is an element of (Rn)∗ = Hom(Rn,R). We can
write

(dF )(a) =

n∑
j=1

( ∂F
∂xj

)
a
(dxj)(a).

Because a vector is identified with a differential operator, we can say that( ∂

∂x1

)
a
, . . . ,

( ∂

∂xn

)
a
∈ Rn

is an R-basis for Rn. On the other hand,

(dx1)a, . . . , (dxn)a ∈ (Rn)∗

is the dual basis.
We define the tangent space TRn,a as the the space of differential operators.

That is,

TRn,a = R
( ∂

∂x1

)
a
⊕ · · · ⊕

( ∂

∂xn

)
a
.

Its dual space can be described as(
TRn,a

)∗
= R(dx1)a ⊕ · · · ⊕ R(dxn)a.

As I have explained, a form is a homogeneous polynomial. A 1-form is a
homogeneous polynomial of degree 1, but for general k, In this context, a k-
form is a homogeneous polynomial of degree k that is alternating. So for general
k, a differential k-form looks like∑

j1,...,jk

aj1,...,jk(dxj1)a ∧ · · · ∧ (dxjk)a ∈
∧k(TRn,a)∗.

Then we can do all the things we did last semester.
Now what do this buy us? We can now do the extra computation and gen-

eralize the fundamental theorem of calculus to higher dimensions. We first look
at the fundamental theorem of calculus in the context of Stieltjes integration.
The theorem can be stated as∫

[a,b]

df = f(b)− f(a),

where df is a differential 1-form at each point. The function f , by notational
convention, is a differential 0-form.
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Intuitively this means that the evaluation of df on [a, b] is the evaluation of
f on the 2 points a, b which form the boundary of [a, b]. If we generalize this
an evaluation of a differential k-form on an k-dimensional object will have to be
the evaluation of a (k − 1)-form on the boundary of the object. We know how
the boundary is defined, and now the problem is how to get the k-form from
the (k − 1)-form.

Let us get back to the rectangle case. Let R = [a, b] × [c, d]. Then we see
that

∂R = [(a, c), (b, c)] + [(b, c), (b, d)] + [(b, d), (a, d)] + [(a, d), (a, c)]

= (∂[a, b])× [c, d]− [a, b]× (∂[c, d]).

(This is somewhat analogous to the Lepnitz formula d(fg) = (df)g + f(dg),
except for the sign.) This motivates the definition d(ϕ ∧ ψ) = (dϕ) ∧ ψ +
(−1)kϕ ∧ (dψ), where ϕ is a k-form and ψ is a l-form.

Definition 6.6. Let ω be a be a k-form on an open set U of Rn. Then we can
write

ω =
∑

1≤j1<···<jk≤n

fj1,...,jkdxj1 ∧ · · · ∧ dxjk

where fj1,...,jk are functions on U . Then we define its derivative as

dω =
∑

1≤j1<···<jk≤n

(
dfj1,...,jk

)
∧ dxj1 ∧ · · · ∧ dxjk .

Actually, we have to justify that this is independent of basis. That is, given
any ξ1, . . . , ξk+1 ∈ TR,a, we need to check that (dω)(ξ1, . . . , ξk+1) is well-defined.
We only have ω, which can evaluate only k vectors at once. So we need a way
to reduce k + 1 vectors to k vectors.

Let us look at the case k = 1. We have ω, which evaluates a single vector,
and we are asked to make a 2-form that evaluates two vectors ξ, η. We note
that ξ is a differential operator, sos if we put in a function f , it gives another
function ξ(f). Also, we have

ξ(fg)(a) = f(a)ξ(g) + ξ(f)g(a) ∈ R.

Then we can look at the Lie operator

[ξ, η]f = ξ(ηf)− η(ξf)

and define everything. This is the idea of Cartan’s formula, and we will do it
next time.
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We know that ∫
[a,b]

df = f(b)− f(a)

in the sense of Stieltjes integration. We are trying to generalize this as∫
config.

derivative of an obj. =

∫
boundary of config.

obj.

Let ω be a 1-form on U ⊂ Rn, and consider a curve Γ given by the map
ϕ : [a, b] → U . If we assume that ϕ is continuously differentiable. Let ω =∑
j fjdgj . Then we can define∫

Γ

ω =

∫
[a,b]

∑
j

(fj ◦ ϕ)d(gj ◦ ϕ) =
∑
[a,b]

ϕ∗ω,

where ϕ∗ is simply the pull-back map. (That is, the substitution map.)

7.1 Cartan’s formula

We continue from last time. This Cartan’s formula define the differential of a
(differential) form in a coordinate free manner. Let us trace the development of
the formula. Forms are dual to vectors. We want to get a 2-form from a 1-form.
In the dual version, this is the same as getting a single vector from two vectors.

Now we note that vectors are actually directional differentiations. Sophus
Lie defined the Lie bracket as

[ξ, η]f = ξ(ηf)− η(ξf).

It follows that
(df)([ξ, η]) = ξ((df)(η))− η((df)(ξ))

and if we assume d2f = 0, then

0 = d(df) = ξ((df)(η))− η((df)(ξ))− (df)([ξ, η]).

This motivates us to define

2(dω)(ξ, η) = ξ(ω(η))− η(ω(ξ))− ω([ξ, η]).

Definition 7.1 (Cartan’s formula). Let ω be a k-form. Then we define

(k + 1)dω(ξ1, . . . , ξk+1) =

k+1∑
j=1

(−1)j+1ξj(ω(ξ1, . . . , ξ̂j , . . . , ξk+1))

+
∑

1≤j<l≤k+1

(−1)j+lω([ξj , ξl], ξ1, . . . , ξ̂j , . . . , ξ̂l, . . . , ξk+1).

We can now state Stokes’s theorem.
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7.2 Stokes’s theorem

As we have discussed, we can define the integration of a 1-form over a curve C.
If it is given by ϕ : [a, b]→ U ⊂ Rn, we define∫

C

ω =

∫
[a,b]

ϕ∗ω.

Now let G be an open set in Rk, and let D be the image of ϕ, which is a
continuous map ϕ : G→ U ⊂ Rn. For a k-form ω on U , we define∫

D

ω =

∫
G

ϕ∗ω.

Theorem 7.2 (Stokes’s theorem). Let D be an open domain in Rk and let ω
be a (k − 1)-form. Then ∫

D

dω =

∫
∂D

ω.

Example 7.3. Let us look at the example

D = {a ≤ x ≤ b, g(x) ≤ y ≤ h(x)} ⊂ R2.

Let ω = P (x, y)dx. Then

dω =
∂P

∂y
dy ∧ dx

and thus∫
D

dω =

∫ b

x=a

∫ h(x)

y=g(x)

∂P

∂y
dydx =

∫ b

x=a

(P (x, h(x))− P (x, g(x)))dx =

∫
∂D

ω.

7.3 Other formulations

Let us look at the 2-dimensional version of Stokes’s theorem, when it was not
formulated in terms of differential forms. Let D ⊂ R2 and let

ω = P (x, y)dx+Q(x, y)dy =

(
P (x, y)
Q(x, y)

)
= ~v.

Then

dω =
(∂Q
∂x
− ∂P

∂y

)
dx ∧ dy

and then ∫
∂D

ω =

∫ `

x=0

(P dx
ds +Qdy

ds )ds =

∫
∂D

(~v · ~T )d.

Thus we can formulate the Stokes’s theorem as∫
∂D

(~v · ~T )dx =

∫
D

curl~v
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where

curl =

∣∣∣∣∣∂P∂x ∂P
∂y

∂Q
∂x

∂Q
∂y

∣∣∣∣∣ .
We can formulate the Stokes’s theorem in terms of the Hodge star operator.1

For simplicity, let us look at the case k = 2. Then we have

~e1 =
∂

∂x
, ~e2 =

∂

∂y
, V = R2 = TR2 .

Let us choose the orientation as ∂
∂x ,

∂
∂y . Then we have{

∗~e1 = ~e2,

∗~e2 = −~e1,

{
∗(dx) = −dy,
∗(dy) = dx.

Then the statement ∫
D

d(∗ω) =

∫
∂D

∗ω

just becomes ∫
∂D

(~v · ~n)ds =

∫
D

div~v.

1We defined this in the first semester.
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We look at special cases first. Suppose that we are looking at the region

{a ≤ x ≤ b, f(x) ≤ y ≤ g(x)}.

If ω = P (x, y)dx then dω = −∂P∂y dx ∧ dy. Then we have∫ b

x=a

∫ g(x)

y=f(x)

−∂P
∂y

dx ∧ dy = −
∫ b

x=a

(
P (x, g(x))− P (x, f(x))

)
dx =

∫
∂D

Pdx.

Likewise, if the region looks like

{c ≤ y ≤ d, σ(x) ≤ y ≤ τ(x)}

then the theorem is proved easily.
The general case can be proved by cutting up the manifold into many pieces.

Given a region, we can cut it up into many rectangular pieces, and they can
be added up. This requires the use of the implicit function theorem, which we
haven’t covered yet. It basically says that an implicit function can be locally
reparameterized as a function of form f(x) = y.

8.1 Stokes’s theorem in a 2-dimensional space

Let us look at the 2-dimensional case, and let ω = Pdx+Qdy. We consider an
inner product on V = R2, and then V becomes self-dual. We recall that the
tangent vector space is identified with its dual, i.e.,

R
∂

∂x
⊕ R

∂

∂y
= Rdx⊕ Rdy.

Then ω can be identified with

~v = P
∂

∂x
+Q

∂

∂y
.

There are two different ways we can apply the Stokes’s theorem in two
dimensions. ∫

D

dω =

∫
∂D

ω,

∫
D

d(∗ω) =

∫
∂D

(∗ω).

Let us first look at the left one. Using the identification, we can write it as∫∫
D

(∂Q
∂x
−∂P
∂y

)
dxdy =

∫
∂D

Pdx+Qdy =

∫ `

s=0

(
P
dx

ds
+Q

dy

ds

)
ds =

∫
∂D

(~v·~T )ds,

where ∂D is parametrized by arc-length with the variable s, and

~T =
(dx
ds
,
dy

dx

)
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is the unit tangent vector. If we define

curl =
∂Q

∂x
− ∂P

∂y

then we can write the whole thing simply as∫
D

curl~v =

∫
∂D

(~v · ~T )ds.

Let us now look at the next application. We set the orientation to be

∗(dx) = −(dy), ∗(dy) = (dx).

Then we see that

∗ω = −Pdy +Qdx, d(∗ω) =
(
− ∂Q

∂y
− ∂P

∂x

)
dx ∧ dy

and thus Stokes’s theorem tells us∫
D

(
− ∂Q

∂y
− ∂P

∂x

)
dxdy =

∫
∂D

(−Pdy +Qdx) =

∫
∂D

(
− P dy

ds
+Q

dx

ds

)
ds.

If we let

~n = − ∗ ~T =
(dy
ds
,−dx

ds

)
and div =

∂P

∂x
+
∂Q

∂y
,

then we see ∫
D

div~v =

∫
∂D

(~v · ~n)ds.

8.2 Stokes’s theorem in a 3-dimensional space

We can apply the Stokes’s theorem to

(1) a surface D inside R3 with piecewise smooth boundary, or

(2) a domain D ⊂ R3 with piecewise smooth boundary.

For each case, we can apply to the original form ω or ∗ω. For a 1-form ω,
the theorem becomes ∫

D

(
(curl~v) · ~n

)
dA =

∫
∂D

(~v · ~T )ds.

This is called the curl theorem. Here,

dA =
√

(dy ∧ dz)2 + (dz ∧ dx)2 + (dx ∧ dy)2

is a nonnegative function defined on
∧

2TR3 .
Let me explain more about this. Consider a map ϕ : R2 ⊃ G→ D where G

has coordinates u and v. Then ϕ induces a map
∧

2TR2 →
∧

2TR3 . And then
the area of ϕ(G) is given by ∫ (

(dϕ)(du ∧ dv)
)
dA.
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8.3 Stokes’s theorem in an n-dimensional space

Let ω be any 1-form. Then we see that ∗ω is an (n − 1)-form, and d(∗ω) will
be an n-form.

Definition 8.1. Consider a vector field ~v. This corresponds to a 1-form ω.
Then we define

d(∗ω) = (div~v)dx1 ∧ · · · ∧ dxn.

If we let ω = f1dx1 + · · ·+ fndxn, then we have

∗ω =

n∑
j=1

(−1)j−1fj(dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn)

and then

d(∗ω) =

n∑
j=1

∂fj
∂xj

x1 ∧ · · · ∧ xn.

Now consider a domain D ⊂ R3. When we apply the Stokes’s theorem to ω
and D, we get∫

D

div~v =

∫
D

d(∗ω) =

∫
∂D

∗ω =

∫
∂D

(~v · ~n)dVn−1,

where

dVn−1 =

√√√√ n∑
j=1

(dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn)2.

8.4 Stokes’s theorem and the Maxwell equations

We note that
curl = ∗d, div = d ∗ .

This actually implies that

div curlω = (d∗)(∗d)ω = −d2ω = 0.

Anyways, let us look at the Maxwell equations.{
divE = 4πρ curlE = − 1

c
∂B
∂t

divB = 0 curlB = 1
c
∂E
∂t + 4π

c J

There was originally no term 1
c
∂E
∂t in the equation, but Maxwell observed

that div curlB has to be zero and added the correction term. When in vacuum,
there have curl curl~v = −∆~v for ~v = E,B, and see that the speed of light is c.
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9.1 Implicit function theorem

Let us take the 2-dimensional case first. Let f be a function with (0, 0). We
want to ask whether the solution set of f(x, y) = 0, which will probably look like
a curve, can be parametrized. We parametrize it by one of the coordinates, so
that it will look like (x, g(x)). The main tools we will use are the intermediate
value theorem and the mean value theorem.

Theorem 9.1 (Implicit function theorem). Let f : U ⊂ R2 → R be a real
function defined on a neighborhood of (0, 0). Suppose that first-order derivatives
of f are continuous and (∂f/∂y)(0, 0) 6= 0. Then there exists a rectangle 0 ∈
[a, b] × [c, d] ⊂ U such that there exists continuously differentiable function g :
(a, b)→ (c, d) such that

f(x, g(x)) ≡ 0

on a < x < b.

Proof. Without loss of generality let κ = (∂f/∂y)(0, 0) > 0. Since the deriva-
tives are continuous, we can restrict ourselves to a smaller open subset U such
that

∂f

∂y
(x, y) >

κ

2
,

∣∣∣∣∂f∂x (x, y)

∣∣∣∣ ≤ A
for any (x, y) ∈ U .

Consider some small τ such that both (0, τ), (0,−τ) ∈ U . Since ∂f/∂y is
always positive, we see that f(0, τ) > 0 and f(0,−τ) < 0. There there exists a
σ > 0 such that

f(x, τ) > 0, f(x,−τ) < 0

for all −σ ≤ x ≤ σ. Then by the mean value theorem, there exists a g(x) such
that f(x, g(x)) = 0, and since it is increasing, it is unique.

We now try to say something about the differentiability of g. We first show
that |g(x)/x| is bounded only in terms of κ and A. By the mean value theorem,
there exists a 0 < ξ < 1 such that

f(x, g(x)) = f(0, 0) + (D1f)(ξx, ξg(x))x+ (D2f)(ξx, ξg(x))g(x).

Since f(0, 0) = f(x, g(x)) = 0, it follows that∣∣∣∣g(x)

x

∣∣∣∣ < A

κ/2
<

2A

κ
.

We now show that g′(0) exists, and is in fact, −(D1f)(0, 0)/(D2f)(0, 0). This
is because from the previous equality,

g(x)

x
= − (D1f)(ξx, ξg(x))

(D2f)(ξx, ξg(x))
,
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and when we send x→ 0, the right hand side goes to

lim
x→0

g(x)

x
= − (D1f)(0, 0)

(D2f)(0, 0)
.

Let us now go to more variables. For example, let us just take one more
and consider f(x, y, z) = 0. Suppose that x and y are independent and z are
dependent. Then if (∂f/∂z)(0, 0, 0) 6= 0, then the zero locus is z = g(x, y) for
some differentiable g. I will not repeat the argument.

We now consider the case where there are many dependent variables. Con-
sider the system of linear equations{

f(x, y, z) = 0

g(x, y, z) = 0.

Let x be the independent variable and y, z be the dependent variables. In this
case, the condition becomes dΦ being nonsingular, where

Φ : (y, z) 7→ (f, g).

How do we prove this? From the nonsingular condition, it follows that one of
∂f/∂z or ∂g/∂z at (0, 0, 0) is nonzero. Without loss of generality let ∂f/∂z 6= 0.
We first look at f , and there must be a ϕ(x, y) such that f(x, y, ϕ(x, y)) ≡
0. Then we apply the theorem to g(x, y, ϕ(x, y)) viewed as a function with
variables x and y. A computation shows that the condition is satisfied, and
thus everything works out.

9.2 Inverse mapping theorem

Let {
u = f(x, y)

v = g(x, y)

be a function (x, y) 7→ (u, v). We want to find the inverse of this function. We
apply the implicit function theorem to

Φ : (x, y) 7→ (f(x, y)− u, g(x, y)− v)

and we see that the inverse exists if the determinant of the Jacobian is nonzero.

9.3 Cauchy’s theory

Cauchy’s theory is simply viewing R2 as an 1-dimensional vector space over C.
We recall that if V is an R-vector space of dimension dimR V = m and there
is a R-linear map J : V → V such that J2 = − idV , then V can be given an
complex structure.

We have

TR2 = R
∂

∂x
⊕ R

∂

∂y
.
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We define J : TR2 → TR2 as

J
( ∂
∂x

)
=

∂

∂y
, J

( ∂
∂y

)
= − ∂

∂x
.

If we have an inner product space, we can say that TR2 = Rdx⊕ Rdy and then

J(dx) = −dy, J(dy) = dx.

Now one can check that
dz = dx+ idy

is a C-linear map TR2 = TC → C.
We now recall that a complex derivative a function f at c is defined as

something like
f(z) = f(c) + f ′(c)(z − c) + E(z)(z − c)

where limz→cE(z) = 0. We see that df : TC,c → C is then a R-linear function, if
f is simply a differentiable function in terms of R. Since there is a decomposition
TC,c = Cdz ⊕ Cdz̄, we see that there always are two complex numbers a, b ∈ C
such that

df(c) = adz + bdz̄.

That is, we can always write something like

df =
∂f

∂z
dz +

∂f

∂z̄
dz̄.

We note that z is complex differentiable at c if and only if ∂f/∂z̄ is zero at c.

Theorem 9.2. Let D be a bounded domain in C with piecewise continuously
differentiable boundary. Let f be a function on a neighborhood U of D such that
f ′(z) exists and is continuous on U . Then∫

∂D

f(z)dz = 0.

Proof. This is because if we let ω = f(z)dz then dω ≡ 0.

So the next thing was that people was unhappy with the condition that f ′

is continuous. We needed this to apply the fundamental theorem of calculus
change it to some integral of a continuous function. But this looks unnecessary
because they just cancel out and become zero. Goursat solved this problem by
bypassing the real numbers. What does this mean? We approximate f by a
polynomial of degree ≤ 1 to an order > 1. Then we cut the domain into small
pieces and add them up.



Math 55b Notes 33

10 February 25, 2016

Suppose that ω = f(z)dz for a complex differentiable function f . Then since
both df and dz are C-linear, we get df ∧ dz = 0 and thus dω = 0. Then directly
applying Stokes’s theorem, we get the following theorem.

Theorem 10.1 (Cauchy). If f is complex differentiable at points on D and its
derivative is continuous, then ∫

∂D

f(z)dz = 0.

Goursat’s theorem generalizes the theorem by dropping the continuously dif-
ferentiable condition. In practice this is not that useful since if something is
complex differentiable then it is infinitely differentiable. But its idea is useful.

10.1 Goursat’s theorem

Goursat first proved it for rectangles. Let R0 be an rectangle and let f be a
complex differentiable function on R0. We break the rectangle down to smaller
rectangles and let R0 =

⋃
ν Rν . Now we can approximate f on Rν as

f(z) = f(c) + f ′(c)(z − c) + E(z)(z − c)

for some c and limz→c|E(z)| = 0. Now we can calculate the integral of f on the
boundary of R0 as∫

∂R0

f(z)dz =
∑
ν

∫
∂Ri

f(z)dz +
∑

(error).

Then the first term automatically vanishes, and thus what we want is a sum of
a lot of error terms.

Theorem 10.2 (Goursat). If f is complex differentiable at points on D, then∫
∂D

f(z)dz = 0.

Proof. Assume that |
∫
∂R0

f(z)dz| = c > 0. Then we can divide the rectangle up

into four pieces, and |
∫
∂R1

f(z)dz| ≥ c/4. Then we can divide up into things,
and ad infinitum. We thus get a nest of rectangles

R0 ⊃ R1 ⊃ R2 ⊃ · · · ⊃ Rν ⊃ · · · → a.

with |
∫
∂Rν

f(z)dz| ≥ c/4ν .
We now look at the approximation

f(z) = f(a) + f ′(z)(z − a) + E(z)(z − a)
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and for each ε > 0, there is an ν0 such that |E(z)| < ε on ∂Rν for any ν ≥ ν0.
Then we can integrate f on the boundary and get∣∣∣∣ ∫

∂Rν

f(z)dz

∣∣∣∣ =

∣∣∣∣ ∫
∂Rν

E(z)(z − a)

∣∣∣∣ < c · ε
4ν

,

because the length of ∂Rν is a constant times 2−ν and the absolute value of
z − a is also less than a constant times 2−ν . Thus we get a contradiction.

10.2 Cauchy’s integral formula

Definition 10.3. A function f is holomorphic on an open set U if and only
if f ′ exists at every point on U .

Proposition 10.4 (Mean value property). If f is holomorphic on a neighbor-
hood of a disk in C, then the value of f at the center is the average of the value
of f on the circle.

Theorem 10.5 (Cauchy integral formula). Let f be holomorphic on an neigh-
borhood U of D, where D is a bounded domain in C with piecewise continuous
differentiable boundary. Assume further that f ′ is continuous. If a ∈ D, then

f(a) =
1

2πi

∮
z∈D

f(z)dz

z − a
.

Proof. We first note that f(z)/(z − a) is holomorphic on U \ {a}. Consider a
small disk

∆ε(a) = {z ∈ C : |z − a| < ε}

entirely contained in D. Then∮
∂D

f(z)dz

z − a
=

∫
∂(D\∆ε(a))

f(z)dz

z − a
dz +

∮
∂∆ε(a)

f(z)

z − a
dz =

∮
∂∆ε(a)

f(z)

z − a
dz.

Now we can approximate∣∣∣∣ ∫
∂∆ε(a)

f(z)dz

z − a
−
∫
∂∆ε(a)

f(a)dz

z − a

∣∣∣∣ =

∣∣∣∣ ∫
∂∆ε(a)

f(z)− f(a)

z − a
dz

∣∣∣∣→ 0

as ε→ 0. Also, we can calculate∫
∂∆ε(a)

f(a)dz

z − a
= 2πif(a).

Therefore sending ε→ 0, we get∮
∂D

f(z)dz

z − a
=

∮
∂∆ε(a)

f(z)

z − a
dz = 2πif(a).
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Proof of the mean value property. Let D be the disk, and assume that the cen-
ter of D is 0. Then applying the Cauchy integral formula, we have

f(0) =
1

2πi

∫
∂D

f(z)dz

z
.

If we parametrize it by θ 7→ (R cos θ,R sin θ), we immediately get

f(0) =
1

2πi

∫ 2πi

θ=0

f(Reiθ)Rieiθdθ

Reiθ
=

1

2π

∫ 2πi

θ=0

f(Reiθ)dθ.

We can now prove the fundamental theorem of algebra.

Theorem 10.6 (Fundamental theorem of algebra). Let P (z) = anz
n+an−1z

n−1+
· · ·+ a1z + a0 for an 6= 0 and n ≥ 1. There there exists some z0 ∈ C such that
P (z0) = 0.

Proof. Suppose not. Then 1/P (z) is holomorphic on C. We have∣∣∣ 1

P (0)

∣∣∣ =
∣∣∣ 1

2πi

∫ 1

θ=0

dθ

anRneiθn + · · ·+ a1Reiθ + a0

∣∣∣
≤ sup

0≤θ≤2π

1

|anRneiθn + · · ·+ a1Reiθ + a0|
.

The right hand side goes to zero as R→∞, and thus we get a contradiction.

We look at Cauchy’s integral formula again.

f(z) =
1

2πi

∫
ζ∈∂D

f(ζ)dζ

ζ − z

for all z ∈ D. This suggests that any holomorphic function on a bounded
domain can be written as the limit of a linear combination of translates of 1/z.
These are called kernels.

Theorem 10.7. Let D ⊂ C, and consider a holomorphic function f on D. Let
a ∈ D and r be the distance from a to ∂D. Then

f(z) =

∞∑
n=0

cn(z − a)

on {|z − a| < r} for some c0, c1, . . . .

Proof. From the Cauchy integral formula, we get

f(z) =
1

2πi

∫
ζ∈∂D

f(ζ)dζ

ζ − z
=

∫
ζ∈∂D

f(ζ)

∞∑
n=0

(z − a)n

(ζ − a)n+1
dζ.

Then we can let

cn =
1

2πi

∫
ζ∈∂D

f(ζ)dζ

(ζ − a)n+1
.

There are might be some convergence issues, but it is fine because we have
uniform convergence.
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11.1 Bergman kernel

In the Cauchy kernel, we integrate some function over the boundary of some
domain D. It comes from the Laplacian.

The Bergman kernel comes from the idea of a orthogonal projection. Let H
be the C-vector space of square integrable holomorphic functions on D. We can
introduce an inner product

(f, g) =

∫
D

f(z)g(z).

If we choose an orthonormal basis f1, f2, . . . then any function F can be ex-
panded as

F (z) =
∑
j

(F, fj)fj(z) =
∑
j

(∫
ζ∈D

F (ζ)fj(ζ)
)
fj(z)

=

∫
ζ∈D

(∑
j

fj(z)fj(ζ)
)
F (ζ).

This is simply a speculation since we do not know even whether it converges.
Bergman proved that this actually converges, and the kernel is defined as
KB(z, ζ) =

∑
j fj(z)fj(ζ).

11.2 Curvature of a surface

If we take two partial differentiations of a function, they clearly commute. Gauss
was the first person to ask the question of taking the differentiation of a vector
field of a curved space. Let S ⊂ R3 be a surface, and let C be a curve on S given
by P : (−1, 1)→ S. For each t, let ~v(t) be a vector tangential to S. How do we
differentiate this vector with respect to t? Actually we can always differentiate
its with respect to t because it is simply a vector in R3. But we want it to still
be tangential to S. So we project it to the plane tangent to S. This is called
the covariant differentiation ∇t.

Generally, given a vector field on an open subset of S, we can parametrize
the open set with the variables u and v, and let ~r(u, v) be the vector field. Then
we can look at the differentiation ∇u and ∇v. Does the two differentiation
commute, i.e., ∇u∇v~r = ∇v∇u~r? In general they don’t, because the projection
messes everything up.

Now Gauss wanted to define the curvature. On a plane curve, we define the
curvature as how much the direction changes. On a surface, the direction can
be considered as a normal vector. The Gauss map is the map that sends point
to the normal vector at that point in S2. Let D be a domain near P , and D′

be the image of D under the Gaussian map. The Gaussian curvature at P is
defined as

lim
D→P

area of D′

area of D
.
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12.1 The celebrated theorem of Gauss

Let X ⊂ R3 be a surface embedded in 3-space. We want to define the curvature
of this. But how do we define the curvature of a plane curve? We define it as

κ =
d~T

ds
· ~N,

where everything is parameterized by the length of the curve, ~T is the tangent
vector, and ~N is the normal vector.

Motivated by this, we define the Gauss map X → S2 that maps a point to
the normal vector at that point. Then we define the Gaussian curvature at
a point P as

lim
D→P

∆AS2

∆AX
.

More generally, for any hypersurface X(n)2 inside Rn+1, we define the scalar
curvature as

lim
D→P

∆VSn

∆VX
.

If we want to define the curvature for things of larger codimension, we have to
look at the Grassmannians, but we won’t do this.

The second definition of the Gaussian curvature is reducing to the plane
curve case. Let Π be a plane containing the normal vector ~n at P , and let
C = Π ∩X. We then define the Gaussian curvature as(

min
Π
κ(CΠ)

)(
max

Π
κ(CΠ)

)
.

At first glance, they look quite unrelated, but we shall prove that they are
equivalent.

The third definition is using the covariant differentiation. We first parametrize
the surface by two variables u, and v, so that ~ru and ~rv are unit vectors and are
orthogonal to each other. Then we define the curvature using the commutator
of the covariance differentiations

(∇v∇u~ru −∇u∇v~ru) · ~rv.

Consider a curve on a surface t 7→ (u(t), v(t)). Then we can calculate the
length of the curve as ∫ b

t=a

∥∥∥d~r
dt

∥∥∥dt =

∫ b

t=a

∥∥∥d~r · d~r
dt · dt

dt.

If we let
E = ~ru · ~ru, F = ~ru · ~rv, G = ~rv · ~rv,

2The superscript n just indicates that the manifold is of dimension n.
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we see that d~r · d~r = Edu2 + 2Fdudv +Gdv2, which is actually a homogeneous
quadratic polynomial defined on TPX. So the arc length only depends on E,
F , and G. In fact, we the celebrated theorem of Gauss says the following.

Theorem 12.1 (Theorema Egregium). The Gaussian curvature is computed
by E,F,G up to their

As a remark, for an n-dimensional manifold, the fundamental form is also
an quadratic form on TP (X).

12.2 Proof of the Theorema Egregium

Consider a plane Π passing through the normal vector ~n at a point P . The
tangential vector ~T (s) is given as

~T (s) =
d~r

ds

and thus the curvature of the intersection of Π and X is given by

κ =
d2~r

ds2
· ~n.

Now applying the chain rule multiple times, we see that

κ =
Ddu2 + 2D′dudv +D′′dv2

Edu2 + 2Fdudv +Gdv2

for
D = ~ruu · ~u, D′ = ~ruv · ~u, D′′ = ~rvv · ~u.

We want to look at the maximum and minimum of this thing, where the ratio
du : dv varies. If we take the derivative, we see that they are attained at the
points of {

(D − κE)du+ (D′ − κF )dv = 0

(D′ − κE)du+ (D′′ − κG)dv = 0.

Then we can plug things in and see that

κminκmax =
DD′′ −D′2

EG− F 2
.

Now let us look at the first definition of the Gaussian curvature. Since the
area element is ‖~ru × ~rv‖dudv, we see that the Gaussian curvature is λ in the
equation

~nu × ~nv = λ(~ru × ~rv).

Now we have

(~nu × ~nv) · (~ru × ~rv) = (~nu · ~ru)(~nv · ~rv)− (~nu · ~rv)(~nv · ~ru).
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How do we compute this? Since ~n · ~ru ≡ 0, we have ~nu · ~ru + ~n · ~ruu = 0. Using
these kind of identities, we get that that what we want to compute is actually
DD′′ −D′2, and if we do some more calculation, we get

λ =
DD′′ −D′2

EG− F 2
.

Finally, we need to check that DD′′−D′2 can be expressed in terms of E, F ,
G, and their first order derivatives. We do this by checking that the covariance
differentiation can be expressed by these three things. We note that many vector
field can be locally written as f~ru + g~rv. Then its covariant derivative is

∇(f~ru + g~rv) = df~ru + f∇~ru + dg~rv + g∇~rv,

where the vectors applied the vector fields are interpreted as directional deriva-
tives.

Thus we can imitate this definition and intrinsically defining

∇u~ru = ~ruu − (~ruu · ~n)~n.

The result is a linear combination of ~ru and ~rv, and thus we can simply write

∇u~ru = Γuuu~ru + Γvuu~rv,

where the Christoffel symbols Γ are defined as

∇u
∂

∂u
= Γuuu

∂

∂u
+ Γvuu

∂

∂v

and blah blah and so forth. Then we get in total 8 Christoffel symbols, and we
note that the two lower indices are symmetric, i.e., Γ•uv = Γ•vu. Now how do we
compute them? We have

~ruu − (~ruu · ~n)~n = Γuuu~ru + Γvuu~rv

and when we take the inner product with ~ru, we get

1

2
Eu =

1

2

(
~ru · ~ru)u = ~ruu · ~ru = ΓuuuE + ΓvuuF.

Now we have a lot of these equations, and when we solve the equation we get
the formulas for the Γ’s.

Finally, we check that the first and second definitions of the curvature are
equivalent to the third definition. That is, we claim that the Gaussian curvature
is

±([∇u,∇v]~ru, ~rv) = ±
(

[∇u,∇v]
∂

∂u
,
∂

∂v

)
.

We denote u = x1 and v = x2. Then we have

~rxjxk − (~rxjxk · ~n)~n =
∑
i

Γijk~rxi .
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When we take the derivative, we have

∂

∂xl
(~rxjxk − (~rxjxk · ~n)~n) = ~rxlxjxk − (~rxjxk · ~n)~nxl (mod ~n).

Thus the commutator of the covariant derivatives is

∇l∇j
( ∂

∂xk

)
−∇j∇l

( ∂

∂xk

)
= −(~rxjxk~n)~nl − . . .

and after some more computations we get the result.
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In the problem set, we saw that there is a unique covariant differentiation ∇j
such that

∇j
∂

∂xk
=
∑
l

Γljk
∂

∂xk

with symmetric Christoffel symbols. This is called the Levi-Cevita connec-
tion. Why suddenly talk about connections? This is because we want to com-
pare vector fields at difference points. To compare two tangent vectors at dif-
ferent points, we see a means to transport a vector at a point to another point
in a parallel manner.

13.1 Gauss curvature and parallel transport

Now I want to start talking about the relation between Gauss curvature and
parallel transport. This is important because this marked the start of global
analysis, such as Morse theory.

Suppose that you have a tangent vector ~v at some point P . Consider a small
closed loop C containing P , and let us parallel transport ~v along the curve C.
After ~v come back to its original position, it might form a nonzero angle with
the original ~v. The curvature is then defined as

κ = lim
C→P

angle

area inside C
.

We can compute the angle by using the first definition of the Gaussian
curvature. Under the Gauss map, the parallel transport is conserved, because
the normal vector are the same. Then we can use the camera shutter technique
and approximate the curve by a polygon, and we easily see the the angle of the
parallel transport is the same as the area. Therefore this definition agrees with
the original definitions of the curvature.

13.2 Green’s formula

We observe
div(f grad g) = grad f · grad g + f∆g.

Then when we integrate this over Ω and apply the divergence theorem, we have∫
∂Ω

f((grad g) · ~n) =

∫
Ω

grad f · grad g +

∫
Ω

f∆g.

Then ∫
∂Ω

f(∇~ng)−
∫
∂Ω

(∇~nf)g =

∫
Ω

f(∆g)−
∫

Ω

(∆f)g.

One application of this is the Green’s kernel. We want to a Green function
G such that ∆G = δP and G = 0 on ∂Ω. This is analogous to the electrostatic
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setting of a cavity shaped like Ω in a metal conductor that is grounded. Then
G becomes the potential function, and plugging this in, we get∫

∂Ω

f(∇~nG) = f(0)−
∫

Ω

(∆f)g.

I think I bore people. Let us move on to the next topic.

13.3 Fourier series

The differential equations we are interested in are linear, and has constant co-
efficients. We use the functions einx for n ∈ Z as building blocks. This is good,
because

d

dx
einx = ineinx.

So Fourier’s method is the algebraization of problems in analysis. If we have a
differential operator acting on a building block, we get( m∑

j=0

aj
dj

dxj

)
einx =

( m∑
j=0

aj(in)j
)
einx.

The problem is that it is not rigorous. We just let f(x) =
∑
cne

inx and
suppose that ( n∑

j=0

dj

dxj

)
f(x) =

∑
n∈Z

(
cn

m∑
j=0

aj(in)j
)
einx.

Now Lebesgue comes into the picture.
The keys is orthonormality of einx. We easily see that∫ π

x=−π
eimxeinxdx = 2πδmn.

Hence we see that (1/
√

2π)einx are orthonormal. Then we can write

f =
∑
n∈Z

(
f,

1√
2π
einx

)
· 1√

2π
einx.

Because we don’t want to look at 2π, we write

cn =
1

2π

∫ π

x=−π
f(x)e−inxdx,

and consider
∑
cne

inx (and hope that it is equal to f). This cn is called the
nth coefficient of the Fourier series of f .
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Assume that f is continuous on [−π, π] with f(−π) = f(π). We have

n∑
k=−n

cke
ikx =

n∑
k=−n

( 1

2π

∫ π

y=−π
f(y)e−ikydy

)
eikx

=
1

2π

∫ π

y=−π
f(y)

( n∑
k=−n

eik(x−y)
)
dy

=
1

2π

∫ π

y=−π
f(y)Dn(x− y)dy = f ∗Dn,

where the Dirichlet kernel Dn is defined as

Dn(x) =

n∑
k=−n

eikx,

and the convolution ∗ is defined as

f ∗ g(x) =

∫ π

z=−π
f(z)g(x− z)dz =

∫ π

z=−π
g(z)f(x− z)dz.

Let us compute the Dirichlet kernel first.

Dn(x) =
ei(n+1)x − e−inx

eix − 1
=
ei(n+ 1

2 )x − e−i(n+ 1
2 )x

e
i
2x − e− i

2x
=

sin(n+ 1
2 )x

sin 1
2x

.

We want to show that

Sn(x) =

n∑
k=−n

cke
ikx =

1

2π

∫ π

x=−π
f(y)

sin(n+ 1
2 )(x− y)

sin x−y
2

dy

goes to f(x) as n→∞. In other words, we want

f(x)− Sn(x) =
1

2π

∫ π

y=−π
(f(x)− f(y))

sin(n+ 1
2 )(x− y)

sin x−y
2

dy

to converge to 0. If we know that f ′′ is continuous, then (f(x)− f(y))/(sin(x−
y)/2) is continuously differentiable in y. Then we can do an integration by parts
and conclude that Sn actually converges to f .
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Let us continue our discussion on Fourier analysis. We are looking at a periodic
function on R with period 2π, or alternatively a function on [−π, π]. We want
to express f as

∑
cne

inx where

cn =
1

2π

∫ π

−π
f(x)e−inxdx.

Because we are working with Riemann integrability, we assume that f is con-
tinuous up to a finite number of jumps.

Now we look at

sn =

n∑
k=−n

cke
ikx = f ∗Dn.

We want to prove that sn → f as n→∞, or alternatively Dn → δ. Here, the δ
is the Dirac delta. But this does not behave nicely enough. So we instead look
at the Féjer kernel defined as

Fn =
D1 + · · ·+Dn

n
.

It turns out that Fn ∗ f → f uniformly for f continuous. This is introduced in
the homework exercise. This fact implies that the completeness of the space we
are working in.

14.1 Riemann-Lebesgue lemma

Before I go in to the Lebesgue theory, I want to discuss two things. Let us go
back to the Dirichlet-Dini kernel and look at the identity

(f ∗Dn)(x)− f(x) =
1

2π

∫ π

y=−π
(f(x− y)− f(x))

sin(n+ 1
2 )y

sin y
2

dy.

Because (f(x− y)− f(x))/ sin y
2 does not depend on n, we can let this function

be g. But then, g is kind of a continuous function, and sin(n + 1
2 )y is a high-

frequency sine wave. So things next to each other almost cancel out.

Lemma 14.1 (Riemann-Lebesgue). If g is integrable, then∫ π

x=−π
g(x) sinnxdx→ 0

as n→∞.

Proof. We use ∥∥∥∥f − n∑
k=−n

cke
ikx

∥∥∥∥ ≥ 0.
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Expanding everything out, we see that this is in fact equivalent to

‖f‖2 − 2π

n∑
k=−n

|ck|2 ≥ 0.

Therefore we get Bessel’s inequality that says

∞∑
k=−∞

|ck|2 ≤
1

2π

∫ π

−π
|f |2.

When does the equality hold? Because
∑n
k=−n cke

ikx is the projection, it
better approximates f than any other sum, i.e.,∥∥∥∥f − n∑

k=−n

cke
ikx

∥∥∥∥ ≤ ∥∥∥∥f − n∑
k=−n

γke
ikx

∥∥∥∥
for any other γ. If f can be uniformly approximated by a sum of eikx, then we
see that the identity holds.

14.2 Lebesgue measure

Lebesgue turned the table around and asked what set satisfies a given property.
The problem is then to measure the size of a set E in R. Everyone knows the
size of [a, b] or (a, b] or [a, b) or so forth. They are all b − a. To measure other
sets, we need to approximate it by what we know.

Theorem 14.2 (Structure theorem for an open set in R). Any open set O ⊂ R
is an at-most countable union of disjoint open intervals.

Proof. For every x ∈ O, let Ix be the maximum open interval (ax, bx) ⊂ O
containing x. To attain this, we can simply set

ax = inf{a : x ∈ (a, b) ⊂ O for some b},
bx = sup{b : x ∈ (a, b) ⊂ O for some a}.

Then the set O is the disjoint union of these open intervals Ix.

For any open set O, we define its measure to be

m(O) =
∑
j∈J

m(Ij).

Generally, for any set E ⊂ R, we define its exterior measure as

m∗(E) = inf
O⊃E

m(O).

We can only work with open sets, because we only know how to measure open
sets. This is the approximation from the outside.
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In order to approximate reasonably, we also need to approximate from the
inside. One possibility is (in fact this is Lebesgue’s original formulation) to
define the interior measure of E as

sup
closed F⊂E

m(F ),

where we define m(F ) by measuring a sufficiently large interval and taking out
the measure of its complement. Then we can define E to be measurable if and
only if the interior measure and the exterior measure agree. But nowadays, we
simply define it using only the outer measure.

Definition 14.3. A set E ⊂ R is Lebesgue measurable if and only if given
any ε > 0 there exists an open set O ⊃ E such that

m∗(O − E) < ε.

Now one thing you want to know is what happens when you take the union,
intersection, complete of measurable sets. Let us backstop a little bit and look
at the exterior measure.

Proposition 14.4 (Countable subadditivity).

m∗

( ∞⋃
j=1

Ej

)
≤
∞∑
j=1

m∗(Ej).

Note that there is an inequality because of the possible overlaps.

Proof. Given ε > 0, there exists an open Oj ⊃ Ej such that m∗(Ej) ≥ m(Oj)−
ε/2j . Then

⋃
j Ej ⊂

⋃
j Oj and hence∑

j

m∗(Ej) ≥
∑
j

m(Oj)− ε ≥ m(
⋃
j

Oj)− ε

and hence we get the desired result.

Proposition 14.5 (Additivity for positively-distanced sets). If the distance
between E1 and E2 is greater than 0, then m∗(E1 ∪ E2) = m∗(E1) +m∗(E2).

Proof. There exist open sets Õj ⊃ Ej that are disjoint. Then the result becomes
trivial.

Which sets are measurable?

• Open sets are measurable.

• Sets with zero exterior measure are measurable. (This is clear from the
modern definition.)

• Countable union of measurable sets is measurable. (This you can break
up ε into

∑
ε/2j and then approximate sets with error ε/2j .)
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• Closed sets are measurable. (For any closed set F and ε > 0 there is an
open O ⊃ F such that m(O) ≤ m∗(F ) + ε. Then O−F is open, and thus
is a countable union of open intervals. We can find finitely many intervals
so that they approximate O \ F well.)
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15.1 More properties of the measure

We have shown the countable subadditivity of the exterior measure.

Proposition 15.1. For any sets Ej,

m∗(
⋃
jEj) ≤

∑
j

m∗(Ej).

Conversely, we have:

Proposition 15.2. If dist(E1, E2) > 0, then m∗(E1∪E2) = m∗(E1)+m∗(E2).

Proposition 15.3. Any countable union of measurable set is measurable.

Proof. Let Ej be the sets and for each j, consider an open set Oj containing Ej
such that Oj ⊃ Ej and m∗(Oj − Ej) < ε2−j . Then we see that

m∗

((⋃
j

Oj
)
\
(⋃

j

Ej

))
≤
∑
j

m∗(Oj \ Ej) < ε.

Thus the union is measurable.

Proposition 15.4. Any closed set is measurable.

Proof. First assume that the closed set F is bounded, and let F ⊂ (a, b). Then
(a, b) − F =

⋃
j(aj , bj) is an open set. For each j, look at the slightly smaller

closed interval [cj , dj ] ⊂ (aj , bj). Then it turns out that (a, b) \
⋃
j [cj , dj ], which

is an open set containing F , is an approximation of F .
Now for an unbounded F , we observe that F =

⋃
N (F ∩ [−N,N ]) is a

countable union of measurable sets.

Proposition 15.5. The complement of a measurable set is measurable.

Proof. Let Ec be a measurable set, and let On be the open set containing Ec

such that m∗(On \ Ec) < 1/n. Then we see that Ocn ⊂ E. Let S =
⋃
nOcn.

Then for any n,

m∗(E \ S) ≤ m∗(On \ Ec) <
1

n
.

This implies that E \S has exterior measure zero, and thus is measurable. Also
S is measurable, because it is the countable union of closed sets. Therefore
E = S ∪ (E \ S) is also measurable.

Now we have all the tools to construct measurable sets. Open or closed sets
are measurable, and countable unions, intersections, and complements are also
measurable.
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Theorem 15.6. If Ej are countably many disjoint measurable sets and E =⋃
j Ej, then

m(E) =
∑
j

m(Ej).

Proof. We already know that m(E) ≤
∑
jm(Ej). Now we prove the other

direction.
Assume first that each Ej is bounded. Then for each j there is a closed

Fj ⊂ Ej such that m(Ej \ Fj) < ε2−j . Because Fj is compact, and disjoint, we
see that the have pairwise positive distance it it follows that

m
(⋃

j

Fj

)
=
∑
j

m(Fj).

Now we use the bounded case to get back. Let Tn = {x ∈ R : N ≤ |x| <
N + 1}. Then

E =
⋃
N

(E ∩ TN ) =
⋃
N

(⋃
j

(Ej ∩ TN )
)

=
⋃
j

(⋂
N

(Ej ∩ TN )
)

=
⋃
j

Ej .

Because each TN is bounded, we follow this guideline and say

m(E) =
∑
N

m(E ∩ TN ) =
∑
N

∑
j

m(Ej ∩ TN )

=
∑
j

∑
N

m(Ej ∩ TN ) =
∑
j

m(Ej).

We see that there is an analogue between series and a sequence of sets. In
fact, we have the following.

Proposition 15.7. Let E1 ⊂ E2 ⊂ · · · be a nested sequence of measurable sets,
and let E =

⋃
j Ej. Then m(E) = limj→∞m(Ej).

Proof. You just break it put into

E = E1 ∪ (E2 \ E1) ∪ (E3 \ E2) ∪ · · · .

But more importantly, we have the limit property for the other direction.

Proposition 15.8. Let E1 ⊃ E2 ⊃ · · · be a nested sequence of measurable sets,
and let E =

⋂
iEj. Then m(E) = limj→∞m(Ej).

Proof. In this case, E is the collapsed telescope and E1 is the full telescope. We
likewise have

E1 = E ∪ (E1 \ E2) ∪ (E2 \ E3) ∪ · · ·
and thus

m(E1) = m(E) +
∑
j

(m(Ej)−m(Ej+1)) = m(E) +m(E1)− lim
j→∞

m(Ej).

The result follows.
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Let me justify why I said this was more important. When we define the
Lebesgue sum, we are going to approximate everything from the inside. That
is, we will define Ej = {x : yj < f(x) ≤ yj+1} and add up the “rectangles”
yjm(Ej).

15.2 Egorov’s theorem and the measurability of a function

Theorem 15.9 (Egorov). Let E ⊂ R be a measurable set with m(E) <∞. Let
fj(x) be a function on j, with fj → f as j → ∞ at every point of E. Assume
that each fj is measurable. Then given any ε > 0, there is a closed Fε ⊂ E such
that m(E − Fε) < ε and fj → f uniformly on Fε.

What does it mean for a function to be measurable? We are trying to
define the measure of the set of points under the graph of f . We want to
partition the target space into 0 = y0 < · · · < ym = M and we need all sets
Ej = {x : yj−1 ≤ f(x) < yj} to be measurable.

Definition 15.10. f is measurable if {x : f(x) < c} is measurable for all
c ∈ R.

Proof of Egorov’s theorem. We define

En,N = {x ∈ E : |fj(x)− f(x)| < 1

n
for all j > N}.

This is what we need in order to get uniform convergence of fj . Because fj
pointwise converges to f , we see that En,N ↗ E as N → ∞. Then by the
elescoping,

lim
N→∞

m(En,N ) = m(E).

That is, there is a Nn such that m(E \En,Nn) < 2−n. Given ε > 0, there exists
an `ε such that

∑
n≥`ε

1
2n <

ε
2 .

Let Aε =
⋂
n≥`ε En,Nn . Then

m(E \Aε) ≤
∑
n≥`ε

m(E − En,Nn) <
ε

2
.

Moreover, fj uniformly converges on Aε. This is because for any δ > 0 we can
set n ≥ max(`ε, δ

−1). Then for nay k ≥ Nn, we have |fk(x)− f(x)| < δ < 1
n for

x ∈ Aε ⊂ En,Nn .

15.3 Lebesgue integration

Let us first look at the special case when f is defined on a bounded interval [a, b],
is measurable, and 0 ≤ f < M . One way to do it is looking at the partition
0 ≤ y0 < y1 < · · · < yn−1 < yn = M , defining Ej = {yj−1 ≤ f(x) < yj}, and
looking at the limit of

n∑
j=1

yj−1m(Ej).
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But does the limit exist?
We reformulate the problem by writing the partial sum as the integral of a

“simple function.” That is, we define

χEj (x) =

{
1 if x ∈ Ej
0 if x /∈ Ej

and let

ϕ(x) =

n∑
j=1

yj−1χEj .

Then we define the Lebesgue integral as∫ b

a

f = sup

∫
ϕ,

where ϕ varies over simple functions at most f .
In fact, we can pick out a particular set of ϕ. For the partition, yj = j

nM ,
let us denote the resulting simple function by ϕj . Then we claim that∫ b

a

f = lim
n→∞

ϕn.

More generally, if ϕn ↗ f at every point, and {ϕn} is almost uniformly Cauchy,
then the conclusion holds.

Applying Egorov’s theorem, we see that there is a closed set Fε ⊂ [a, b] such
that m([a, b] \ Fε) < ε. If we denote ϕn =

∑
j cn,jχEn,j , and ϕn is uniformly

Cauchy on Fε, we have∣∣∣∣ ∫ ϕn −
∑
j

cn,jm(En,j ∩ Fε)
∣∣∣∣ ≤ m([a, b]− Fε) · 2M < 2εM.
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We will look at three convergence theorems; the bounded convergence theorem,
the dominated convergence theorem, and the monotone convergence theorem.
Then there is a tool called Fatou’s lemma. Next we will look at the fundamental
theorem in calculus.

There are two important examples.

Example 16.1 (A non-measurable set). Let us consider the interval (0, 1) in
R identify it with S1. Make an equivalence relation so that x ∼ y if and only if
y − x ∈ Q. For each equivalence class, choose a representative using the Axiom
of Choice, and let it be E. Then the whole circle is the disjoint union

S1 =
∐
q∈Q

(E + q).

If E is measurable, then m(E) = m(E + q). But if m(E) = 0, then m(S1) = 0,
and if m(E) > 0, then m(S1) =∞. Both leads to a contradiction, and hence E
cannot be measurable.

Example 16.2 (The Cantor set). Let E0 = [0, 1]. Then take away the middle
third and let E1 = [0, 1/3] ∪ [2/3, 1]. Then for each interval, take away the
middle thirds again and let E2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1] and
so forth. Then

C =
⋂
i

Ei

is a measure zero set, and is called the Cantor set.

16.1 Lebesgue integration

There are two tools to use: approximation by simple functions through equally
spaced ever-finer partition of the target space, and almost convergence tech-
niques.

Let f be a measurable function on [a, b] such that 0 ≤ f < M . Look at the
partition 0 = y0 < · · · < yn = M such that yj = j

nM , and let

Ej = {yj−1 ≤ f(x) < yj}.

Then Ej is measurable since f is measurable. We define

ϕn =

n∑
j=1

yj−1χEj .

This is a simple function, i.e., a finite R-linear combination of characteristic
functions of measurable sets of finite measure. Define the integral of ϕn as∫

ϕn =

n∑
j=1

yj−1m(Ej).
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More generally, we can consider the f to be any bounded function with finite
measure support. This is because any such function can be represented as
ϕj ↗ f .

So we have 0 ≤ ϕk ≤ M such that they have a common fine measurable
support and ϕk → f pointwise. By Egorov’s theorem, for any ε > 0 there exists
a Aε ⊂ E such that m(E −Aε) < ε and ϕk → f uniformly in Aε. Then∣∣∣ ∫ ϕk −

∫
ϕl

∣∣∣ ≤ ∣∣∣ ∫
Aε

(ϕk − ϕl)
∣∣∣+
∣∣∣ ∫
E−Aε

(ϕk − ϕl)
∣∣∣

and thus we see that the sequence
∫
ϕk is a Cauchy sequence. This implies that

the sequence has a limit. Also, this limit is independent of the choice of {ϕk},
because if we take another sequence {ψk}, the sequence ϕ1, ψ1, ϕ2, ψ2, · · · also
has a limit. Thus we can define the integral of f as∫

f = lim
k→∞

∫
ϕk.

Then we can extend the definition.

Definition 16.3. Let f be any measurable function on R such that f ≥ 0.
Then we define ∫

f = sup

∫
g

over all bounded measurable g with 0 ≤ g ≤ f that is supported on a set with
finite measure.

The convention is that we allow f(x) = +∞ for some numbers x. Also,
∫
f is

always defined, either as +∞ or some number smaller than ∞.
There are some standard properties of the integral.

Proposition 16.4 (Linearity of integration). For any a, b ≥ 0 and measurable
functions f, g ≥ 0, ∫

(af + bg) = a

∫
f + b

∫
g.

Proof. Multiplying by a scalar is not a big deal. The hard part is to get addition.
All we need to do is show that for any 0 ≤ h ≤ f + g, we can split h up into
0 ≤ ϕ ≤ f and 0 ≤ ψ ≤ g. This is true because we can define ϕ = min(h, f)
and ψ = h− ϕ.

For a measurable set E ⊂ R and a measurable function f ≥ 0, we define∫
E

f =

∫
fχE .

Proposition 16.5 (Additivity of integration). If E1 ∩ E2 = ∅, then∫
E1∪E2

f =

∫
E1

f +

∫
E2

f.
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Proposition 16.6 (Truncation). If f ≥ 0 on R is integrable, i.e.,
∫
f < ∞,

then for any ε > 0 there exists a bounded set Bε ⊂ R such that
∫
R−Bε f < ε.

This result follows from the monotone convergence theorem, which will be
proved soon.

16.2 Fatou’s lemma

Theorem 16.7 (Bounded convergence theorem). Suppose fn → f almost ev-
erywhere, and |fn| ≤ M for every n. Suppose that there is a measurable set E
such that m(E) <∞ and supp fn ⊂ E for every n. Then

∫
fn →

∫
f .

Proof. By Egorov’s theorem, for any ε > 0 we can find a subset Aε ⊂ E with
m(E −Aε) < ε such that fn → f uniformly on Aε. For any δ > 0 there exists a
Nδ such that |fk(x)− f(x)| ≤ δ for any k > Nδ and x ∈ Aε. Then∣∣∣∣ ∫

E

f −
∫
E

fk

∣∣∣∣ ≤ ∣∣∣∣ ∫
Aε

f − fk
∣∣∣∣+

∣∣∣∣ ∫
E−Aε

f − fk
∣∣∣∣ ≤ δm(E) + 2Mε.

it follows that
∫
fn →

∫
f .

Lemma 16.8 (Fatou’s lemma). Let fn ≥ 0 be measurable on R. Then∫
lim inf
n→∞

fn ≤ lim inf
n→∞

∫
fn.

Proof. We first reduce to gn ↗ f by using the definition of lim inf. Let

gn = inf
k≥n

fk, f = lim inf
k→∞

fk.

Then we have gk ↗ f . Then it suffices to prove∫
f ≤ lim

n→∞

∫
gn.

Let us dominate
∫
f as

∫
f = sup

∫
ϕ where 0 ≤ ϕ ≤ f and ϕ is bounded

and finite-measure supported. If we let ϕn = min(ϕ, gn, then ϕn ↗ ϕ. Then by
the bounded convergence theorem, we see that

lim
n→∞

∫
gn ≥ lim

n→∞
ϕn =

∫
ϕ.

Then we can take the supremum over all ϕ and get∫
f = sup

∫
ϕ ≤ lim

n→∞

∫
gn.

Theorem 16.9. Let fn ≥ 0 be measurable on R and suppose that |fn| ≤ g
almost everywhere and fn → f almost everywhere. Then limn→∞

∫
fn =

∫
f .
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Proof. Fatou’s lemma says that
∫
f ≤ lim infn→∞

∫
fn. Also,

∫
fn ≤

∫
f and

thus lim sup
∫
fn ≤

∫
f . It follows that limn→∞

∫
fn =

∫
f .

An immediate consequence is:

Theorem 16.10 (Nonnegative monotone convergence theorem). Suppose that
fn ≥ 0 on R is measurable and fn ≤ fn+1. Then∫

lim
n→∞

fn = lim
n→∞

∫
fn.
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We have Egorov’s theorem, Fatou’s lemma, and the convergence theorems.
These are pretty much all the tools we currently have.

We recall the definition of the Lebesgue integral.

Definition 17.1. If f ≥ 0 is a bounded, finite measure supported measurable
function, we define ∫

f = lim
n→∞

∫
ϕn

where ϕn → f almost everywhere.
If f ≥ 0 is any measurable function, we define∫

f = sup

∫
ϕ

where ϕ ranges over measurable functions 0 ≤ ϕ ≤ f that is finite measure
supported and is bounded.

If f is any measurable, function, we define∫
f =

∫
f+− ∈ f−

where f+ = max(f, 0) and f− = max(−f, 0).

Theorem 17.2 (Dominated convergence theorem). Let fn → f almost every-
where, and assume that there exists an integrable g such that |fn| ≤ g on R.
Then

lim
n→∞

∫
|f − fn| = 0.

Proof. We can truncate with respect to the domain, and we can do it with
respect to the target. First we have that for any ε > 0 there exist a Bε with finite
measure such that

∫
R−Bε |f | < ε. This follows from the monotone convergence

theorem. So we can only look at things in a finite measure domain.
Now let En = {x ∈ R : |f(x)| ≤ n and |x| ≤ n}. Then for a sufficiently large

N , we have
∫
χEN fn →

∫
χEN f . So we use the two kinds of truncation. The

details are posted in the lecture notes.

Theorem 17.3 (Absolute continuity). Let f be a integrable function defined
on R. Then given ay ε > 0 there exists a δε > 0 such that

∫
E
|f | < ε for any

m(E) < δε.

Proof. We we let En = {x : |f(x)| ≤ N} then limR|fχEN − f | < ε.

We note that this theory of Lebesgue integration can be regarded as a two
dimensional measure theory. We can look at the graph and then define it as the
measure of the set under the graph.
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17.1 Existence of derivatives

The main tool in proving the fundamental theorem will be Vitali’s covering
technique(which was in the problem set). I have also included in the problem
set the following statement.

Proposition 17.4. If Ek ↗ E, where the sets need not be measurable, then
m∗(Ek)↗ m∗(E).

Theorem 17.5 (Vitali’s covering). Let E ⊂ R with m∗(E) <∞. Assume that
for each x ∈ E is associated a nonempty subset Ax ⊂ R+. Then given any ε
there exist x1, . . . , xk ∈ E and rj ∈ Axj such that (xj , xj + rj) are disjoint and

m∗

(
E ∩

k⋃
j=1

(xj , xj + rj)
)
≥ m∗(E)− ε.

Proof. We may assume that E is bounded because m∗(E ∩ [−n, n]) ↗ m∗(E)
(we are using the proposition above). We also may assume that there exists an
N > 0 such that supAx > 1/N for all x ∈ E. Then pick a sufficiently small
δ, and let x1 ≤ inf E + δ. Then pick an r1 ∈ Ax1

such that r1 ≥ 1/N , and
then replace E by E − (−∞, x1 + r1). This ends after finitely many steps, and
because we can set δ arbitrarily small, we are done. I guess everyone got this
problem.

The motivation for defining the differentiation is using this r instead of taking
the difference quotient with respect to any number. Let us refine by taking an
open O ⊃ E. Assume that {r ∈ Ax : (x, x + r) ⊂ O} is nonempty for every x.
Then given a collection of sets A = {Ax}, we can find

Vright(ε,A,O) =

k∐
j=1

(xj , xj + rj) ⊂ O

such that m(E′) ≥ m(E)− ε. We can likewise define

Vleft(ε,A,O) =

k∐
j=1

(xj − rj , xj).

Now we want to prove the fundamental theorem of calculus, which will take
the form of

d

dx

∫ x

a

f = f (almost everywhere).

Assuming that f is integrable on R, the integral is well-define. But is the
derivative well-defined? At the least, we know from absolute continuity that
the function x 7→

∫ x
a
f is continuous. The idea is to split f into f = f+ − f− so

that x 7→
∫ x
a
f is nondecreasing. Now we claim that if F is nondecreasing, then

F ′ exists everywhere.
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Assume that f is nondecreasing. We can define four different different quo-
tients:

D+f = lim sup
r→0+

f(x+ r)− f(x)

r
, D+f = lim inf

r→0+

f(x+ r)− f(x)

r

and likewise D−f and D−f for the left derivative. We want to prove that
all four D+, D+, D

−, D− are equal. Automatically, we have D+f ≤ D+f and
D−f ≤ D−f . So it suffices to show D+ ≥ D−f and D−f ≥ D+f .

For α < β ∈ q, let

Eα,β = {x : D+f(x) < α < β < D+f(x)}.

It suffices to show that m(Eα,β) = 0, because then
⋃
α,β Eα,β will also have

measure zero. Assume that m∗(Eα,β) > 0. Then for any ε there exists an open
O such that m(O) ≤ m∗(Eα,β) + ε. If we let

A+(x) =
{
r ∈ R+ :

f(x+ r)− f(x)

r
< α, (x, x+ r) ⊂ O

}
then we can find an almost covering

O′ = Vright(ε,A+,O) =

k⋃
j=1

(xj , xj + r) ⊂ O

such that if we let E′ = E ∩O′ then m(E′) ≥ m(E)− ε. Likewise we can define

A+(x) =
{
r ∈ R+ :

f(x+ r)− f(x)

r
< β, (x, x+ r) ⊂ O′

}
and get a covering

O′′ = Vright(ε,A+,O′).

Then E′′ = E′ ∩ O′′ has positive measure. Now when we apply f , we have

f(Vright(ε,A+,O′)) ⊂ f(Vright(ε,A+,O))

and it follows that

βm(Vright(ε,A+,O′)) ≤ m(f(Vright(ε,A+,O′))) ≤ m(f(Vright(ε,A+,O))) ≤ αm(Vright(ε,A+,O)).

Letting ε sufficiently small, we get a contradiction.
So we get the following theorem.

Theorem 17.6. A nondecreasing function is almost everywhere differentiable.
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Last time, we showed that the differentiation of an nondecreasing function is
well-defined almost everywhere by using Vitali’s covering technique.

18.1 Fundamental theorem of calculus

Theorem 18.1. Assume that f is integrable on R, and let a ∈ R be a real
number. Then

d

dx

∫ x

a

f = f

almost everywhere.

Because f is integrable, we may split f into f = f+ − f−, where both f+

and f− are nonnegative. So it suffices to prove for nonnegative f .
Let F (x) =

∫ x
a
f . Then clearly F is nondecreasing and thus F ′ is well-

defined. The tool is to show that
∫ x2

x1
(F ′−f) = 0 for any x1, x2. Then it follows

that
∫
O(F ′ − f) = 0 for any open set O that is the disjoint union of finite

intervals. We can then use the dominated convergence theorem to show that∫
O(F ′ − f) = 0 for any open set O. If F ′ − f 6= 0 on a set of positive measure,

then it we can approximate some set from the inside and get a contradiction.
In our case, F ′ ≥ 0. We will show that F ′ is integrable. Because F ′ is

defined almost everywhere, we have

F (x+ hn)− F (x)

hn
→ F ′

almost everywhere for a sequence hn ↘ 0. Using Fatou’s lemma, we see that∫ b

a

F ′ ≤ lim inf
n→∞

∫ b

a

F (x+ hn)− F (x)

hn

= lim inf
n→∞

1

hn

(∫ b

a

F (x+ hn)−
∫ b

a

F (x)
)

= lim inf
n→∞

1

hn

(∫ b+hn

b

F −
∫ a+hn

a

F
)

≤ lim inf
n→∞

(F (b+ hn)− F (a)) = F (b)− F (a).

So F is integrable and moreover we have
∫ x2

x1
F ′ ≤ F (x2) − F (x1). We further

have to show that they are equal. We use truncation to achieve this. We let
fn = max(f, n). Then by applying the bounded convergence theorem instead
of Fatou’s lemma, actaully

∫ x2

x1
F ′n ≤ Fn(x2) − Fn(x1). Then by the monotone

convergence theorem, we can look at the limit n→∞ and get
∫ x2

x1
F ′n ↗

∫ x2

x1
F .

Thus theorem 18.1 is proved.
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Theorem 18.2. Let F be defined on [a, b] where a < b, and assume that F is
absolutely continuous. Then∫

[a,b]

F ′ = F (b)− F (a).

Proof. We start out with F being absolutely continuous. We need to somehow
show that F ′ has bounded variation and is integrable. Let F ′ = f . Then by the
first part, if we let G =

∫ x
a
f then F ′ = G′. It follows that (F −G)′ = 0 almost

everywhere and because F −G is absolutely continuous, it is zero. (This we will
prove in the next subsection.)

18.2 More on absolute continuity

We have defined absolute continuity for an indefinite integral. We now extend
it to any function.

Definition 18.3. A function F is absolutely continuous if given ε > 0
there exists a δε > 0 such that for any finite disjoint intervals (aj , bj) with
m(
⋃
j(aj , bj)) < δε, ∑

j

|F (bj)− F (aj)| < ε.

Absolute continuity clearly implies bounded variation.

Proposition 18.4. If g is absolutely continuous on [a, b] and g′ = 0 almost
everywhere, then g is constant.

Proof. Let E = {g′ 6= 0}. Then m(E) = 0. That means that for any ε > 0 there
is an open set O containing E such that m(O) < ε. Then you can kind of cover
the interval.

To be rigorous, we use Vitali’s covering argument. Fix η > 0 and x ∈
[a, b]− E so that g′(x) = 0. Let

Aη,x = {r > 0 : |g(x+ r)− g(x)| < ηr}

and then for any δε > 0 you can cover the domain up by disjoint intervals
(aj − bj) whose measure is at least (b − a) − δε. Then the complement of
intervals have measure at most δ and hence the sum of the differences is at
most ε. The intervals have some of the difference at most η(b − a). Therefore
|g(b)− g(a)| ≤ η(b− a) + ε. This shows that g(b) = g(a).

There is a counterexample to the second part of the fundamental theorem of
calculus if F is not absolutely continuous. This shows that the condition cannot
be replaced by bounded variation.

Example 18.5. We recall the Cantor function. This function f : [0, 1]→ [0, 1]
is given by

0.a1a2a3 . . .(3) 7→ 0.b1b2b3 · · · bm(2)
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where am = 1 and a1, . . . , am−1 ∈ {0, 2} and bj = daj/2e. This function clearly
has bounded variation and is locally constant almost everywhere, but is not
constant.

18.3 Hardy-Littlewood maximal function

When we proved the first part of the fundamental theorem of calculus, we
tried to approximate

∫
F ′ by F (b)−F (a) by using truncation and the bounded

convergence theorem. But can we use dominated convergence theorem to do
this in one step? For instance, if

sup
(x1,x2)3x

∣∣∣ 1

x2 − x1

∫ x2

x1

f
∣∣∣

is dominated by an integrable function, then∫
F ′ =

∫
lim

x1,x2→x

F (x2)− F (x1)

x2 − x1
= lim
x1,x2→x

∫
F (x2)− F (x1)

x2 − x1
= F (b)− F (a).

Definition 18.6. Let f be an integrable function. We define the Hardy-
Littlewood maximal function as

f∗(x) = sup
x∈I

1

m(I)

∫
I

|f |

where I ranges over open intervals containing x.

If f∗ were integrable, it would have been nice because we would have been
able to apply dominated convergence theorem directly. But this is, in general,
false. However, we can modify the proof and still get an alternative proof.

We know that
∫
R|f | <∞. Then given any ε > 0, we can approximate f by

a compactly supported continuous function g such that∫
R
|f − g| < ε.

We have∣∣∣ 1

m(I)

∫
I

f − f(x)
∣∣∣ ≤ 1

m(I)

∫
I

|f − g|+
∣∣∣ 1

m(I)

∫
I

g − g(x)
∣∣∣+ |g(x)− f(x)|.

Taking the limit superemum as I shrinks around x, we get

lim sup
I→x

∣∣∣ 1

m(I)

∫
I

f − f(x)
∣∣∣ ≤ (f − g)∗(x) + 0 + |g(x)− f(x)|

because g is contiuous. By definition, |f(x)−g(x)| is integral. We want to show
that as g approaches f , the right hand side approaches 0 almost everywhere.
We make use of the following modified Tchebychev inequality.
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Theorem 18.7 (Modified Tchebychev’s inequality). Let f be an integrable func-
tion. The

m{f∗ > c} ≤ 3

c

∫
|f |.

Proof. We need the following variant of the covering lemma.

Lemma 18.8. If I1, . . . , I` are bounded open intervals in R then there exists a
disjoint sub-collection Ii1 , . . . , Iik such that

m
( ⋃̀
ν=1

Iν

)
≤ 3m

( k⋃
µ=1

Iiν

)
.

Proof. Just pick the biggest interval and delete all the intervals intersecting this
one. Do this and you get the disjoint intervals.

We will contiue next time.
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Let us continue with our discussion on Lebesgue theory. When Foruier first
developed his theory, we handwaved everything. Later on, Lebesgue came along
and rigourized some of the theory. There was an open problem: If |f |p is
integrable for some p > 1, then does the Fourier series necessarily converge
almost everywhere? This was solved in 1966 by Carleson for p = 2 and Hunt
proved the full problem. Their proofs uses the maximal function, and this is
why I am doing the Hardy-Littlewood maximal function although we already
have a proof of the fundamental theorem of calculus.

19.1 Hardy-Littlewood maximal function

Recall that the Hardy-Littlewood maximal function is defined as

f∗(x) = sup
I3x

1

m(I)

∫
I

|f |

for an integral function f .

Theorem 19.1 (Modified Tchebychev inequality).

m{f∗ ≥ c} ≤ 3

c
∈ |f |.

Proof. It directly follows from the Vitali covering technique and the following
lemma.

Lemma 19.2. Given a finite collection of open intervals I1, . . . , I`, there exists
a subcollection Ij1 , . . . , Ijk that is disjoint and

m
( ⋃̀
ν=1

Iν

)
≤ 3m

( k⋃
µ=1

Ijµ

)
.

Proof. We use the algorithm of picking the largest interval and removing all the
intervals intersecting it. By maximality, all the intervals intersecing it would be
covered by the 3 times larger interval. Then we see that all the intervals will
contained inside at least one of the 3 times larger intervals.

We want to prove the following theorem:

Theorem 19.3. Let f be an integrable funciton. For almost every x,∣∣∣∣ 1

m(I)

∫
I

f − f(x)

∣∣∣∣→ 0

as m(I)→ 0, where I is an open interval.

The main technique we are going to use is to approximate f by a sequence
of functions that behave nicely, and then approximate both terms using the
sequence.
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Proof. Let gn be continuous with compact support so that gn → f almost
everywhere and ∫

|f − gn| → 0

as n→∞. Then we have∣∣∣∣ 1

m(I)

∫
I

f−f(x)

∣∣∣∣ ≤ ∣∣∣∣ 1

m(I)

∫
I

f− 1

m(I)

∫
I

gn

∣∣∣∣+∣∣∣∣ 1

m(I)

∫
I

gn−gn(x)

∣∣∣∣+|gn(x)−f(x)|.

Taking the limit supremeum as I → x, we get

lim sup
I↘x

∣∣∣∣ 1

m(I)

∫
I

f − f(x)

∣∣∣∣ ≤ (f − gn)∗(x) + |gn(x)− f(x)|,

because gn is continuous. Next taking the limit infimum as n→∞, we get

lim sup
I↘x

∣∣∣∣ 1

m(I)
∈I f − f(x)

∣∣∣∣ ≤ lim inf
n→∞

(f − gn)∗(x)

almost everywhere. We now need to show that the right hand side is zero almost
everywhere.

For any ε > 0, consider the set

Eε =
{
x : lim inf

n→∞
(f − gn)∗(x) > ε

}
.

It suffices to show that m(Eε) = 0, becasue we can take the union where ε
ranges over positive rationals. Let

Ẽε,n =
{
x : (f − gn)∗(x) > ε

}
and then

m(Eε) = m
(

lim sup
n→∞

Ẽε,n

)
= lim sup

n→∞
m(Ẽε,n) ≤ 3

ε
lim sup
n→∞

∫
|f − gn| = 0

by the Tchebychev inequality.

19.2 The Lebesgue set

Recall that we have proved the convergence of the Fourier series by showing
that the convolution of f with the Dirichlet-Dini kernel converges to f .

Definition 19.4. A point x is a Lebesgue point of a function f if and only if

lim
m(I)↘0
x∈I

1

m(I)

∫
I

|f − f(x)| = 0.

This is slightly stronger than what we have shown above to be almost ev-
erywhere. But still the following is true.



Math 55b Notes 65

Theorem 19.5. The complement of the Lebesgue set (the set of all Lebesuge
points) is measurable and of measure zero.

Proof. We apply the above thereom to the function f(x) − r. For each f − r,
denote the set on which the first fundamental theorem of calculus fails by Er.
Then m(Er) = 0.

We claim that the complement of the Lebesgue set is in
⋃
r∈QEr. This is

because if x /∈
⋃
r Er then

1

m(I)

∫
I

|f − f(x)| ≤ 1

m(I)

∫
I

|f − r| − |f(x)− r|.

Then we can make the both terms on the right hand side small.

19.3 Hilbert spaces

The reason people look at this is because they want to solve differential equa-
tions.

Suppose we have a function f and a Fourier series of f . We have to convolute
f with a function Kε that approaches the Dirac delta. People were not happy
with this becasue this is not defined as function. So came the notion of a weak
solution. This is something that can evaluate a so-called test functions. For
instance, x is a weak solution to Ax = b if (A∗ϕ, x) = (ϕ,Ax) = (ϕ, b) for
every test function. Then the question becomes finding an x such that maps
A∗ϕ→ (ϕ, b) for every ϕ.

Definition 19.6. An R-vector space X with an inner product is a Hilbert
space if satisfies the following properties:

(1) (completeness) Every Cauchy sequence in X converges in X with respect
to the metric d(x, y) = ‖x− y‖X .

(2) (separability) There exists a countable dense set in X.

Example 19.7. Consider the set L2(R) of square integrable functions on R;
f ∈ L2(R) if and only if f is measurable and |f |2 = f2 is integrable. The inner
product is given by

(f, g)L2(R) =

∫
R
fg.

More generally, consider L2(E), where E is a measruable set in R.

Proposition 19.8. The space L2(R) is a Hilbert space.

Proof. We first prove completeness. Supose that we have a sequence of functions
such that

∫
R|fn − fm|

2 → 0 as n,m → ∞. We need to show that fn → f for
some f ∈ L2(R).
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Pick an increasing sequence kν such that ‖fn − fm‖ < 2−ν for every m,n ≥
kν . Then by the triangle inequality,

∞∑
j=1

‖fkj − fkj+1
‖ < 1.

Clearly

fkm = fk1 +

m−1∑
j=1

(fkj+1 − fkj ).

We want to make it sure this converges. Let

gm = |fk1 |+
m−1∑
j=1

|fkj+1
− fkj |, g = lim

m→∞
gm.

Then |fkm | ≤ gm ≤ g. By the triangle inequality again,

‖gm‖ ≤ ‖fk1‖+

m−1∑
j=1

‖fkj+1
− fkj‖ ≤ ‖fk1‖+ 1.

But because g2
m ↗ g2 and all

∫
g2
m are bounded, we see that g is well-defined

as an integrable function by the monotone convergence theroem. Then we have
fkm → f almost everywehre. Using the dominated convergence theorem, it
further follows that

∫
|fkn − f |2 → 0 as n→∞. This proves the completeness.

Consider a closed subset Y ⊂ X. Given a x ∈ X, we can find an onrthogonal
projection u of x onto Y . This will satisfiy ‖x−u‖X ≤ ‖x−y‖X for every y ∈ Y .

Theorem 19.9 (Riesz representation theroem). Let X be a Hilbert space an
f : X → R be a bounded linear functional, i.e., there exists a Cf such that
|f(x)| ≤ Cf‖x‖X for every x ∈ X. Then there unqiuely exists a vf ∈ X such
that f(x) = (x, vf )X for every x ∈ X.
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There will be a test next Tuesday.
We gave an example

L2(R2) = {f mesurable on R s.t.

∫
R
|f |2 <∞}.

By definition, the space comes with an inner product. There are two important
things: completeness and separability. The completeness is to make the series
converge, and separability is to make sure we can choose a basis.

Let us consider the linear equation Ax = b where there is the compatibility
condition Sb = 0. Then there is an exact sequence

V1 V2 V3
A S

and the solution is given by

xmin = A∗(AA∗ + S∗S)−1b.

The case of differential equaitons is the same. In this case, all vector spaces are
replaced by Hilbert spaces.

H1 H2 H3
A S

20.1 The projection map

Consider a Hilbert space X and consider a closed subspace Y . Then there is a
projection map πY : X → Y such that πY (x) is the element in Y closed to X.

Of course, we need to prove that this actually exists and is unique. Given
x ∈ X, let µ = infy∈Y ‖x− y‖. We want to show that µ is realized. There exists
a sequence yn such that

µ = inf
n
‖x− yn‖.

Becasue

‖yn − ym‖2 + ‖yn + ym − 2x‖2 = 2‖yn − x‖2 + 2‖ym − x‖2

and ‖yn + ym − 2x‖2 ≥ 4µ2 by definition of µ, it follows that ‖yn − ym‖ is
small. Hence {yn} is Cauchy and thus they converge to some y∗. Since ‖−‖ is
contiuous, ‖y∗ − x‖ = µ.

The unqiueness comes from the same parallelogram law. So we can finally
define:

Definition 20.1. We define the projection map πY : X → Y as

πY (x) = y∗.

where y∗ is the unique y∗ that minimzes ‖x− y∗‖ as
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If you have a finite dimenisonal subspace Y , then there exists an orthonormal
set e1, . . . , ek such that

Y =

k⊕
j=1

Rej .

It automatically follows that Y is closed, and moreover

πY x =

k∑
j=1

(x, ej)ej .

For instance, the Fourier series is the special case.

20.2 Riesz representation theroem

Theorem 20.2. Let X be a Hilbert space over R and let f : X → R be a
bounded R-linear functional.3 Then there exists a unique vf ∈ X such that
f(x) = (x, vf )X .

Proof. Assume that f is not identically zero, because then it is trivial. We look
at the kernel Y = ker f and any element u /∈ Y . Without loss of generality,
assume that u ⊥ Y , because we can just look at u − πY (u). We can further
assume that ‖u‖ = 1 by scaling.

Let vf = f(u)u. We claim that f(x) ≡ (vf , x). This is becuase we can
decompose x = (x, u)u+ πY (x) and then

f(x) = (x, u)f(u) + 0 = (x, f(u)u) = (x, vf ).

Uniqueness follows from (v, v − w) 6= (w, v − w) for any v 6= w.

Now let us go back to our diagram.

H1 H2 H3
T S

In the finite-dimensional case, we have x = T ∗(TT ∗ + S∗S)−1b. We always
know that B = (TT ∗ + S∗S) is positive definite in the finite dimensional case.
But in the infinite dimensional case, things are more difficult, and thus we give
an a priori estimate

‖T ∗y‖2 + ‖Sy‖2 ≥ C‖y‖2

for any y ∈ H2.

Definition 20.3. Let T : X → Y be an R-linear map between Hilbert spaces,
and assume that T is continuous. Then we define

‖T‖ = sup
|x|≤1

‖Tx‖.

3Such a function is bounded, i.e., |f(x)| ≤ C‖x‖ for some absolute constant C, if and only
if it is continuous. That is because X is a vector space and then we can bring everything to
the origin and rescale things.
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Proposition 20.4. Let T : X → Y be a bounded operator. Then there exists a
unique bounded operator T ∗ : Y → X such that

(T ∗y, x) = (y, Tx)

for every x ∈ X and y ∈ Y .

We call this T ∗ as the adjoint of T .

Proof. Fix y ∈ Y . The map x 7→ (y, Tx) is bounded because

|f(x)| = |(Tx, y)| ≤ ‖Tx‖‖y‖ ≤ ‖T‖‖x‖‖y‖.

Then by Riesz representation theorem, there is a unique u such that (x, u) =
(Tx, y). We define u = T ∗y.

This Y ∗ is easily checked to be linear. To prove boundedness, we use the
inequality we obtained above. In the Riesz representation theroem, we always
have ‖vf‖ ≤ ‖f‖. Then ‖T ∗y‖ ≤ ‖T‖‖y‖ for all y and hence ‖T ∗‖ ≤ ‖T‖.

Moreover, by uniqueness, we have (T ∗)∗ = T . Therefore ‖T ∗‖ = ‖T‖.

Theorem 20.5. Let
H1 H2 H3

T S

be bounded operators, and assume the a priori estimate. Then given y ∈ H2

such that Sy = 0, there exists a unique x ∈ H1 such that Tx = y and x ⊥ kerT .

Proof. Solving Tx = y is equivalent to solving (Tx, z) = (y, z) for every z ∈ H2.
Then we are solving (x, T ∗z) = (y, z).

Consider the linear functional f : H1 → R given by

T ∗z 7→ (z, y).

There are two problems: there might be elements in H1 that is not expressed as
T ∗z, even they can be, it might not be unique. We will continue next time.
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Let I be an open interval of length A in R. We look at the domain Ω = I×Rn ⊂
R× Rn and consider the operator

L = B
∂m

∂xm
+

m−1∑
v=0

Lv
∂v

∂xv

where B 6= 0 is constant and

Lv =
∑

λ1+···+λn≤pv

aλ1···λn
∂λ1+···+λn

∂yλ1
1 · · · ∂y

λn
n

where again each aλ1···λn is a constant. We want to find a solution to Lu = f
on Ω, for a given f on Ω. If f ∈ L2(Ω) then we will try to find a solution in the
weak sense so that (Lu, g) = (u, L∗g) where g ∈ C∞0 (Ω). Because C∞0 is dense
in L2, we will get a full solution.

21.1 The toy model

Consider Hilbert spaces and operators

H1 H2 H3.
T S

Then we can calculuate the minimal solution

~xmin = A∗(AA∗ + S∗S)−1~b.

Because we don’t really know the invertibility of AA∗ + S∗S is invertible, we
assume the a priori estimate. That is, assume that there exists a c > 0 such
that

((TT ∗ + S∗S)g, g) ≥ c‖g‖2.
It automatically follows that ‖T ∗g‖2 + ‖Sg‖2 ≥ c‖g‖2.

Proposition 21.1. Suppose

H1 H2 H3
T S

are bounded linear maps and also suppose that ST = 0. Asuume that there is
an a priori estimate. Then given an f ∈ H2 with Sf = 0, there exists a u ∈ H1

such that Tu = f .

Before proving the proposition, let me recall the finite dimensional toy model.
We have SA = 0 and Sb = 0, and we want to find a solution to Au = b. Let
v = (AA∗ + S∗S)−1b. Then (AA∗ + S∗S)v = b. Because we want to set
u = A∗v, we want to show that S∗Sv = 0. This follows from (S∗Sv, S∗Sv) =
(SS∗Sv, Sv) = (0, Sv) = 0.

Motivated by this baby toy model, we now move on to the teenage toy model.
We shall prove the proposition by using the Riesz representation theroem.
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Proof. By the Riesz representation theroem, we need only find a u such that
(T ∗g, u) = (g, f) for all g ∈ H2. That is, we need to show that there is a
functional that maps T ∗ 7→ (g, f). The first question is, is the map well-defined?
Also, we need to check that the functional is bounded. We shall do that in one
step.

Now let us analyze further. We see that

|(g, f)| ≤ ‖g‖‖f‖ ≤ 1√
c
(‖T ∗g‖2 + ‖Sg‖2)1/2‖f‖.

If we prove that ‖Sg‖ = 0, then we are done.
Recalling what we did in the finite dimensional case, we decompose g into

g = g1 + g2, where g1 ∈ kerS and g2 ∈ (kerS)⊥. The key is to look at the
estimate separately. From the compatibility condition, we have f ∈ kerS and
hence (g2, f) = 0. Also, from (kerS)⊥ ⊂ (imT )⊥ ⊂ kerT ∗ we get T ∗g2 = 0.
We then have

|(g, f)| ≤ |(g1, f)| ≤ 1√
c
(‖T ∗g1‖2 + ‖Sg1‖2)1/2‖f‖

=
1√
c
‖T ∗g‖‖f‖.

After some more work, we get the adult toy model.

Proposition 21.2. Suppose

H1 H2 H3
T S

are bounded linear maps and also suppose that ST = 0. Asuume that there is
an a priori estimate. Then given an f ∈ H2 with Sf = 0, there exists a u ∈ H1

such that Tu = f in the weak sense and ‖u‖ ≤ ‖f‖/
√
c.

21.2 Fourier transforms

Given a differential operator T , let’s say we want to solve Tu = f . We can take
the Fourier transform to make it into T̂ û = f̂ . Then T̂ is a polynomial and
hence we get û = f̂/T̂ . But if we do it like this, T̂ might have a zero, and it is
hard to make sense out of this. We are going to try and resolve this.

Consider the interval [0, 2π] and a function f ∈ L2([−π, π]). We define

f̂(n) =
1

2π

∫ 2π

0

f(x)e−inxdx.

Then we kind of want the identity

f(x) =

∞∑
n=−∞

f̂(n)einx
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in some sense, probably in L2([−π, π]).
The first step is rescaling. Because we always have 1/2π hanging around,

we get rid of it by using e2πinx istead of einx. Then f will be in L2([0, 1]) and
we will have

f̂(n) =

∫ 1

0

f(x)e−2πinxdx, f(x) =

∞∑
n=−∞

f̂(n)e2πinx.

If we rescale it further, and send L to infty, the we will get

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πiξxdx, f(x) =

∫ ∞
−∞

f̂(ξ)e2πinxdξ.

Now the whole theory of Fourier transform is to invert the process.
The first question we need to address is whether f̂ is defined. It is actually

defined for only specific f . Because we want to use it as test functions, things
like

∫∞
−∞|f | < ∞ won’t do. (When we differentiate it, it becomes something

that is not a test function.) So we need a better space.
Schwartz was the first person to come up with the following space.

Definition 21.3. The Schwartz space S(R) is the set of all C∞(R) functions
f such that

sup
x∈R
|f (k)(x)(1 + x2l)| <∞

for all k, l ≥ 0.

Then the fundemantal theorem of Fourier series can be formulated as the fol-
lowing.

Theorem 21.4. Let us define the Fourier transform as

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πiξxdx.

Then for any f ∈ S(R), we have

f(x) =

∫ ∞
−∞

f̂(ξ)e2πiξxdξ.

Example 21.5. Let us consider the Gauss distribution f(x) = e−πx
2

. Then we

have
∫∞
−∞ e−πx

2

1. We denote

K(x) = e−πx
2

, Kδ(x) =
1√
δ
e
−π( x√

δ
)2

=
1√
δ
e−

πx2

δ .

Then we easily see that
∫
Kδ(x) = 1. This will play the role of the approximate

identity. The key is that K is its Fourier transform, i.e., K̂ = K. To see this,
we compute

K̂(ξ) =

∫
e−πx

2−2πiξxdx =

∫
e−π(x+iξ)2e−πξ

2

dx

= e−πξ
2

after looking at the contour integral over the rectangle.
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The basic theorem in partial differential equations is the following.

Theorem 22.1. Let Ω ⊂ Rn be a bounded domain and let L =
∑
|α|≤m aα(∂/∂x)α

be a differential operator, where |(α1, . . . , αn)| = α1 + · · · + αn. Then for ev-
ery L2(Ω), there exists an u ∈ L2(Ω) such that Lu = f in the weak sense and
‖u‖ ≤ c‖f‖ for some c > 0.

By “weak sense”, we mean that for every ψ ∈ C∞0 (Ω), we have the equality

(u, L∗ψ)L2(Rn) = (f, ψ).

Here, L∗ is just the formal adjoint, defined by

L∗ =
∑
|α|≤m

(−1)|α|aα

( ∂
∂x

)α
.

If u is indeed in C∞0 , then it follows that u is a solution even in the classical
sense. To make things easier, we restrict our attention to the 1-dimensional
case.

22.1 The Gauss distribution, and operations with Fourier
transforms

Let S(R) be the Schwartz space. It can be checked that the Fourier transform
sends S(R) to itself. Recall that for a f ∈ S(R), the Fourier transform is defined
as

f̂(ξ) =

∫
R
f(x)e−2πiξxdx.

The key is that the inverse process is given quite nicely as

f(x) =

∫
ξ∈R

f̂(ξ)e2πiξxdξ.

There are many ways to prove this, and I have outline two of the ways in the
homework assignment. But the slick way people use nowadays is to use the
Gauss distribution.

There are nice properties we can use. First of all, the Fourier transform of
e−πx

2

is itself. The second is that its rescaling is an approximate identity. The
third is that∫

R
f(x)ĝ(x)dx =

∫∫
R2

f(x)g(ξ)e−2πiξxdxdξ =

∫
R
f̂(ξ)g(ξ)dξ.

There are two ways in showing that the Fourier transform fixes the function
K(x) = eπx

2

. The first way is to use complex analysis and say

K̂(ξ) =

∫
e−πx

2

e−2πixξdx = e−πξ
2

∫ e−π(x+iξ)2

x∈R
dx = e−πξ

2



Math 55b Notes 74

because we can use Cauchy’s integral formula on the rectangle [−R,R]× [0, iξ].
Before doing the real analysis proof, let me digress a bit and look at the

effect of three things on the Fourier transform.

(1) Translation
Let (Thf)(x) = f(x+ h). Then we see that

(̂Thf)(ξ) =

∫
f(x+ h)e−2πiξxdx = e2πihξ f̂(ξ).

(2) Differentiation
We have

f̂ ′(ξ) =

∫
f ′(x)e−2πixξdx = (2πiξ)f̂(ξ).

(3) Rescaling
Let us define fδ(x) = f(δx). Then

f̂δ(ξ) =
1

δ
f̂
(ξ
δ

)
.

Going back to the Fourier transform of the Gaussian distribution, we have

(K̂)′(ξ) =

∫
x∈R

(−2πix)e−πx
2

e−2πixξdx

= i

∫
K ′(x)e−2πixξdx

= i(i2πξ)

∫
K(x)e−2πixξdx = −2πξK̂(ξ).

Hence solving the differential equation, we get what we want.
We can easily prove that the Gauss distribution approximates the identity,

because for |x| ≥ η, we have

Kδ(x) ≤ e−π(η/
√
δ)2

√
δ

and hence goes to zero as δ → 0. Then f ∗Kδ approximates f as δ → 0.
Again, let me digress and talk about the Fourier transform of the convolu-

tion. We have

(f ∗ g)(x) =

∫
y∈R

f(y)g(x− y)dy

by definiion, and it follows that

(̂f ∗ g)(ξ) =

∫
x∈R

∫
y∈R

f(y)g(x− y)e−2πixξdydx

and hence
(̂f ∗ g) = f̂ · ĝ.
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Now let use the fact that Kδ approximates the identity. We have

f(0) = lim
δ→0

∫
R
f(x)Kδ(x)dx = lim

δ→0

∫
f̂(ξ)K̂δ(ξ)dξ =

∫
R
f̂(ξ)

by the monotone convergence theorem at the end, since K̂δ(ξ) = e−πδξ
2 ↗ 1.

Now, applying this identity to the translate Txf , we get

f(x) = Txf(0) =

∫
(̂Txf)(x)dx.

So this is the slick proof of the inverse Fourier transform.

22.2 Plancherel’s theorem

The main difficulty in solving differential equations is that if you take the Fourier
transform of Lu = f and make it into Qû = f̂ , then you cannot divide by Q
because Q might have zeros. So we first use the toy model to change it into a
Riesz representation theorem form, and then use the Fourier transform. It is a
roundabout way, but this is why people were not able to solve it for a hundred
years.

Now when we take the Fourier transform, we need the following theorem.

Theorem 22.2. For any f ∈ S(R), we have∫
|f |2 =

∫
|f̂ |2.

Proof. The idea is to use a special case of Fourier inversion formula. We find
a function g such that ĝ(ξ) = |f̂(ξ)|2 and hope that g(0) is the same as both

terms. Because |f̂(ξ)|2 = f̂(ξ)f̂(ξ), we define h(x) = f(−x) and g = f ∗h. Then
we see that

g(0) =

∫
f(y)h(0− y)dy =

∫
f(y)f(y)dy =

∫
|f(y)|2dy.

On the other hand, g(0) =
∫
|ĝ|2 =

∫
|f̂ |2.

22.3 Solving constant coefficient differential equations

Now we are in business. We first modify the baby toy model argument with the
Riesz representation theorem. We let

L =
∑
|α|≤m

aα

( ∂
∂x

)α
, L∗ =

∑
|α|≤m

(−1)|α|aα

( ∂
∂x

)α
.

Let Ω ⊂ Rn be a bounded domain, and assume that for some c > 0, we have

‖L∗ψ‖ ≥ c‖ψ‖
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for every ψ ∈ S(Rn). We want to show that Lu = f on Ω can be solved in the
weak sense.

We first remark that L∗ is not defined on L2(Rn). So we need to produce
a alternative “Hilbert space” in order to do what we can do. We give up the
completeness property and just look at the pre-Hilbert space H0 = C∞0 (Ω) ⊂
L2(Ω). We define the inner product as

(φ, ψ)H0 = (L∗φ,L∗ψ)L2(Ω).

This is so far a pre-Hilbert space, and we now take its completion to produce
the Hilbert space H we are going to work in. (That is, an element of H is is a
Cauchy sequence of H0.

Now we define a linear functional `0 : H0 → C given by

`0(ψ) = (ψ, f)L2(Ω).

Then we see that

|`0(ψ)| = |(ψ, f)L2(Ω)| ≤ ‖ψ‖L2(Ω)‖f‖L2(Ω)

≤ 1

c
‖L∗ψ‖L2(Ω)‖f‖L2(Ω)

=
1

c
‖ψ‖H0

‖f‖L2(Ω).

Hence `0 is bounded, and therefore we can extend the functional `0 : H0 → C
to ` : H → C by using Cauchy sequences. This new linear functional should
also satisfy

‖`‖H ≤
1

c
‖f‖L2(Ω).

We can then use the Riesz representation theorem and find a ũ such that

(ψ, f)L2(Ω) = (L∗ψ,L∗ũ)L2(Ω).

Going back to the differential equation, it suffices to show that

‖Lψ‖L2(Ω) ≥ c‖ψ‖L2(Ω)

for every ψ ∈ C∞0 (Ω). Using the Plancherel’s formula, we can change it to

‖Qψ̂‖L2(R) ≥ c‖ψ̂‖L2(R).

We are going to use the mean value property with polynomial weight, which
you have proved in one of the assignment.

Proposition 22.3. Let Q(z) be a monic polynomial with complex coefficients,
let F be a holomorphic function defined on the closed disc {|z| ≤ 1}. Then

|F (0)|2 ≤ 1

2π

∫ 2π

θ=0

|Q(eiθ)F (eiθ)|2dθ.
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Let A > 0 and I be an open interval of length A in R. The domain Ω is an open
subset of I × Rn ⊂ R, and we have a differential operator

L = B
∂m

∂xm
−
m−1∑
ν=0

Lν
∂

∂xν
, B 6= 0, Lν =

∑
λ1+···+λn≤pν

aλ1,...,λn

∂λ1+···+λn

∂yλ1
1 · · · ∂y

λn
n

.

Let c = eπA/|B|(2π)n be the constant. Our conclusion is that for every f ∈
L2(Ω), there exists a weak solution u of Lu = f on Ω with ‖u‖L2(Ω) ≤ c‖f‖L2(Ω).
In our case, we are only going to consider n = 0.

23.1 The last estimate

To do this, we have to use the mean value property with the monic polynomial
coefficient.

Proposition 23.1. Let P (z) = zm +
∑m−1
k=0 bkz

k be a monic polynomial and
let F (z) be a holomorphic function on {|z| ≤ 1}. Then

|F (0)|2 ≤ 1

2π

∫ 2π

θ=0

|P (eiθ)F (eiθ)|dθ.

Proof. If P (z) =
∏
|αj |≥1(z − αj)

∏
|βj |<1(z − βj), we define

P̃ (z) =
∏
|αj |≥1

(z − αj)
∏
|βj |<1

(1− β̄jz)

and apply the mean value property to P̃F instead of PF .

Last time I have showed that if we have the estimate

‖T ∗g‖ ≥ c‖g‖,

for every g ∈ DomT ∗, then we can use the Riesz representation theorem on the
Hilbert space constructed as the completion of the pre-Hilbert space to get our
claim. So the problem is reduced to showing

‖L∗ψ‖L2(Ω) ≥ c‖ψ‖L2(Ω)

for every ψ ∈ C∞0 (Ω).

We will use Plancherel’s identity. Let L̂∗ψ = Qψ̂. Then Q can be assumed
to be a monic polynomial. Here we use the polynomial mean value property
and translation. We have∫

ξ∈R
|Q(ξ + iη)ψ̂(ξ + iη)|2dξ =

∫
ξ∈R
|L̂∗ψ(ξ + iη)|2dξ

=

∫
x∈(−M,M)

|(L∗ψ)(x)eiπηx|2dx ≤ e4π|η|M
∫
x∈R
|(L∗ψ)(x)|2dx.
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(For simplicity we let A = (−M,M).) Then we get∫
ξ∈R
|Q(ξ + cos θ + i sin θ)ψ̂(ξ + cos θ + i sin θ)|2dξ ≤ e4πM

∫
x∈R
|(L∗ψ)(x)|2dx.

If we integrate this over θ, we get∫
ξ∈R
|ψ(ξ)|2dξ =

∫
ξ∈R
|ψ̂(ξ)|2dξ

≤ 1

π

∫ 2π

θ=0

∫
ξ∈R
|Q(ξ cos θ + i sin θ)ψ̂(ξ + cos θ + i sin θ)|2dξ dθ

≤ 1

2π

∫ 2π

θ=0

e4πM

∫
x∈R
|(L∗ψ)(x)|2dx ≤ c‖L∗ψ‖2.

This is the end of proof.

23.2 Argument principle

There is still time left, so I want to do a few things I wanted to do. Here the
argument means the angle. Suppose f(z) is holomorphic on the closure of a
domain Ω with a piecewise smooth boundary. If we assume f is nowhere zero
on the boundary ∂Ω then the number of zeros of f inside Ω is equal to 1/2π
times the increment of the argument of f around ∂Ω. The argument is given as

f(z) = |f(z)|ei arg(f(z))

and is defined up to an element of 2πZ. But still the increment around a closed
loop is well-defined, and is denoted by ∆∂Ω arg f .

Proof. We apply Stokes’ theorem to d log f(z) = f ′(z)/f(z)dz. The behavior
of f near a zero can be described easily. We can consider the power series
expansion

f(z) =

∞∑
n=0

cn(z − a)n

on |z − a| < r, and if you plug this in, you get that the contour integral of
d log f(z) around a root is 2πi times the multiplicity. Then we get the result.

Example 23.2. We can try to compute the number of zeros of z4 + z3 + 4z2 +
2z + 3 = 0 in each quadrant of the complex plane. After computation, you see
that the 1st quadrant has 0 roots.

23.3 Singularities of holomorphic functions

We say that a is an isolated singularity if f is holomorphic in a deleted neigh-
borhood of a point a. Let z be a point in the ring r < |z − a| < R. Then we
can use the Cauchy integral formula to get

f(z) =
1

2πi

∮
|ξ−a|=R

f(ξ)

ξ − z
dξ − 1

2πi

∮
|ξ=a|=r

f(ξ)

ξ − z
dξ.
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Then we get a Laurent series expansion by expanding the integral in terms
of the Taylor series. It will be of the form

f(z) =

∞∑
n=−∞

cn(z − a)n,

where cn = 0 for sufficiently small n.
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24 April 26, 2016

So we have been looking at the fundamental solution of differential equations,
differentiation and the fundamental theorem of calculus. For the higher dimen-
sional case, there was the Stokes theorem which came from the boundary of the
boundary being empty. In the more technical side, there was the problem of
which functions are differentiable and integrable. This came with the hierar-
chy of functions: integrable functions (or measurable functions), functions with
boundary variation (those that can be differentiated) and absolutely continuous
functions (those on which the fundamental theorem of calculus hold).

After all this, you want to know how to actually solve differentiation. This
involves the method of Fourier and eigenfunctions. The way we use Hilbert
spaces is to make sure we can use the Riesz representation theorem to get the
solution.

Going back to singularities of holomorphic functions, let f(z) be holomorphic
on {R1 < |z − a| < R2}. Then

f(z) =
1

2πi

∫
|ζ|=R1

f(ζ)dζ

ζ − z
− 1

2πi

f(ζ)dζ

ζ − z

by the Cauchy integral formula. Using the Taylor expansions

1

ζ − z
=

1

(ζ − a)− (z − a)
=

1

ζ − a
1

1− z−a
ζ−a

=

∞∑
n=0

(z − a)n

(ζ − a)n+1
,

1

z − ζ
=

1

(ζ − a)− (z − a)
=
−1

z − a
1

1− ζ−a
z−a

= −
∞∑
n=0

(ζ − a)n

(z − a)n+1
,

we get

f(z) =

∞∑
n=−∞

cn(z − a)n.

Here, the coefficient will be given by

cn =
1

2πi

∫
|ζ−a|=r

f(ζ)

(ζ − a)n+1
dζ.

This is call the Laurent series of f .
Now let us look at the case of an isolated singularity, that is, the case in

which f(z) is holomorphic in {0 < |z − a| < R}. When we look at the Laurent
series expansion about a, we will get one of the following.

(1) (Essential singularity) There are infinitely many nonzero cn with n < 0.

(2) (Pole) There are finitely many nonzero cn with n < 0.

(3) (Removable singularity) There are no nonzero cn with n < 0.
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Let us first look at the case of the pole. If the Laurent expansion looks like

f(z) =
c−k

(z − a)k
+ · · ·+ c−1

z − a
+

∞∑
n=0

cn(z − a)n

with c−k 6= 0. This k is called the order of the pole at a. In this case, the image
of f(z) on {0 < |z − a| < ε} is contained in a neighborhood {|z| > Aε} of ∞ in
S2, and Aε →∞ as ε→ 0.

In the case of a essential singularity, the image of f(z) on {0 < |z− a| < ε is
dense in C for every ε > 0. To prove it, it suffices to show that the intersection
with any nonempty disk in C is nonempty. Suppose that the intersection of f
on some punctured neighborhood and the disk |f(z) − b| < β is empty. Then
there exists a function g that is holomorphic at a and

f(z) = b+
1

g(z)
.

This contradicts the fact that f has a essential singularity.
Also, there is the residue around a singularity defined as

Resa f =
1

2πi

∫
|z−a|=r

f(z)

z − a
dz = c−1.

24.1 Baire category, Uniform boundedness, Open map-
ping theorems

We introduced Hilbert spaces to use the Riesz representation theorem to solve
partial differential equations with constant coefficients. I want to first talk
about estimates in the weak norm, and eigenfunctions of compact self-adjoint
operators in a Hilbert space. The reason we need stuff in more generality is that
the Fourier’s einx functions work only in the case of differential equations with
constant coefficients.

In the theory of Hilbert spaces, things work because of this Baire category
theorem. The Baire category theorem works also works generally on Banach
spaces, i.e., normed vector spaces that are complete, and even on any complete
metric space.

Theorem 24.1 (Baire category theorem). Given a complete metric space (X,distX),
the intersection of a countable number of open dense sets is again dense.

Proof. The proof actually quite simple. Let On be the open dense subsets. To
show the intersection is dense, we need to show that

U ∩
⋂
n≥0

On 6= ∅.

First pick a x1 ∈ U ∩ O1, which we can do because O1 is dense. Then there
exists a r1 > 0 such that Br1(x) ⊂ U ∩ O1. Likewise, we can inductively define
xn and rn > 0 such that

Brn(xn) ⊂ Brn−1
(xn−1) ∩ On.
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Then because {xn} is Cauchy, it converges to some point, and our balls are
nested, we are done.

Using this, we have the uniform boundedness theorem.

Theorem 24.2 (Uniform boundedness theorem). Let X be a Banach space
and Y be any (not even necessarily complete) normed vector space. Let J be a
family continuous (i.e., bounded) linear operators T : X → Y . If J is pointwise
bounded, i.e.,

sup
T∈J
‖T (x)‖Y <∞ for every x ∈ X,

then J is uniformly bounded, i.e.,

sup
‖x‖X≤1,T∈J

‖T (x)‖Y <∞.

Proof. Let nowhere dense mean to be the complement of a open dense set.
Then Baire’s category theorem says that

⋃
Fn must also be nowhere dense and

hence cannot be X.
Now let

Fn = {x ∈ X : sup
T∈J
‖T (x)‖Y ≤ n}.

Then Fn is closed and
⋃
Fn = X, and hence one of it must contain an open set.

Then we get uniform boundedness.

Theorem 24.3 (Open mapping theorem). Let T : X → Y be a surjective
and continuous linear map between two Banach spaces. Then T is open, i.e.,
T (neighborhood of 0 ∈ X) contains some neighborhood of 0 ∈ Y .

Proof. Let BX be a open unit ball of X. By surjectivity, we have⋃
n≥0

T (nBX) = Y.

Then some closure T (n0BX) must contain an open ball in Y . If we translate
and rescale, we get T (n1BX) ⊃ BY . Fix an 0 < ε < 1. Then for any y ∈ Y
there exists an x1 ∈ X such that ‖x1‖X ≤ n1 and ‖y − Tx1‖Y < ε. Then you
can do a successive approximation to get the result.

24.2 The spectral theorem

Definition 24.4. Let X be a Hilbert space and T : X → X be a linear map.
We say that T is compact if for any given bounded sequence xn, there exists
a subsequence xnk such that Txnk converges in X.

Theorem 24.5 (The spectral theorem). Let T be a self-adjoint operator, i.e.,
(Tx, y) = (x, Ty). Then the following are true.

(1) The eigenvalues of T are real.
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(2) If x and y are eigenvectors with eigenvalues λ, µ, and λ 6= µ, then x ⊥ y.

(3) The dimension of the eigenspace Λλ for eigenvalue λ has dimension dim Λλ <
∞ if λ 6= 0.

(4) The closure of the linear span of all eigenvectors is X.

How is this related to Fourier transform? Let T be the differential operator
d/dx on the space C∞ on R with period 2π. The problem is that T is not
bounded, so if you apply it to (TT ∗ + 1)−1 then you get the basis.

Proof. (1) and (2) are trivial. We see that

‖T‖ = sup
‖x‖≤1

|Tx| = sup
|x|,‖y‖≤1

|(Tx, y)| = sup
‖x‖≤1

|(Tx, x)|.

The last equality comes from

(Tx, y) =
1

4

3∑
ν=0

iν(T (x+ iνy), x+ iνy).

So we need to produce eigenvectors. By the equality we have, there is a
sequence xν ∈ X such that ‖xν‖ = 1 and |(Txν , xν)| → ‖T‖. Without loss
of generality, we can suppose that (Txν , xν) → ‖T‖. The goal is to show that
either ‖T‖ or −‖T‖ is an eigenvalue with eigenvector limν→∞ Txnν . (Here
compactness is used.) Let λ = ‖T‖. We see that

‖Txn−λxn‖2 = ‖Txn‖2−2λ<(Txn, xn)+λ2‖xn‖2 ≤ 2λ2−2λ<(Txn, xn)→ 0.

Because we may assume that λ 6= 0 (if it is zero, then there is nothing to prove),
we see that

xn =
1

λ
(Txn − (Txn − λxn))→ 1

λ
y,

where Txn → y. Then Ty = λy.
So we have one eigenvector. For any c > 0, we claim that

dimC(linear span of all Λλ with |λ| ≥ c) <∞.

It it is infinite dimensional, then there would be xn and |λn| ≥ c with Txn =
λnxn, also with {xn} orthonormal. Then

‖Txn − Txm‖2 = λ2
n + λ2

m ≥ 2c2

But this cannot be possible because T is compact.
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