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Math 130 Notes 5

1 January 22, 2018

This is a class on classical geometry. We are going to start with Euclid’s axiom,
talk about coordinates and projective geometry, and move to non-Euclidean
geometry. We might also talk about finite geometry, geometry over finite fields.
There will be weekly homework assignments due on Wednesdays.

1.1 Euclid’s construction axioms

Today we will start discussing Euclid’s geometry. Euclid was the first person to
study geometry from a rigorous standpoint.

“The laws of nature are but the mathematical thoughts of God.”

—Euclid

The course will emphasize proofs. We will start out with axioms, that we
accept as true, and from those axiom deduce theorems. Here are Euclid’s con-
struction axioms:

(E1) Given two points A and B, we can draw a straight line AB between the
two points.

(E2) We can extend a line infinitely long.

(E3) Given two points A and a length r, we can draw a circle with center A
and radius r.

Already from these constructions, we can add two lengths together. Consider
two lengths |AB| and |CD|. Using (E2), we can extend AB infinitely long. Then
using (E3), draw the circle with center B and radius |CD|. Similarly, we can
construct differences between lengths by taking the other intersection.

A BF E
C

D

Figure 1: Constructing the sum and difference of lengths |AB| and |CD|: we
have |AE| = |AB|+ |CD| and |AF | = |AB| − |CD|.

Why did the Greeks care about these? They need to do tasks such as
measure the area of land, so that they could sell or buy at a reasonable price.
Or they wanted to build architecture that does not collapse, or they cared about
measuring distance between stars in the sky.
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Next, let us try to draw an equilateral triangle, which is a triangle with
all th sides of the same length. Given two points A and B, we can draw a
circle centered at A with radius |AB| and also a circle centered at B with radius
|AB|. If we let C be one intersection of the two circles, then ABC will be an
equilateral triangle. Why is this? Because C is on the circle centered at B with
radius |AB|, we get |AB| = |BC|. Likewise, |AB| = |AC|, and so 4ABC is
equilateral.

A B

C

D

E

Figure 2: Constructing an equilateral triangle ABC

Given a segment AB, we can also draw a line that is perpendicular to AB and
bisects AB; just draw the line connecting the two intersections of the circles. But
how do we know that this line actually bisects AB and is perpendicular to AB?
To prove this, we need other axioms. I’m not going to give all the axioms today,
but that fact follows from SSS and SAS. They roughly say that if two triangles
share three side lengths, or two side lengths and the same angle between them,
they are congruent. In the above situation, we first show that4ACD ∼= 4BCD
using SSS. From this we see that ∠ACE = ∠BCE, and so by SAS we get
4ACE ∼= 4BCE. This shows that AE = BE and ∠AEC = ∠BEC = 90◦.
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2 January 24, 2018

The homework is due next Wednesday. Last time, we talked about Euclid’s
construction axioms. The first two were about straight lines; we can connect
two points, and we can extend a line infinitely long. The third was to draw a
circle with given center and radius. We used this to add and subtract lengths.
We also learned to draw an equilateral triangle of given length using two circles,
and used it to bisect segments by a perpendicular line.

2.1 More constructions

Let us now bisect angles. Given an angle, how do we bisect it? First draw a
circle of arbitrary radius, and then this intersects the two lines at two points.
Then we get a segment, and the perpendicular bisector will bisect the angle.

Figure 3: Bisecting an angle

Can we draw line parallel to a given line? We can draw a perpendicular
line, and then draw another perpendicular line. For now, we are not going to
prove things rigorously, because we don’t know how. But here, we’re using that
π
2 + π

2 = π.

Theorem 2.1 (Thales). Parallel lines cut any line they cross into segments of
proportional length. More precisely,

|AP |
|PB|

=
|AQ|
|QC|

in Figure 4 if PQ and BC are parallel.

We’re not going to prove it, but we can use it to do more constructions.
Given a segment AB, how can we divide it into n equal parts? We know how
to bisect it, and bisect each of them. This gives us a way to divide AB into 2k

pieces, but what if n is odd? We can draw an arbitrary line ` passing A, take an
arbitrary length, and draw these on the line ` so that |AP1| = |P1P2| = · · · =
|Pn−1Pn| = · · · . Then we can draw lines through Pi parallel to PnB, which will
divide AB into n parts.
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A

P

B

Q

C

Figure 4: Thales’s theorem

A B

P1

P2

P3

P4

P5

A1 A2 A3 A4

Figure 5: Dividing a segment into n equal parts

2.2 Multiplying and dividing lengths

We would now like to multiply and divide lengths. But the problem is that
multiplication of two lengths is not well-defined as a length. For instance, what
lengths does 2m times 3m correspond to? So make sense out of it, we need to
take an arbitrary length and fix it as 1. Then every length corresponds to a
number. Then we can make sense of 2 times 3 as 6, where these are all lengths.

So how should we multiply or divide lengths, where we are given this length
1? Let’s first thing about dividing |CD| by |AB|. The idea is if one of the
lengths in Thales’s theorem is 1, then we get an equation that says that some
length is the ratio of two lengths. Let us first put AB and CD together so
that B = C. Draw an arbitrary line through A, and find a point P such that
|AP | = 1. Draw line parallel to BP passing through D, and let Q be the point
where this line meets AP . Then by Thales’s theorem,

|PQ| = |PQ|
|AP |

=
|BD|
|AB|

=
|CD|
|AB|

.

A similar idea allows us to multiply lengths. How can we construct |AB| ×
|CD|? Take an arbitrary line through A, pick a point C on this line with
|AC| = 1, add |CD| to this length, and then draw a parallel line to BC through
D. If we denote by E the intersection point, then

|AC|
|AB|

=
|CD|
|BE|

shows that |BE| = |AB||CD|.
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A B,C D

P

Q

1

Figure 6: Dividing |CD| by |AB|

So far we have learned how to add, subtract, multiply, and divide lengths.
Next time we will construct some regular polygons.
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3 January 26, 2018

We are starting form Euclid’s construction axioms. To repeat again, (1) we can
draw a line between two points, (2) we can extend any line segment infinitely
in both directions, (3) we can draw a circle with given center and radius. We
used these to do addition, subtraction, multiplication, and division of lengths.
We also talked about Thales’s theorem, which says that parallels cut any lines
the cross in proportional line segments.

3.1 Similar triangles

Definition 3.1. We are going to say that two triangles 4ABC and 4A′B′C ′
are similar if the corresponding angles are the same (i.e., ∠BAC = ∠B′A′C ′

and ∠ABC = ∠A′B′C ′ and ∠ACB = ∠A′C ′B′.) In this case, we write
4ABC ∼ 4A′B′C ′.

This is also called the AAA condition.

Theorem 3.2 (assuming Thales’s theorem). Similar triangles have proportional
side lengths.

B = B′
C C ′

A

A′

Figure 7: Similar triangles have proportional side lengths

Proof. Let us put 4ABC and 4A′B′C ′ together so that B = B′ and A,C lies
on B′A′, B′C ′. We haven’t discussed this yet, but ∠ACB = ∠A′C ′B′ implies
that AC and A′C ′ are parallel. Then Thales’s theorem implies

|AB|
|A′B′| − |AB|

=
|BC|

|B′C ′| − |BC|
.

After algebraic manipulations, we see that |AB||B′C ′| = |BC||A′B′|, and so

|B′C ′|
|BC|

=
|A′B′|
|AB|

.

There are several things we’re assuming for now, but we are going to prove
all of them later. For now, just assume that these are true and focus on the
constructions.
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3.2 Construction of an irrational number

Using addition, subtraction, multiplication, and division, we can construction
all the numbers of the form

m

n
where m and n are integers. Such numbers are called rational numbers.
There are numbers that are not expressible in such a way, called irrational
numbers. The number

√
2 is such a number. This number can be constructed

in the following way. First draw a square with side length 1. Then let d be the
length of one diagonal: d = |AC|.

A

B C

D

E
1

d
2

Figure 8: Constructing
√

2

Now my claim is that d =
√

2. To show this, we first note that 4AMD ∼
4ADC. This is because they share an angle at A, and also ∠AMD = ∠ACD =
90◦. Because similar triangles have proportional sides, we have

d

1
=
|AC|
|AD|

=
|AD|
|AM |

=
1
d
2

,

and so d2 = 2. That is, d =
√

2.

Theorem 3.3. The number
√

2 is not rational, i.e., irrational.

Proof. We first going to assume that
√

2 is rational and then get a contradiction.
This is going to show that

√
2 is not rational. Assume that

√
2 =

m

n
.

Here, we can assume that m and n do not have a common divisor (other than
±1.) If we square both sides, we get

m2 = 2n2.

This shows that m2 is even, and so m should be even as well. (Otherwise m
would be odd and m2 would be odd too.) Write m = 2`. Then (2`)2 = 2n2 and
so

2`2 = n2.

This again, shows that n is even. So bothm and n are even, but we have assumed
that m and n do not have a common divisor. Therefore we get a contradiction,
so it cannot be the case that

√
2 is rational. That is,

√
2 is irrational.
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3.3 Euclid’s axioms continued

Here are the other Euclid’s axioms, which will allow us to actually prove stuff.

(E4) All right angles are the same.

(E5) (Parallel postulate) If two lines intersect a third line, in such a way that
the sum of the angles on one side is less then π, then the two lines meet
on that side when extended.

The parallel postulate looks complicated, but it’s clear when drawn out. If
basically says that, in Figure 9, if α+β < π then the two lines will meet on the
right side.

· · · · · ·

α

β

Figure 9: The parallel postulate

Now we can prove that the sum of three angles of a triangle is π.

Theorem 3.4. Let 4ABC be a triangle. Then ∠BAC+∠ABC+∠BCA = π.

Proof. Let us write α = ∠BAC and β = ∠ABC and γ = ∠BCA. Let ` be a
line that passes C and is parallel to AB. Because ` is parallel to AB, we have
δ + (π − β) = π in Figure 10. So δ = β, and likewise we can move α to B so
that α+ β + γ is the angle on the line `.

A B

C
`

α β

γ

π − β

δ = βα

Figure 10: Sum of angles in a triangle is π

Why isn’t this an obvious fact? If you look at a triangle on a sphere, where
lines are great circles, you will find out that the sum of the angles of a triangle
is greater than π. The angle between two lines is a local notion, but

Actually, the fact that the sum of angles in a triangle is equal to π, along
with the first 4 axioms and Thales’s theorem, implies the parallel axiom. To see
this, let m,n be two lines that intersect k at A,B and assume that the angle at
A and at B add up to less than π. Draw a line ` that is parallel to n and passes
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through A. For each P ∈ `, we can draw a triangle APQ such that ∠APQ = π
2

and Q ∈ m. All these triangles are similar, and so as AP gets big, the length
PQ will get proportionally big. So at some point, it will exceed the distance
between ` and n. At that point, it will be clear that the line m has already
intersected n.
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4 January 29, 2018

Today we are going to talk about Euclid’s axioms. The first three were construc-
tion axioms: a straight line can be draw between two points, a line segment can
be extended, there is a circle through centered at any point with given radius.
The other two are: all right angles are equal, if you have two lines drawn which
intersects a third so that the sum of the angles on one side is less than π, then
the two lines meet on that side. There are geometric models in which the first
four axioms hold but the fifth one doesn’t. On a sphere, the natural notion of
a straight line is a great circle. (If you take a flight from one place to another,
you fly in this route.) But the fifth parallel postulate doesn’t hold. There is a
triangle with all angles π

2 , and this can be interpreted as α+β = π but meeting
at that side.

There are other axioms that Euclid didn’t state:

• SAS: If two triangles have the same side-angle-side, they are congruent.

• Axiom of equality: If A = B and B = C then A = C.

These axioms Euclid just assumes because they seemed too obvious.

4.1 Equivalent form of the parallel postulate

There is another form of the parallel postulate.

(E5’) Given a line ` and a point P not on `, there is a unique parallel line
through ` (i.e., doesn’t meet `).

You can prove from this that the sum of the angles of a triangle is π. Actually,
this fact is equivalent to the parallel postulate.

Proposition 4.1. An equivalent way to sate that parallel postulate is that the
sum of the angles of a triangle is π.

α

β
π − α

A B

C

n

`′

`

Figure 11: Equivalent formulation of the parallel axiom

Proof. We want to show that if α + β < π, then ` and `′ meet on the right
side. Draw another line n that passes A and has angle π − α, and let B be a
point on n, on the right side of A. Let C be the point on `′ with ∠ABC = π

2 .
By Thales’s theorem, as the length of AB increases, the length of BC increases
as well. So BC eventually has length greater than the distance between n and
`.
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Here, we’ve assumed that the distance of a segment perpendicular to two
parallel lines always has the same length. I think we will prove this fact later.
Also, note that the axiom that “sum of the angles of a triangle is π” is false
if we’re on a sphere. There is a triangle with angles π

2 , and then the sum is
π
2 + π

2 + π
2 = 3π

2 . In fact, on the sphere, the sum of the angles is always greater
than π.

4.2 Congruence axioms

Definition 4.2 (Euclid). Two geometric figures are congruent if on can be
moved to fit exactly on the other.

A more formal way of saying this would be the following.

Definition 4.3. Two triangles are congruent if their corresponding angles and
side lengths are equal.

This means that there is a correspondence between the vertices of the two
triangle, coming from the “fitting on the other”, such that the corresponding
angles and side lengths are equal. The SAS axiom states that we don’t need to
check all.

(SAS) When checking congruence, we only need to check two adjacent sides and
the angel between the two.

The other axioms (ASA) and (SSS) follow from (SAS).

Definition 4.4. An isosceles triangle is a triangle with two equal sides.

Proposition 4.5. The opposite angles to the two equal sides of an isosceles
triangles are the same.

Proof. If AC = BC, then we have a congruence 4ACB ≡ 4BCA by (SAS).
So ∠CAB = ∠CBA.

We have constructed the perpendicular bisector before, but didn’t really
prove that it is a perpendicular bisector. We can now prove this.

Proposition 4.6. The line CD is a perpendicular bisector for AB.

Proof. We have ∠ACD = ∠ADC because AC = AD. Similarly, we have
∠ACB = ∠ADB. We’ll continue next time.
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A B

C

D

E

Figure 12: Constructing the perpendicular bisector of AB

5 January 31, 2018

Today I want to talk about area.

5.1 Area

First consider the algebraic fact

(a+ b)2 = a2 + 2ab+ b2.

This has a geometric interpretation. The square of a number is the are of the
square with that side-length. So the area of a square with side a + b can be
divided into a square with side a, a square with side b, and two rectangles of
side a and b.

Using this, we can figure out the area of a parallelogram or a triangle. By
definition, the area of a rectangle with side a and b has area ab. But what about
a parallelogram?

Definition 5.1. A parallelogram is the region between two sets of two parallel
lines.

Proposition 5.2. The area of a parallelogram is its base times height.

A D

B C E F

Figure 13: Area of a parallelogram
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Proof. The idea is that we can cut up and rearrange it into a rectangle. We
have

Area(ACFD) = Area(ABFD) + Area(ABC).

But by ASA, we have a congruence 4ABC ∼= 4DEF , so Area(ABC) =
Area(DEF ). So

Area(ACFD) = Area(ABFD) + Area(DEF ) = Area(ABDE).

Now this is a rectangle, so its area is the product of the two sides.

Proposition 5.3. The area of a triangle is 1
2 times base times height.

Proof. Given any triangle ABC, we can find a point D that makes ACDB a
parallelogram. Then ∠CBD = ∠BCA and ∠CBA = ∠BCD and so 4ABC ∼=
4DCB by ASA. This shows that Area(ABC) = Area(BCD and so

Area(ABC) =
1

2
Area(ABDC).

Then it follows from the previous proposition.

5.2 The Pythagorean theorem

From the discussion on area, we can deduce the Pythagorean theorem.

Theorem 5.4 (Pythagorean theorem). The sum of the square of the two shorter
sides of a right triangle is the square of the longer side.

There are many different proofs, but here is one proof not in the book.

Proof. Let the lengths of the sides be a, b < c. We want to show that a2+b2 = c2,
and we draw triangles as in Figure 14.

a b

a

b

ab

a

b c
c

c
c

Figure 14: The Pythagorean theorem

We can calculate the area of the big square in two different ways. First, it
is just (a + b)2, because it has side length a + b. On the other hand, it is the
sum of the areas of all the small regions, which is c2 + 4 · 1

2ab. So

(a+ b)2 = 4
(1

2
ab
)

+ c2 = 2ab+ c2,
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and it follows that a2 + b2 = c2.

5.3 Angles in the circle

Last class, we showed that the angles opposite equal edges in an isosceles triangle
are equal. This fact seems obvious, but it has a surprising consequence. This is
the power of the formalism we are working with.

Proposition 5.5. Let A and B be points on a circle. For all points C on the
circle on the same side of AB, the angle ∠ACB is the same.

C

A

B

O

α

α

β

β

Figure 15: Angles in a circle

Proof. Let O be the center of the circle. By the isosceles triangle proposition,
we have ∠OCA = ∠OAC = α. Since the sum of the angles of 4OAC is π, it
follows that ∠AOC = π − 2α. Similarly, if we write ∠OCB = ∠OBC = β, we
conclude ∠BOC = π − 2β. These two facts imply that

∠AOB = 2π − (π − 2α)− (π − 2β) = 2α+ 2β = 2(α+ β) = 2∠ACB.

That implies that ∠ACB = 1
2∠AOB is independent of C.

There is one special case I would like to mention. What happens if AB is
the diameter? In this case, ∠AOB = π and so ∠ACB = π

2 for every C.
This fact can be used to construct square roots. Given a length h, how can

we construct a segment of length
√
h? This is a bit tricky. First extend the

segment of length h and put a length 1 next to it. Then draw a circle with
diameter 1 + h.

If you use the Pythagorean theorem, you get three equations

h2 + b2 = a2, 1 + b2 = c2, a2 + c2 = (1 + h)2.

You can then do the algebra and get b =
√
h. But there is a more geometric

explanation. If we look at the angles, you see from ∠ABC + ∠ACB = π
2 and
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A BD

C

h 1

b c
a

Figure 16: Constructing the square root

∠ACB + ∠ACD = π
2 that ∠ABC = ∠ACD. Also ∠BAC = ∠CAD = π

2 .
From this see that the two triangles are similar:

4ABC ∼ 4ACD.

Then
1

AC
=
AB

AC
=
AC

AD
=
AC

h
,

and it follows that AC =
√
h.

Now we know now to construct +,−,×,÷,√ using straightedge and compass
constructions. But there are some things Euclid missed to make an axiom. He
assumed that certain circles intersected when it is not provable that they would
intersect. Hilbert around 1900 wrote down 15 axioms to complete Euclid’s
axioms to be totally rigorous. Here is one example of Hilbert’s axioms:

(L3) There exist three points that don’t lie on a line.

You might have some construction that is based on a point that lies on a
certain line, and it is not provable that this construction is possible only with
Euclid’s axioms.
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We have talked about the parallel axiom and the congruence axioms.

Definition 6.1. Two triangles are congruent if their corresponding angles and
side-length are equal.

The congruence axioms then say that two triangles are congruent if two sides
and the angle between them are equal. From this, we obtained a formula for the
area of a parallelogram, and then a formula for the area of a triangle. We also
showed that two angles of an isosceles triangle are equal, and from this showed
that an angle ∠ACB in a circle is determined only by A and B (and the side
on which C lies).

6.1 Alternative proof of the Pythagorean theorem

Let me first give another proof of the Pythagorean theorem. For a right triangle
4ABC, we want to show that a2 + b2 = c2.

D BA

C

c1 c2

a
b

Figure 17: Another proof of the Pythagorean theorem

In Figure 17, we consider the two triangles 4ADC and 4ACB. The two
triangles are similar because ∠ADC = ∠ACB = π

2 and ∠A are in common. So
they have proportional lengths. In particular,

b

c
=
|AC|
|AB|

=
|AD|
|AC|

=
c1
b

and so
b2 = cc1.

Likewise, if we look at 4BDC and 4BCA, they are similar. So by the same
reasoning, we get

a2 = cc2.

If we add the two equations, we get

a2 + b2 = c(c1 + c2) = c2.
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6.2 Proof of Thales’s theorem

Let us now prove Thales’s theorem.

Theorem 6.2 (Thales). A line parallel to one side of a triangle cuts the other
two sides proportionally.

A

P

B

Q

C

Figure 18: Thales’s theorem

Proof. Consider a triangle 4ABC and assume that PQ is parallel to BC. Be-
cause4PQB and4PQC share the same base and have the same height, the two
triangles have the same area. If we compare the areas of 4APQ and 4PQB,
we can say that they have the same height with base AP and PB. So

|AP |
|PB|

=
Area(4APQ)

Area(4PQB)
.

Likewise, if we compare the areas of 4APQ and 4PQC, we get

|AQ|
|QC|

=
Area(4APQ)

Area(4PQC)
.

Because the areas of 4PQB is equal to 4PQC are the same,

|AP |
|PB|

=
Area(4APQ)

Area(4PQB)
=

Area(4APQ)

Area(4PQC)
=
|AQ|
|QC|

.

6.3 The Dedekind axiom

Now we jump about 2000 years to early 20th century. Euclid missed many of
the axioms, and Hilbert attempted to give a complete rigorous set of axioms
for doing Euclidean geometry. For instance, it is not trivial that multiplication
commutes, i.e., ab = ba. This fails for matrices for instance. There is another
example. If AB ∼= CD and CD ∼= EF , is it always true that AB ∼= EF? This
is again not trivial, because your friend’s friend is not always your friend. This
should be taken as an axiom, that equality is a notion of equivalence.

Here is one important axiom. The idea is that the line is complete, that is,
has no gap.
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Dedekind axiom. Let L = A ∪ B be a line partitioned into a disjoint set, so
that A ∩B = ∅. Suppose there does not exist a point in A that lies between two
points in B, and vice versa. If A and B are both nonempty, there exists a point
p ∈ L such that one side of p is entirely in A and the other side of p is entirely
in B.

This axiom is important because this allows us to take intersections figures.
Otherwise, we can’t be sure that

√
2 is an actual length that can be put on an

arbitrary line.
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We jump 2000 years and now we are going to talk about coordinates. In the
real numbers R, there are the rational numbers Q and the irrational numbers
like
√

2. A rational number is a number of the form m = a
b for a, b ∈ Z, but we

can also write this as a decimal number

m =
a

b
= α.βγδε . . . = α+

β

10
+

γ

100
+

δ

1000
+ · · · .

This can be taken as the working definition of real numbers. But one problem
with this is that decimal representations of numbers are not unique:

1 = 0.9999 . . . .

That is why we need a rigorous definition, similar to Hilbert’s axiom.

7.1 Dedekind cuts

Definition 7.1. A Dedekind cut is nonempty partition of Q into Q = A∪B,
such that

(i) A has no largest element,

(ii) all elements in A are less than those B.

How does this correspond to the usual notion of real numbers. By the two
conditions, a Dedekind cut will necessarily look like A = {x ∈ Q : x < c} and
B = {x ∈ Q : x ≥ c} for some real number c. This c at the boundary of A and
B is what the Dedekind cut should correspond to.

Example 7.2. The square root
√

2 corresponds to the Dedekind cut

A = {α ∈ Q : α ≤ 0 or α2 < 2}, B = {β ∈ Q : β2 ≥ 2 and β > 0}.
Even though Q does not contain the element

√
2, what defines this partition

is something like
√

2. But we still have to check that A,B is really a Dedekind
cut.

Proposition 7.3. The set A = {α ∈ Q : α ≤ 0 or α2 < 2} has no largest
element.

Proof. Suppose there exists a largest element x ∈ A. We want to construct a
y ∈ A with y > x and y2 < 2. We do this by guessing

y =
2x+ 2

x+ 2
.

This is a rational number, and you can check that x < y and y2 < 2. To check
y2 < 2, we compute

y2 =
(2x+ 2

x+ 2

)2

=
4x2 + 8x+ 4

x2 + 4x+ 4

=
2(x2 + 4x+ 4) + 2(x2 − 2)

x2 + 4x+ 4
= 2 +

2(x2 − 2)

x2 + 4x+ 4
< 2.

This contradicts that x is the largest element.
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Definition 7.4. We define the real numbers R as the set of Dedekind cuts
on Q.

It’s interesting how people construct numbers. First we learn how to count,
like 1, 2, . . .. Mathematically, we define

0 = {}, 1 = {0} = {{}}, 2 = {0, 1} = {{}, {{}}}, . . . .

This is the set-theoretic approach, but we can also just define natural numbers
axiomatically. This is called Peano’s axioms. There exist 0, 1, and for each k,
there exists k+ 1, and something like induction. So anyways, we can define the
natural numbers N = {0, 1, 2, . . .} in this way.

Next, people came up with the concept of negative numbers. For n ∈ N, we
formally say that there is a number a such that a+ n = 0, even if this doesn’t
make sense in N. Then we can think of a as −n, so that n + (−n) = 0. There
is also multiplication in N, which is defined as

n · a =

n︷ ︸︸ ︷
a+ · · ·+ a .

There exists this special element 1 such that 1 · a = a · 1 = a for all a. So we
formally define a number m such that nm = 1, which we think of as 1 divided
by n, denoted 1

n . This way, we get the rational numbers Q. From this, we can
get the real numbers R using Dedekind cuts.

7.2 Coordinate plane

In this chapter, we are going to basically reprove Euclid’s geometry. Here, we
describe the plane as

Plane = R2 = {(x, y) : x, y ∈ R}.

The story is that Descartes was sick and lying on his bed, and he came up with
the concept of coordinates by watching flies moving around on the ceiling.

c

x

ax

(x, c+ ax)

Figure 19: A line in a coordinate plane
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A line is given by a slope. This is given by the equation

y = ax+ c

as long as the line is not vertical. Here a is the slope, which is intuitively the
“rise over run”, and c is the y-intercept, i.e., the intersection of the line and the
y-axis. But this formula cannot describe the vertical line. A general formula of
a line is given by

ax+ by + c = 0

for (a, b) 6= (0, 0). The line is vertical if b = 0 and horizontal if a = 0.
There was an axiom (E1) that states that any two points can be joined by a

straight line. Suppose P = (x1, y1) and Q = (x2, y2) are two points. Then the
line with equation given by

` :
y − y2

x− x2
=
y1 − y2

x1 − x2

passes through P and Q. (Here, we’re assuming that x1 6= x2, but if x1 = x2

you can simply take ` : x = x1.)
We can also prove the parallel postulate. Consider an arbitrary line ` : y =

ax+c. (Assume for simplicity that it’s not vertical.) To construct a line parallel
to ` passing through (x1, y1), you can take

`′ : (y − y1) = a(x− x1) + c.
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Last time we looked at the equation of a line in R2, and used this to reprove
the axioms.

8.1 Distance in coordinates

Distance is going to be defined using the Pythagorean theorem. Consider two
points (x1, y1) and (x2, y2) on the coordinate plane. These two points and
(x2, y1) will form a right triangle, and so then the distance between P1 = (x1, y1)
and P2 = (x2, y2) can be written as

|P1P2| =
√

(x1 − x2)2 + (y1 − y2)2.

(x1, y1)

(x2, y2)

x2 − x1

y2 − y1

Figure 20: Distance between two points

Using this, we can write down the equation of a circle. Consider a circle of
radius r centered at (c1, c2). Then a point (x, y) lying on the circle is equivalent
to its distance from (c1, c2) being r, and this can be written as

(x− c1)2 + (y − c2)2 = r2.

Note that everything we have been doing can be generalized to n-dimensional
space.

Proposition 8.1. The set of points that are equidistant from two given points
is a line.

Geometrically, we know that this line should be the perpendicular bisector
of the two given points. But this can be shown algebraically.

Proof. Let (x1, y1) and (x2, y2) be the two given points. The equation for
equidistance is√

(x− x1)2 + (y − y1)2 =
√

(x− x2)2 + (y − y2)2,

which becomes

x2 − 2x1x+ x2
1 + y2 − 2y1y + y2

1 = (x− x1)2 + (y − y1)2

= (x− x2)2 + (y − y2)2

= x2 − 2x2x+ x2
2 + y2 − 2y2y + y2

2
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after squaring both sides. Then canceling the x2 and y2 terms give

x(2x2 − 2x1) + y(2y2 − 2y1) + (x2
1 + y2

1 − x2
2 − y2

2) = 0.

This shows that it is a line, with a = 2x2 − 2x1, b = 2y2 − 2y1, and c =
x2

1 + y2
1 − x2

2 − y2
2 .

In particular, the midpoint ( 1
2 (x1 + x2), 1

2 (y1 + y1)) is on the line.

8.2 Intersection points

Consider two lines

` : ax+ by + c = 0, `′ : a′x+ b′y + c′ = 0.

Assume that ` and `′ are not vertical, and not parallel. Then b, b′ are both
nonzero. Then we can divide the equations by b and b′ to make

` : abx+ y + a
c = 0, `′ : a

′

b′ x+ y + a′

c′ = 0.

Here, because the two lines are not parallel, we have a
b 6=

a′

b′ . Then we can
subtract the two equations to get

(ab −
a′

b′ )x+ (c− c′) = 0,

and then we get

x =
−(c′ − c)
a′

b′ −
a
b

, y = · · · .

If one of ` and `′ is vertical, you can also show that the two lines intersect at
one point. I’ll leave it to you as an exercise.

Proposition 8.2. Two lines that are not parallel intersect at a unique point.

Now let us look at two circles. Consider two circles centered at (x1, y1) and
(x2, y2), with radii r1 and r2 respectively. Because the circles don’t meet unless
the radii are sufficeintly large, we need something like√

(x2 − x1)2 + (y2 − y1)2 ≤ r + s

to have existence of an intersection. But this is not enough, because one circle
might contain the other one completely.

You can calculate the intersections points algebraically. For simplicity, as-
sume that (x2, y2) = (0, 0) by just shifting the coordinates. Then the two
equations for the circles are{

x2 + y2 = r2,

(x− x1)2 + (y − y1)2 = s2.
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Then

s2 = (x2 − 2x1x+ x2
1) + (y2 − 2y1y + y2

1) = r2 − 2x1x+ x2
1 − 2y1y + y2

1 .

Assuming x1 6= 0, we can now write x as

x =
(r2 − s2 + x2

1 + y2
1)− 2y1y

2x1

and plugging this into x2 + y2 = r2, we get a quadratic equation in y. So this
equation can have 0 or 1 or 2 solutions depending on the discriminant. You can
explicitly write down the conditions under which the two circles have certain
number of intersection points, but I’m not going to do it here.

The computations we did have an interesting consequence. Recall that we
have learned how to do +, −, ×, ÷, and

√
. But conversely, whatever we

do in Euclidean geometry, we can write down its coordinates using these five
operations. So Euclidean geometry can be thought of as a geometric way of
doing these operations.

Definition 8.3. A point is called constructible if its coordinate can be ob-
tained by +, −, ×, ÷, and

√
.

Not all real numbers are constructible. Showing that a number is not con-
structible is very hard, but you can show that 3

√
2 is not constructible. This can

be shown using Galois theory. Numbers like π or e are also not constructible,
and so are Liouville numbers such as 0.101000000100000000 . . ..

8.3 Angle in coordinates

How can we describe angles? There is a notion of a slope of a line, and if we
denote by θ the angle between it and the x-axis, the slope is going to be

sin θ

cos θ
= tan θ.

But given two lines `1 and `2, we want to know the angle between them, not
the angle between them and the x-axis. If we denote by θ1 and θ2 those angles,
we want to find out θ2 − θ1. This can be computed by the formula

tan(θ2 − θ1) =
tan θ1 − tan θ2

1 + tan θ1 tan θ2
.

If (x1, y1) and (x2, y2) are points on `1 and `2 of distance 1 from the origin,
we can also express

cos(θ2 − θ1) = x1x2 + y1y2,

sin(θ2 − θ1) = x1y2 − y1x2 = det

∣∣∣∣x1 y1

x2 y2

∣∣∣∣ .

https://en.wikipedia.org/wiki/Liouville_number
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We have talked about constructible numbers. These are numbers that can be
made from 1 using +,−,×,÷,√ .

Definition 9.1. An algebraic number is a number that is a root of a poly-
nomial with rational coefficients.

It turns out that roots of polynomials with algebraic number coefficients are
still algebraic. So in particular, constructible numbers are algebraic, because
the square root can be expressed as a root of x2 − a = 0.

Q = {rational numbers} ( {constructible numbers}
( {algebraic numbers} ( {real numbers} = R

(The standard definitions of constructible and algebraic numbers are actually
made in C.)

Real numbers (or complex numbers) that are not algebraic are called tran-
scendental. Here is an example:

L =

∞∑
k=1

10−k! = 10−1 + 10−2 + 10−6 + 10−24 + · · · .

To see that this is not algebraic, suppose the contrary and assume that p(L) = 0.
Separate the p into the positive coefficient part and the negative coefficient part,
so that p = p+ − p− and then p+(L) = p−(L). Now if we expand both sides of
p+(
∑∞
k=1 10−k) and p−(

∑∞
k=1 10−k) and compare the decimal expansion, you

will see that they cannot be equal unless p+ = p−.

9.1 Formulas for trigonometric functions

θ1

θ2

(x2, y2)

(x1, y1)`

h
z

d

Figure 21: Computing sin and cos of an angle between lines

Let `1, `2 be two lines through the origin, and let (x1, y1) and (x2, y2) be
points on the lines with both points being distance 1 from 0. If we let θ1, θ2
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be the angle between `1, `2 and the x-axis, then the angle between `1 and `2 is
θ2 − θ1.

To compute θ = θ2− θ1, we draw a line of perpendicular to `1 from (x2, y2).
Then we can start computing the lengths d = cos θ and h = sin θ. By the
Pythagorean theorem, we have

d+ z = 1, d2 + h2 = 1, h2 + z2 = (x2 − x1)2 + (y2 − y1)2.

Then we can cancel out

h2 + z2 = h2 + (1− d)2 = h2 + d2 + 1− 2d = 2− 2d.

But then

h2 + z2 = (x2 − x1)2 + (y2 − y1)2 = 2− 2x1y1 − 2x2y2,

so we get
cos(θ2 − θ1) = d = x1x2 + y1y2,

and likewise we can compute

sin(θ2 − θ1) = h = x1y2 − x2y1.

9.2 Isometries of the plane

An isometry is a transformation in R2 that preserves lengths. These are what
Euclid must had in mind when he was talking about “congruence”. Mathemat-
ically, you can define

Definition 9.2. An isometry is a map f : R2 → R2 such that for all P,Q ∈ R2

we have
dist(P,Q) = dist(f(P ), f(Q)).

Here are some examples:

• the identity map given by (x, y) 7→ (x, y)

• translations given by (x, y) 7→ (x+ x0, y + y0)

• rotations by a certain angle about a certain point

• reflection about a certain line

• any compositions of the previous three, in particular, first reflecting and
translating in the direction of the line of reflection.

Here is the main theorem we are going to prove about isometries of R2.

Theorem 9.3 (three reflections theorem). Every isometry of R2 can be obtained
by at most 3 reflections.

We need the following fact.
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Proposition 9.4. An isometry is always determined 3 points not lying on the
same line.

Proof. Consider three points P,Q,R that are not on a line. We claim that each
point S 6= P,Q,R can be determined by the distances dist(S, P ), dist(S,Q), and
dist(S,R). To see this assume that S 6= S′ are different points and dist(S, P ) =
dist(S′, P ) and so on. Then P lies on the perpendicular bisector of S, S′, and
likewise Q,R lies on this line. This contradicts the fact that P,Q,R don’t lie
on a line.

Now the proposition follows from this. Suppose f : R2 → R2 is an isome-
try, and the points f(P ), f(Q), f(R) are given. We want to completely deter-
mine f from this data. Consider an arbitrary point S 6= P,Q,R. We know
|PS|, |QS|, |RS|, and so we know |f(P )f(S)|, |f(Q)f(S)|, |f(R)f(S)|. We also
know f(P ), f(Q), f(S), and so the thing we proved in the last paragraph shows
that f(S) is determined by this data.

Of course, this does not mean that we can map P,Q,R to arbitrary points
f(P ), f(Q), f(R), and this will extend to an isometry. But the proposition tells
us that there is going to be at most one such isometry.
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We are trying to prove the “three reflection theorem”, that any isometry of R2

is a combination of at most 3 reflections. We proved the following lemma last
time.

Lemma 10.1. Any isometry is determined by its image of 3 distinct points not
on a line.

Because of this lemma, it suffices to check that we can send three points to
the right places.

Example 10.2. Consider the example of the isometry f that is rotation about
the origin by π

2 clockwise. Consider O = (0, 0), A = (0, 1), and B = (2, 0).
Then

f(O) = (0, 0), f(A) = (1, 0), B = (0,−2).

First, we want to make A 7→ f(A), so we consider the reflection rA about the
line y = x. Then

rA(O) = (0, 0), rA(A) = (1, 0), rA(B) = (0, 2).

Now O and A are send to the right place, but B is not. So we reflect again
about the line y = 0 that passes through A and O (call this reflection rB). Then

rB ◦ rA(O) = (0, 0), rB ◦ rA(A) = (1, 0), rB ◦ rA(B) = (0,−2).

Then f must equal to rB ◦ rA, because they are isometries and agree at three
points. So in this example, we can decompose f into two reflections.

Proof of Theorem 9.3. In general, the strategy is going to be the same. Pick
arbitrary three points A,B,C. Consider a reflection rA such that rA(A) = f(A).
Then

|f(A)rA(B)| = |rA(A)rA(B)| = |AB| = |f(A)f(B)|
so the perpendicular bisector of f(B)rA(B) passes through f(A). Consider the
reflection rB about this line. Then so far,

rB ◦ rA(A) = rB(f(A)) = f(A), rB ◦ rA(B) = f(B).

Now |f(C)f(A)| = |rB(rA(C))f(A)| and |f(C)f(B)| = |rB(rA(C))f(B)|.
This means that either rB(rA(C)) = f(C), in which case we are done, or
rB(rA(C)) is the reflection of f(C) about the line f(A)f(B), in which case
we can set rC as the reflection about this line. In the first case, we get

rB ◦ rA = f,

and in the second case, we get

rC ◦ rB ◦ rA = f.

So f can be written as a composition of at most 3 reflections.

The set of isometries is naturally a group. This just means that we can
compose isometries and get an isometry, there is an identity isometry, and that
inverses of isometries are isometries.
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10.1 Vector spaces

A vector space is a set of vectors with the structure of

• adding and subtracting vectors v,w like v + w,v −w

• a chosen zero vector 0 such that 0 + v = v + 0 = 0

• multiplication by scalar, αv for α ∈ R

satisfying the properties

• distributive laws α(u + v) = αu + αv and (α+ β)v = αv + βv

• α(βv) = (αβ)v.

The point of this abstraction is to think about vectors not as elements of Rn
but as something with structure with addition and scalar multiplication. With
this viewpoint, you can think of matrices as vectors, or functions as vectors as
long as you can multiply them by scalars and add them together.

Let’s see what addition and scalar multiplication corresponds in 2-dimensional
Euclidean geometry. Scalar multiplication is just dilation, that is, having the
same direction but different length. Addition is given by the parallelogram rule.

v

αv
u

v

u + v

Figure 22: Dilation and addition in R2

Definition 10.3. We say that u,v ∈ R2 are linearly dependent if there exist
(α, β) 6= (0, 0) such that αu + βv = 0. This just means that u and v lie on a
same line. We say that u,v ∈ R2 are linearly independent if they are not
linearly independent.

Definition 10.4. We say that w is of direction u from v if there exists an
α ∈ R such that

w − v = αu.

This means that the line connecting v and w being parallel to u.

Definition 10.5. Using this idea, we can define that a line from u to v is
parallel to the line from s to t if

v − u = α(t− s)

for some α 6= 0.
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A line going between u and v can be parametrized by the equation

γ : R→ R2; t 7→ t(v − u) + u.

Then γ(0) = u and γ(1) = v and at time t, it goes t steps in the direction of
v − u.

0.5
1.5 2 2.5 3 3.5

u
v

Figure 23: The line γ(t) = t(v − u) + u for various t

10.2 Thales’s theorem again

We can now state and prove the vector formulation of Thales’s theorem.

Theorem 10.6 (Thales’s theorem). Let s and v be nonzero on one line through
0, and t and w be nonzero on another line through 0. If w − v is parallel to
t− s, then there exists a α 6= 0 such that

v = αs, w = αt.

(This is like saying that |v||s| = |w|
|t| .)

Proof. Because v and s lie on a line, we have v = αs for some α 6= 0. Likewise,
we have w = βt for some β 6= 0. But by the parallel condition, we have

(w − v) = γ(t− s)

for some γ. By rearranging, we get

(β − γ)t + (γ − α)s = 0.

But because t and s lie an distinct lines, they are linearly independent. This
shows that β − γ = γ − α = 0, and so α = β = γ.
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We have started talking about vectors. For u,v ∈ R2, we say that they are
linearly dependent if αu + βv = 0 implies α = β = 0.

Theorem 11.1 (Thales). Let s,v be nonzero on a line through 0 and t,w be
nonzero on a different line through 0. If w− v is parallel to t− s, then v = αs
and w = αt for some α 6= 0.

11.1 Pappus’s theorem

The following is theorem can be proved using vectors. We are going to see this
again in the context of projective geometry.

Theorem 11.2 (Pappus). Let r, t,v be nonzero on a line through 0, and s,u,w
be nonzero on another line through 0. If u− v is parallel to s− r and t− s is
parallel to v −w, then u− t is parallel to w − r.

0 w s u

r

v

t

Figure 24: Pappus’s theorem

Proof. By Thales’s theorem, we have

u = αs, v = αr

for some α 6= 0. Likewise, we have

s = βw, t = βv.

So
u− t = αs− βv = α(βw)− β(αr) = αβ(w − r).

So u− t is parallel to w − r.
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11.2 Centroid of a triangle

What is the midpoint of u + v? You can see this from the parallelogram rule.
The midpoint of u and v is going to be the midpoint of 0 and u + v, which is

u + v

2
.

In general, the barycenter or center of mass is

1

n
(u1 + u2 + · · ·+ un).

Definition 11.3. A median is a line from a vertex of a triangle to the midpoint
of the opposite side.

Theorem 11.4. The three medians of any triangle pass through the same point,
which is the called the centroid of the triangle.

u

v

w

Figure 25: Centroid of a triangle

Proof. Let u,v,w be the three vertices of the triangle. The line ` passing
through u and 1

2 (v + w) is going to be

u + t
(1

2
(v + w)− u

)
.

If we guess t = 2
3 , we see that the line ` passes through the point

u +
2

3

(1

2
(v + w)− u

)
=

1

3
(u + v + w).

We now observe that this is symmetric in u,v,w, so that all three medians
should pass through this point.

11.3 Inner product and cosine

Definition 11.5. For u and v with angle θ between them, we define the inner
product as

u · v = |u||v| cos θ.
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The explicit formula is given by

(u1, u2) · (v1, v2) = u1v1 + u2 + v2.

Proposition 11.6. If u and v are vectors with angle θ between them, then

|u− v|2 = |u|2 + |v|2 − 2|u||v| cos θ.

Proof. You can expand the left hand side after writing it as (u−v) ·(u−v).

Proposition 11.7 (triangle inequality). We always have |u + v| ≤ |u|+ |v|.

Proof. If we square both sides, expand them, and cancel things we can, it boils
down to

u · v ≤ |u||v|.

This is Cauchy–Schwartz, or you can think of it as following from cos θ ≤ 1.

Theorem 11.8. In any triangle, the three perpendiculars from the vertices to
opposite sides (called altitiudes) meet at a common point.

u

v

w

0

Figure 26: Orthocenter of a triangle

Proof. We may assume that the two altitudes from u and v meet at the origin
0. This because we can translate the whole picture and nothing changes. Then
we have that u is perpendicular to w−v, and v is perpendicular to u−w. We
can write this as

u · (w − v) = 0, v · (u−w) = 0.

This can also be written as

u ·w − u · v = 0, v · u− v ·w = 0.

Adding the two gives

0 = u ·w − v ·w = (u− v) ·w.

Therefore u − v is perpendicular to w, and this means that the other altitude
also passes through 0.
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If we look at R, we have +, −, ×, ÷. But in R2 we have + and − but not ×
or ÷. This motivates us to define the complex numbers C. This is sort of the
same as R2, but write

(a, b) ←→ a+ bi.

Here, i is considered as a formal symbol satisfying i2 = −1. So for instance,

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.

This complex setup will allow us to write rotation in a simple way.
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Today we are going to talk about complex numbers. There is R and C, which
is R2 with some algebra structure. It turns out that the next (normed) algebra
structure that can be given is H ∼= R4, and then O ∼= R8. Then R16 does not
have a good algebra structure.

12.1 Multiplication in the complex numbers

Multiplication in C is like rotation in R2. Take any a+ ib, can consider the map

(a+ ib)(−) : R2 ∼= C→ C ∼= R2; z 7→ (a+ ib)z.

If we consider this as a linear map R2 → R2, we can think of it as(
c
d

)
7→
(
ac− bd
bc+ ad

)
=

(
a −b
b a

)(
c
d

)
.

Let us consider u = cos θ+ i sin θ be a complex number of norm 1. Then the
multiplication corresponding to u is

u(−) : R2 → R2;

(
cos θ − sin θ
sin θ cos θ

)
and we see that this is rotation by θ. That is, uz is z rotated by θ. More
generally, (ru)z is z rotated by θ and dilated by r.

We define
eiθ = cos θ + i sin θ.

The good thing about this definition is that we have

eiθ · eiη = (cos θ + i sin θ)(cos η + i sin η) = cos(θ + η) + i sin(θ + η) = ei(θ+η).

Conversely, you can read off the addition formulas from this.

12.2 Projective plane

The motivation for studying projective geometry came from art. If there is a
square tiling on the floor, how can you draw this? We first draw the horizon,
and then one tile. Next, we draw the diagonal, mark the point where it meets
the horizon, and then draw the next tiles so that the diagonal passes through
the original tile.

There are many different ways to define a projective plane. Let us first look
at the axiomatic definition. First observe that

• straight lies are always straight in the projective plane,

• intersection of lines are intersection,

• parallel lines meet on the ‘horizon’.
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Figure 27: Tiling on a plane

So here are the axioms for the projective plane.

(PP1) Any two ‘points’ are contained in a unique ‘line’.

(PP2) Any two ‘lines’ intersect at a single point.

(PP3) There exist four ‘points’ with no three of them being on a ‘line’.

The second axiom might seem confusing. But we are considering parallel lines
as meeting on the horizon line. The third axioms is just saying that we have an
interesting geometry.

But does there exist a projective plane? It will be meaning less if there does
not exist such an object after we defined it.

Example 12.1. We define the real projective plane RP 2 in the following
way.

(a) Points in RP 2 are the lines through the origin in R3.

(b) Lines in RP 2 are the planes through the origin in R3.

(c) There are four points (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1) (which should be
interpreted as lines connecting these points and the origin) that do not lie
on a line.

You should think of your eye as the origin, and a point you see as a line that
connects you eye and that point.
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We have given an axiomatic characterization of a projective plane. Our claim
is that there exists a projective plane.

13.1 Real projective plane

Consider the following structure:

(a) points in the real projective plane RP 2 are lines through the origin in R3,

(b) lines in RP 2 are planes through the origin in R3,

(c) a line passes through a point when the corresponding plane contains the
corresponding line in R3.

This is called the real projective plane. You can check that no three of
the lines passing (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1) in R3 do not lie a single
plane. This means that these four points in RP 2 satisfies the last axiom (PP3).
Actually, we can make this work over any field. Here we are working with R,
but you can do this over finite fields Fq as well.

Let us now check the first two axioms (PP1) and (PP2). Consider two given
points RP 2. They can be written as {t~u : t ∈ R} and {s~v : s ∈ R}. Because
the two points are distinct, the two vectors ~u and ~v are linearly independent.
Then there is a unique plane containing ~u and ~v, which is the plane generated
by ~u and ~v. More concretely, we can take ~a = ~u× ~v and then the plane we are
looking for can be written as

~a · ~x = 0.

For (PP2), consider any two lines in RP 2, which will correspond to two
planes in R3 passing through the origin. We can write down these planes using
the equations

~a · ~x = 0, ~a′ · ~x = 0.

Again, the two vectors ~a,~a′ are linearly independent. We want to find the
intersection point of these two lines (in RP 2), and this is finding the intersecting
line of the two planes (in R3). We can find this line as

{t(~a× ~a′) : t ∈ R},

because this is the vector that is perpendicular to both.
So we now know that RP 2 indeed is a projective plane. But this is a geometry

class, and we want to visualize what this is. There are two ways to think about
RP 2. The first way is to project to some other plane. But for simplicity, let
us first look at RP 1. This is the set of lines passing through the origin in R2.
To get a good description of this space, first pick a line ` : y = 1 in R2. Then
we can identify a point in RP 1, which is a line in R2, with its intersection with
`. But if you think about this, there is one line (in R2) that does not meet `,
namely the x-axis. So there is one extra point attached to just a line:

RP 1 ∼= R ∪ {∞}.



Math 130 Notes 42

∞

Figure 28: Visualizing RP 1

If you think about this, the positive ∞ is the same as the negative ∞. So
topologically, you can also visualize this as a circle S1, where the two endpoints
of a infinitely long line are somehow identified. Another way we can think about
this is to project on onto the unit circle. Then every line through the origin
meets the circle at two opposite points. So RP 1 is a circle with the two opposite
points glued together, or a circle wrapped around itself twice if you’d like.

Now let us try to visualize RP 2. Here, we can project everything onto the
plane z = 1. Here, every line is going to meet this plane exactly at one point,
except for those line that are parallel to the plane z = 1. These are precisely the
lines lying on the xy-plane. But if you think about it, the lines passing through
the origin on the xy-plane just looks like RP 1! So

RP 2 = R2 ∪ RP 1.

So you can think of RP 2 as a “hat” attached to RP 1. But this is not just disc
attached to a circle. The disc should be attached to RP 1, which is a circle
wrapped around itself twice. So RP 2 is more like a “hat” attached to a Möbius
band. Like as for RP 1, we can think of RP 2 as a sphere S2 with two opposite
points glued together.
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We set up the axiom for projective space. One example we gave was RP 2. In
this example, a point in RP 2 was a line in R3 through the origin. To visualize
this space, we projected R3 to some R2. Using this, we were able to recognize
the space as R2 with a RP 1 attached around the infinity. This “line of infinity”
is like the horizon. Today we are going to look at a third way of thinking
about projective space, by homogeneous coordinates. By before talking about
homogeneous coordinates, we need to see how we identify stuff with other stuff.

14.1 Equivalence classes

Definition 14.1. Let S be a set. A partition is a collection of subsets sets
{Sα ⊆ S} such that Sα ∩ Sβ = ∅ for α 6= β and

⋃
α Sα = S.

Example 14.2. Consider S = {A,B,C,D,E, F,G,H}. The sets

S1 = {A,C,G}, S2 = {B,H}, S3 = {D,F}, S4 = {E}

form a partition of S.

Here is another way to encode the same data. We can think of this partition
as a map

f : S → T = {S1, S2, S3, S4}, A,C,G 7→ S1, B,H 7→ S2, D, F 7→ S3, E 7→ S4.

From this map f , we can recover the partition by taking the inverse image of
elements. For instance, {A,C,G} = f−1({S1}). Formally, we can say that
{f−1({t}) : t ∈ T} is a partition of S.

Here is yet another way of making a partition. If A,C,G ∈ S1, we say that
A, C, G are all “equivalent”.

Definition 14.3. A relation on a set S is a subset R ⊆ S × S. If (x, y) ∈ R,
we say that x ∼ y.

Definition 14.4. An equivalence relation on a set S is a relation R ⊆ S×S
such that

(i) x ∼ x for all x ∈ S,

(ii) if x ∼ y then y ∼ x,

(iii) if x ∼ y and y ∼ z then x ∼ z.

Here, we are thinking of x ∼ y to mean that the two objects x and y are
equivalent. Given a partition, we can set up an equivalence relation that says
“x and y are equivalent if they are in the same partition”, or formally, x ∼ y if
and only if x, y ∈ Sα for some α. The converse is also possible.

Definition 14.5. Let S be a set with an equivalence relation. We say that a
(nonempty) S′ ⊆ S is an equivalence class if for each x ∈ S′, we have y ∈ S′
if and only if y ∼ x.
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These S′ will give us a partition of S. Each x ∈ S will be in a unique
equivalence class, so we write this equivalence class by [x]. Then

[x] = {s ∈ S : x ∼ s}.

It is possible that [x] = [y] if x ∼ y.

14.2 Homogeneous coordinates

Let us now go back to projective space. We have defined the points of RP 3 (or
in general RPn) to be a line passing through the origin in R4 (or Rn+1). A line
looks like

{λ~u = λ(x, y, z, w) : λ ∈ R}.

So if we take something like 3(x, y, z, w) instead of (x, y, z, w) the corresponding
line

{λ(3(x, y, z, w)) : λ ∈ R}

is the same line. Therefore we can identify ~x ∼ λ~x for λ ∈ R − {0}. That is,
under this equivalence class we can regard

[~x] = {λ~x : λ ∈ R− {0}}

as a line through the origin in R4, or equivalently as a point in RP 3.
So for ~a = (a0, a1, a2, a3) ∈ R4 − {0}, we define the equivalence class under

multiplication
[~a] = [a0, a1, a2, a3]

as points in RP 3. Because these are equivalence classes, we have [1, 1, 1, 1] =
[2, 2, 2, 2] in RP 3 for example. This is called the homogeneous coordinates.

Last time, we identified a line in R3 with its intersection with the plane
z = 1. Then a line t(a0, a1, a2) is identified with the point(a0

a2
,
a1

a2
, 1
)
.

This indeed gives the same point, because[a0

a2
,
a1

a2
, 1
]

= [a0, a1, a2]

if a2 6= 0. If a2 = 0, then either a0 or a1 should be nonzero, so [a0, a1] can be
thought of as in RP 1. This again gives a decomposition of RP 2 into R2 and
RP 1.

On other remark I want to make is that for [a0, a1, a2, a3] ∈ RP 3, there is
always some i such that ai 6= 0. So this point can be written as

[1, a1, a2, a3] or [a0, 1, a2, a3] or [a0, a1, 1, a3] or [a0, a1, a2, 1].

Therefore RP 3 is covered by 4 copies of R3.



Math 130 Notes 45

14.3 Lines in the projective plane

So we now understand a fair amount about points in RP 2. But what about
lines? We had this axiom that any two points can be connected by a unique
line. For instance, if P,Q,R ∈ RP 2 lies on a line in some projection to R2, do
they also lie on a line in any other projection to R2? Let me ask a more general
question.

Question. If three (non-origin) points in R3 are on a line, then do their pro-
jections (onto z = 1) also lie on a line?

The answer is yes, if you ignore the technical issue when the three points lie
on a line passing through the origin, and so that the three points have the same
image. Let ~a + t~b be a line passing through the three points, and assume that
this line does not pass through the origin. This means that ~a,~b 6= 0 and ~a and
~b are not parallel. Then if we projective this to z = 1, it will become[a1 + tb1

a3 + tb3
,
a2 + tb2
a3 + tb3

, 1
]
.

We will show next time the curve this cuts on on z = 1 is really a line.
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A point is projective space P should be thought of as a line passing through 0 in
Fn+1, where F is a field in general. We looked at three ways of thinking about
projective space:

• the axiomatic approach,

• projecting to a line/plane/hyperplane Fn,

• homogeneous coordinates [a0, . . . , an].

If a0 6= 0, we can write

[a0, . . . , an] =
[
1,
a1

a0
, . . . ,

an
a0

]
and so this can be considered as a chart on RPn. Roughly, we are say that we
are covering RPn by some number of copies of Rn.

We were talking last time about lines on RP 2. The easiest way to define
lines in RP 2 was first projecting to the plane z = 1 and then declare that lines
on the z = 1 plane correspond to lines in RP 2. But this is not very satisfying
because we have arbitrarily chosen a plane z = 1. So we can ask the following
question.

Question. If L is a line in R3, and we project L to the plane z = 1, is it still
a line?

Proposition 15.1. If L does not pass through the origin, and does not lie on
the xy-plane, then the projection of L onto z = 1 is also a line.

Proof. We said that we can represent L by ~a+ t~b. By the condition that L does
not pass through the origin, we have that ~a,~b 6= 0 and ~a and ~b are not parallel.
Now if we project the point ~a+ t~b to z = 1, we get(a1 + tb1

a3 + tb3
,
a2 + tb2
a3 + tb3

)
.
(a1 + tb1
a3 + tb3

,
a2 + tb2
a3 + tb3

)
.

The claim is that this is a line. This is because we can write(a1 + tb1
a3 + tb3

,
a2 + tb2
a3 + tb3

)
=
(a1

a3
,
b1
b3

)
+

t

a3 + tb3

(a3b1 − a1b3
a3

,
a3b2 − a2b3

a3

)
.

Here, (a3b1 − a1b3, a3b2 − a2b3) is nonzero because L does not lie on the xy-
plane.

15.1 Linear fractional transformation

But here, note that the projection operation from L to z = 1 is not linear. You
can see this from the RP 1 picture as well. If you project the line y = 1 to x = 1,
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there is a lot of distortion. But still, such a transformation always take the form
of

t 7→ αt+ β

γt+ δ
.

Such a transform is called a linear fractional transform. We will see later that
such transformations preserve the cross ratio.

But first, let us check that projections actually are linear fractional trans-
forms. Suppose we have two lines

~a+ t~b, ~c+ t~d,

not passing through the origin. Then ~a and ~b form a basis of R2, and likewise
~c and ~d form a basis of R2. So we can write

~a = δ~c+ β~d, ~b = γ~c+ α~d,

where αδ − βγ 6= 0.
Now projecting the point ~a+ t~b to the line {~c+ t~d} is the same as finding r

and s such that
~c+ s~d = r(~a+ t~b).

If we plug the basis representation of ~a and ~b in tersm of ~c and ~d, we get

~c+ s~d = r(δ~c+ β~d+ t(γ~c+ α~d)),

and this implies that

1 = r(δ + tγ), s = r(β + tα).

This shows that

s =
s

1
=
αt+ β

γt+ δ
.

Definition 15.2. A function is called a linear fractional transformation if
it is of the form

f(x) =
ax+ b

cx+ d

for ad− bc 6= 0.

Well, generally we don’t like 0 being in the denominator. So for x = −dc ,
what is happens to this function? But in RP 1 = R ∪ {∞}, infinity is an actual
point. So we can think of f as a function R → RP 1. Even if x = ∞, we can
define f(∞) = a

c , and then we can think of f as a function RP 1 → RP 1. The
condition ad− bc 6= 0 just makes sure that f is not a constant.

Proposition 15.3. Any linear fractional transformation is obtained by com-
posing

x 7→ x+ α, x+ αx, x 7→ 1

x
.
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Proof. Suppose we want to decompose

x 7→ ax+ b

cx+ d

into the simple linear fractional transformations. We can do this by

x 7→ cx 7→ cx+ d 7→ 1

cx+ d
7→ 1

cx+ d

(bc− ad
c

)
7→ 1

cx+ d

(bc− ad
c

)
+
a

c
=
ax+ b

cx+ d
.

Proposition 15.4. Every linear fractional transformation has an inverse, and
has the form of

f−1(x) = dx−b
−cx+a .

Proof. You can directly check that they are mutually inverse. Or we can check
this at three points. We have

f : −d
c
7→ ∞, ∞ 7→ a

c
, − b

a
7→ 0,

and

f−1 :∞ 7→ −d
c
,

a

c
7→ ∞, 0 7→ − b

a
.

So they are inverses.
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We were talking about linear fractional transformations, those functions of the
form

f : RP 1 → RP 1; f(x) =
ax+ b

cx+ d
; ad− bc 6= 0.

Here, we think RP 1 = R ∪ {∞} and we say that f(−dc ) =∞. We showed that
every linear fractional transformation can be written as a composition of

x 7→ x+ α, x 7→ αx, x 7→ 1

x
.

We also showed that there is an inverse

f−1(x) =
dx− b
−cx+ a

.

16.1 More properties of linear fractional transformations

Proposition 16.1. Composites of linear fractional transformations again a
linear fractional transformation.

Proof. It is enough to check that the composite of two linear fractional trans-
formations is a linear fractional transformation. Let us do this. Let

f(x) =
ax+ b

cx+ d
, g(x) =

a′x+ b′

c′x+ d′
.

Then

f(g(x)) =
aa

′x+b′

c′x+d′ + b

ca
′x+b′

c′x+d′ + d
=

(aa′ + bc′)x+ (ab′ + bd′)

(ca′ + dc′)x+ (db′ + dd′)
.

So this is a linear fractional transformation. (You can check that αδ − βγ 6=
0.)

Proposition 16.2. Any linear fractional transformation is determined uniquely
by where it sends any three points. In particular, if f(pi) = g(pi) for i = 1, 2, 3
and p1, p2, p3 are distinct, then f = g.

Why I talk about uniqueness here, I am really considering

f(x) =
ax+ b

cx+ d
and f̃(x) =

(ta)x+ (tb)

(tc)x+ (td)

as the same fractional linear transformations.

Proof. Let us show that given p, q, r ∈ RP 1 and p′, q′, r′ ∈ RP 1 then there
exists a linear fractional transformation f : RP 1 → RP 1 such that f(p) = p′

and f(q) = q′ and f(r) = r′. Because we can compose linear transformations,
and take inverses, we may assume that p′ = 0, q′ = 1, r′ = ∞. (Then in the
general case, we can do something like find f with a 7→ 0, b 7→ 1, c 7→ ∞, find g
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with a′ 7→ 0, b′ 7→ 1, c′ 7→ ∞ and then take g−1 ◦ f .) Because we want f(p) = 0
and f(r) =∞, we want f to take the form of

f(x) =
a(x− p)
c(x− r)

.

Then for f(q) = 1, we can set

f(x) =
(q − r)(x− p)
(q − p)(x− r)

.

Note that this also shows uniqueness, because the coefficients a, b, c, d were com-
pletely determined up to scalar multiplication.

16.2 Cross ratio

There are some similarities between linear fractional transformations and isome-
tries. Isometries on R2 preserves distance d(x, y) for x, y ∈ R2. Linear fractional
transformations preserve the cross ratio.

Definition 16.3. For p, q, r, s ∈ RP 1, we define the cross ratio as

[p, q; r, s] =
(r − p)(s− q)
(s− p)(r − q)

.

Proposition 16.4. Linear fractional transformations preserve the cross ratio.

Proof. You only need to check this for x 7→ x+α, x 7→ αx, and x 7→ 1
x , because

all linear fractional transformations are built out of these three.

You can think of this as measuring “distance” with respect to three points.
Given any three points, then the value of the cross ratio is uniquely determined
by fourth point on RP 1. We can check this directly. The equation

(r − p)(x− q)
(x− p)(r − q)

= y

is equivalent to

x =
q(r − p) + yp(r − q)
(r − p)− y(r − q)

.

Proposition 16.5. An injective f : RP 1 → RP 1 that preserves all cross ratios
is a linear fractional transformation.

Proof. First we show that f is surjective. Take any u, v, w ∈ RP 1. For an
arbitrary x ∈ RP 1 not equal to f(u), f(v), f(w), we consider

y = [f(u), f(v); f(w), x]
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and find a point s such that y = [u, v;w, s]. (This can be done by the previous
discussion.) Then we should have

[f(u), f(v); f(w), x] = y = [u, v;w, s] = [f(u), f(v); f(w), f(s)].

Then f(s) = x, and so x is in the image. Because we can do this for all x, the
function f is surjective.

Now take p, q, r to be the points that f sends to 0, 1,∞. Then for any
x ∈ RP 1 not equal to p, q, r, we have

[r, p; q, x] = [f(r), f(p); f(q), f(x)] = [∞, 0; 1, f(x)] = f(x).

This shows that f is a linear fractional transformation.
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A linear fractional transformation is one that looks like f(x) = ax+b
cx+d for ad−bc 6=

0, and this preserves the cross ratio

[p, q; r, s] =
(r − p)(s− q)
(s− p)(r − q)

.

17.1 Characterization of cross ratio as the unique invari-
ant

They have the following properties:

(1) A linear fractional transformation is determined by its values on any 3
points.

(2) A linear fractional transformation preserves the cross ratio.

(3) Given three points of an arbitrary value of a cross ratio, there exists exactly
one point which gives the value of the cross ratio.

(4) Linear factional transformations form a group under composition. That
is,

(a) composites of linear fractional transformations are linear fractional
transformations,

(b) the identity map is a linear fractional transformation,

(c) a linear fractional transformation is bijective (as a map RP 1 → RP 1),
and its inverse is again a linear fractional transformation.

(5) Given three distinct points p, q, r and three distinct p′, q′, r′, there exists a
unique linear fractional transformation that takes p 7→ p′, q 7→ q′, r 7→ r′.
(This contains (1).)

(6) Any invariant of 4 points is a function of the cross ratio. That is, if there
is a function I(p, q, r, s) such that

I(p, q, r, s) = I(f(p), f(q), f(r), f(s))

for all points p, q, r, s and linear fractional transformations f , then I should
be of the form

I(p, q, r, s) = I ′([p, q, r, s]).

Let us prove the last property.

Proof. For such an invariant I, let us define

I ′(x) = I(∞, 0; 1, x).

Then for any four points p, q, r, s, there exists a fractional linear transformation
f such that f(p) =∞, f(q) = 0, f(r) = 1. Then

[p, q; r, s] = [f(p), f(q); f(r), f(s)] = [∞, 0; 1, f(s)] = f(s).
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Then

I(p, q, r, s) = I(f(p), f(q), f(r), f(s)) = I(∞, 0, 1, f(s)) = I ′(f(s)) = I ′([p, q; r, s]).

17.2 Algebra on the projective plane

On the Euclidean plane, we had the straightedge and the compass. On the
projective plane, we have the cross ratio, and we can do algebra with this. We
are going to work over a field, a set with addition and multiplication having
the properties

(a) (commutative) a+ b = b+ a, ab = ba,

(b) (associative) a+ (b+ c) = (a+ b) + c, (ab)c = a(bc),

(c) (identity) 0 + a = a+ 0 = a, a1 = 1a = a,

(d) (inverse) a+ (−a) = (−a) + a = 0, aa−1 = a−1a = 1,

(e) (distributive) a(b+ c) = ab+ ac.

We are going to look at Pappus’s and Desargues’s theorems next time.
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The problem set is now due March 9, Friday. We finished talking about projec-
tive space in general, and now we are going to focus on projective planes. Here,
we will learn how to build a field out of a projective plane.

18.1 Pappus’s theorem

Recall the vector Pappus’s theorem.

Theorem 18.1. If r, s, t,u,v,w lie alternatively on two lines passing through
0, the vectors r − s and v − u are parallel, and v − w and t − s are parallel,
then r−w and t− u are parallel.

0 w s u

r

v

t

Figure 29: Vector Pappus’s theorem

Here, note that parallel lines are lines that meet at the horizon, in the
projective plane. So we are going to consider the following analogue of the
Pappus’s theorem.

Theorem 18.2 (projective Pappus’s theorem). Consider six points, lying al-
ternatively on two straight lines. Then the three points formed by intersecting
two opposite sides of the hexagon lie on a single line.

Proof. We just consider the line passing through S and U as the horizon. Then
the theorem just reduces to the vector version of Pappus’s theorem. (This is
because lines meeting at the horizon are actually parallel.)

18.2 Desargues’s theorem

Likewise, we can generalize the vector version of Desargues’s theorem to the
projective version. Recall:

Theorem 18.3 (Desargues’s theorem). Suppose A,B,C and A′, B′, C ′ lie on
concurrent lines L,M,N . (Equivalently, we say that 4ABC and 4A′B′C ′ are
perspective.) If AB is parallel to A′B′ and BC is parallel to B′C ′, then AC
is parallel to A′C ′.
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S
UT

Figure 30: Projective Pappus’s theorem

Here is the projective version.

Theorem 18.4 (projective Desargues’s theorem). If two triangles are perspec-
tive from a point, then three intersections coming from three pairs of correspond-
ing sides lie on a line.

Figure 31: Projective Desargues’s theorem

Proof. The proof is the same. If we send this line to the horizon, then this just
reduces the vector (or classical) version of Desargues’s theorem.

As I have explained, our goal is to build a multiplication system from this
projective plane RP 2. We will make use of these two theorems (Pappus and
Desargues) to define the operations. There are projective planes where the
Pappus and Desargues theorems are not true, such as the Moulton plane.
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Theorem 18.5 (little Desargues’s theorem). If two triangles are in perspective
from a point P , and if the two pairs of corresponding sides meet on a line L
through P , then the third pair of corresponding sides also meet on L.

Theorem 18.6 (converse of Desargues’s theorem). If the corresponding sides
of two triangles meet on a line, then the triangles are perspective from a point.

Theorem 18.7 (scissors theorem). If ABCD and A′B′C ′D′ are quadrilaterals
with vertices alternatively on two lines, AB is parallel to A′B′, BC is parallel
to B′C ′, AD is parallel to A′D′, then CD is parallel to C ′D′.

Next time, we will construct addition and multiply, and we will use these
theorems to verify the field axioms.
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Desargue’s theorem states that given two triangles in perspective, the corre-
sponding sides meet on a line. We now want to prove the converse:

Theorem 19.1 (converse Desargues’s theorem). If corresponding sides of two
triangles meet on a line, then the two triangles are in perspective.

Proof. Suppose two triangles ABC and A′B′C ′ are the two triangles whose
corresponding sides meet on the line `. Let P be the intersection of AA′ and
BB′. (We don’t know yet that CC ′ also passes through P .) Let C ′′ be the
intersection of PC and B′C ′. Then 4ABC and 4A′B′C ′′ are in perspective,
so

AB ∩A′B′, BC ∩ (B′C ′′ = B′C ′), AC ∩A′C ′′

lie on the same line, by Desargues. But the first two points lie on `, so the last
point AC∩A′C ′′ is the intersection of ` and AC. But by assumption, AC∩A′C ′
is the intersection of ` and AC. Therefore A′C ′ = A′C ′′ and thus C ′ = C ′′.

Theorem 19.2 (scissors theorem). Suppose A,C,A′, C ′ lie on a line and B,D,B′, D′

also lie on a line. If AB ‖ A′B′ and BC ‖ B′C ′ and BC ‖ B′C ′ then
CD ‖ C ′D′.

A

B

D

C

E

B′

D′

A′ C ′

E′

Figure 32: Scissors theorem

Proof. Let E = AD ∩BC and E′ = A′D′ ∩B′C ′. Note that the corresponding
sides of 4ABE and 4A′B′E′ meet on the horizon, which is a line. So by
converse Desargues, we see that the two triangles are in perspective. That is,

AA′, BB′, EE′

meet at a point. So 4CDE and 4C ′D′E′ are in perspective. By Desargues,
the corresponding sides should meet on a line, but CE and C ′E′ meet on the
horizon and DE and D′E′ meet on the horizon as well. Therefore CD and C ′D′

should meet on the horizon as well, which means that they are parallel.
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19.1 Recovering the field

Definition 19.3. A field is a set S along with two operations +, · : S×S → S
with two special elements 0, 1 ∈ S satisfying a bunch of properties

(1) a+ b = b+ a and a · b = b · a for all a, b ∈ S,

(2) a+ (b+ c) = (a+ b) + c and a · (b · c) = (a · b) · c for all a, b, c ∈ S,

(3) a+ 0 = a and a · 1 = a for all a ∈ S,

(4) for each a ∈ S there is an (−a) ∈ S such that a+ (−a) = 0,

(5) for each nonzero a ∈ S there is an a−1 ∈ S such that a · a−1 = 1,

(6) a · (b+ c) = a · b+ a · c.

The goal is to define, for two points in RP 2, a field structure on the line join-
ing the two points (excluding the horizon) such that the two points correspond
to 0 and 1.

Let’s first start with addition: given two points a and b, we can define a+ b
in the following way.

0 a b a+ b

L
g

Figure 33: Addition in RP 2

In defining a+ b, we made arbitrary choices of L and g. So in order for this
definition to be well-defined, we need this to be independent of the these two
choices. For a+ b to be independent of L, we can choose two lines L and L′ and
show that they give the same point a+ b.

0 a b a+ b

L
L′

g

Figure 34: Independence of L

Here, if we use converse Desargues’s theorem on the two shaded triangles,
we show that the other two dashed lines are parallel. We also have to check
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that a + b is independent of the choice of g, and this can be checked using the
scissor theorem.

Let us now define multiplicaiton. Here, we draw an arbitrary line g through
0, and pick a point p on g. Draw a line from p to 1 and to a, and copy this
picture to b on a parallel manner.

0 1 a b ab

g

p

Figure 35: Multiplication in RP 2

Again, we need to check that this is independent of the choice of p and g. If
we move p, we

0 1 a b ab

g

p
p′

Figure 36: Independence of p

Here, we need to show that the dashed lines are parallel, and this is just
the scissors theorem. If we want to prove that multiplication is independent of
the choice of g, we will be using Desaruges’s theorem. (You can check this by
yourself.)
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We can check all the field axioms by similar arguments, using Pappus’s and
Desargues’s theorems.

20.1 Groups

Recall that an isometry on R2 is a map f : R2 → R2 preserving distances. We
have seen that

• compositions of isometries are isometries,

• reflections (by some line) are isometries,

• every isometry can be written as at most three reflections.

Proposition 20.1. Any isometry f has an inverse f−1, which is again an
isometry.

Proof. If we can write f = r1r2r3 for r1, r2, r3 reflections, for instance, we have
f−1 = r3r2r1 because

f ◦ f−1 = (r1r2r3)(r3r2r1) = r1r2r2r1 = r1r1 = id

Similarly, we can check f−1f = id.

We can collect these properties formally and define a group.

Definition 20.2. A group is a set G with an operation · : G×G→ G with a
distinguished element 1 ∈ G satisfying

• 1 · g = g · 1 = g for all g ∈ G,

• for all g ∈ G, there exists an element g−1 ∈ G such that g·g−1 = g−1·g = 1,

• g1(g2g3) = (g1g2)g3.

Note that g1g2 need not be equal to g2g1. You should think of these as some
collection of “functions preserving some structure”.

Example 20.3. Isometries of R2, denoted by Isom(R2), form a group under
composition.

Definition 20.4. A group G is called abelian if it satisfies g1g2 = g2g1 for all
g1, g2 ∈ G.

Example 20.5. The isometry group Isom(R2) is not abelian. If we take g1 to
be counterclockwise rotation by 90◦ about 0, and g2 to be reflection about the
x-axis, then you can check g1g2 6= g2g1 easily.

Lemma 20.6. For any group G and g ∈ G, the inverse g−1 is unique.
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Proof. Suppose we have two inverses (g−1)′ and g−1, both satisfying

g(g−1) = (g−1)g = 1, g(g−1)′ = (g−1)′g = 1.

Then we have

g−1 = g−1(g(g−1)′) = ((g−1)g)(g−1)′ = (g−1)′.

That is, g−1 = (g−1)′.

Example 20.7. The set of n×n matrices Mn(R) forms a group under addition
+, with the zero matrix O ∈Mn(R) being the identity. This group is abelian.

Example 20.8. The set of invertible n × n matrices GLn(R) forms a group
under multiplication ×, with the identity matrix I ∈ GLn(R) being the identity.
This group is not abelian if n ≥ 2. These are invertible maps from Rn to Rn
preserving the vector space structure.

Definition 20.9. We say that an element g ∈ G has order m if g · g · · · · · g =
gm = 1 but gk 6= 1 for all 0 < k < m. So this is the smallest number of times
you need to multiply g with itself to get the identity element. If such an m does
not exist, we say that it has infinite order.

Example 20.10. Consider Z/nZ = {0, 1, . . . , n− 1} with addition being the
remainder of addition divided by n, so that 1 + n− 1 = 0 for instance. This is
an abelian group, and the order of 1 is equal to n.

Lemma 20.11. If g ∈ G has order m <∞, then 1, g, g2, . . . , gm−1 are distinct,
and {1, g, . . . , gm−1} form a group under multiplication inherited from G.

Proof. It is closed under multiplication, and is clearly associative. One tricky
thing is that it has inverses, but we check gm−k = (gk)−1 because

gk · gm−k = gm−k · gk = gm = 1.

Also, the identity is there.

Example 20.12. Consider the set of function f : Rn → Rn taking the form of

f(u) = Au+ v,

where A ∈ GLn(Rn) is an invertible matrix and v ∈ Rn is an arbitrary vector.
These are called affine transformations and send lines to lines, although they
do not have to fix the origin. The claim is that

{affine transformations Rn → Rn}

form a group.
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20.2 Algebraic structures on Rn

The real numbers R have structures of addition and multiplication. That is,
we can add two things in R, but we can also multiply things in R. This is
not true in general for Rn. We can add things in Rn together (adding vectors
together), but there is no obvious way of multiplying vectors. (We can define
entrywise multiplication (a1, . . . , an) · (b1, . . . , bn) = (a1b1, . . . , anbn) but this is
bad because things like (1, 0) · (0, 1) = (0, 0) = 0 can happen.)

In the case of n = 2 we can identify R2 ∼= C and use complex multiplication.
Then we are defining

(a, b) · (c, d) = (ac− bd, ad+ bc).

The other cases where we can define a suitable “well-behaved” multiplication
on Rn are n = 4 and n = 8. For R4, we call this the quaternions. Here,

R4 ∼= H; (a, b, c, d)↔ a+ bi+ cj + dk.

We define multiplication as

ij = k = −ji, jk = i = −kj, ki = j = −ik, i2 = j2 = k2 = −1.

This multiplication can also be represented by 2× 2 complex matrices as

1↔
(

1 0
0 1

)
, i↔

(
i 0
0 i

)
, j ↔

(
0 1
−1 0

)
, k ↔

(
0 i
i 0

)
.
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In this chapter, we are going to talk about transformations, which are implicitly
groups.

21.1 Isometries as a group

Definition 21.1. A group G is a set equipped with a operation · : G×G→ G
written as (g1, g2) 7→ g1g2 and a unit 1 ∈ G such that

(a) for all g ∈ G, 1 · g = g · 1 = g,

(b) for all g ∈ G, there exists f ∈ G such that gf = fg = 1, which we call
f = g−1,

(c) for all g1, g2, g3 ∈ G, (g1g2)g3 = g1(g2g3).

Recall that an isometry is a map f : R2 → R2 that preserves distance. The
composition of any two isometries is going to be an isometry. So if we consider
G = {isometries of R2}, we have a composition map G × G → G given by
(g1, g2) 7→ g1 ◦ g2. To say that G is a group under composition, we still need to
check the three axioms (a)–(c). The hardest is (b), but this can be done using
the “three reflections theorem”. If f is an isometry, it can be written as the
composition of at most three reflections. If f = r3r2r1 for instance, we have

(r1r2r3)(r3r2r1) = r1r2r3r3r2r1 = r1r2r2r1 = r1r1 = id .

Likewise, (r3r2r1)(r1r2r3) = id. So we can say that r1r2r3 = f−1.

Proposition 21.2. The set Isom(R2) of isometries of R2 forms a group under
composition.

Recall that the composition of two reflections is a rotation or a translation.
The composition of three reflections is a glide reflection.

Definition 21.3. We say that an isometry is odd if is the composition of 1
or 3 reflections. We say that an isometry is even if it is the composition of 2
reflections. We denote by the set of odd isometries Isom−(R2) and the set of
even isometries Isom+(R2).

The set Isom−(R2) of odd isometries is not a group, because the composi-
tion of two odd isometries is even. So we can’t define the map Isom−(R2) ×
Isom−(R2) → Isom−(R2) given by composition. On the other hand, the com-
position of two even isometries is an even isometry, so Isom+(R2) is a group
under composition.

21.2 Linear transformations

This can be defined generally on vector spaces.
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Definition 21.4. A function f : Rn → Rn is called a linear transformation
if it satisfies

f(αu + v) = αf(u) + f(v)

for all α ∈ R and u,v ∈ Rn.

Linear transformations always maps lines to lines (or points). To see this,
consider a line L defined by a + tu for t ∈ R. Then by the definition of a linear
transformation,

f(a + tu) = f(a) + tf(u).

Because f(a) and f(u) are still vectors in Rn, this is going to be a line.
A linear transformation is the same thing as a matrix. (Let’s look at n = 2

for simplicity.) Given a linear transformation f : R2 → R2, we can get the 2× 2
matrix by defining

f((1, 0)) = (a, c), f((0, 1)) = (b, d).

Then the matrix

M =

(
a b
c d

)
is the matrix representing the linear transformation f , because(

a b
c d

)(
1
0

)
=

(
a
c

)
,

(
a b
c d

)(
0
1

)
=

(
b
d

)
.

Is the set {2× 2 matrices} a group under matrix multiplication? It has the
unit I = ( 1 0

0 1 ). But it does not necessarily have an inverse. To make sure that
there is an inverse matrix, we should take

GLn(R) = {n× n matrices M (having real entries) with detM 6= 0}.

This then going to be a group under matrix multiplication.
This is when we take multiplication as the operation. But if we take addition

as the operation,

Mn(R) = {n× n matrices (having real entries)}

is a group. Here, the unit is the zero matrix.
We have talked about isometries before, and those isometries sending the

origin to itself are linear transformations. So they can be written down as a
2× 2 matrix. Rotation by the angle θ can be written as

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
for θ ∈ R. Also, reflection about the x-axis can be written out as

X =

(
1 0
0 −1

)
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because it sends (1, 0) 7→ (1, 0) and (0, 1) 7→ (0,−1). What about reflection
about a general line ` (passing through the origin)? If the angle between ` and
the x-axis is θ, we can consider this reflection about ` as (1) rotating the whole
thing by −θ, (2) reflecting about the x-axis, and (3) rotating by θ again to put
things in the right position. So this matrix is

RθXR−θ =

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
.

21.3 Linear fractional transformations revisited

Linear fractional transformations on RP 1 are functions that look like

f(x) =
ax+ b

cx+ d

with ad−bc 6= 0. It turns out that this is very much related to the matrix ( a bc d ).
To see this, we recall that we defined RP 1 = R2/ ∼ where ∼ is the equiva-

lence relation x ∼ λx. To define coordinates on RP 1, we projected everything
onto the line y = 1 and only took the x-coordinate. Then the point s ∈ RP 1

corresponds to the line

RP 1 3 s ←→ x− sy = 0 ∈ {lines in R2}.

A linear transformation R2 → R2 sends a line through the origin to a line
through the origin. The line through (s, 1) will then be sent to (as+ b, cs+ d):(

a b
c d

)(
s
1

)
=

(
as+ b
cs+ d

)
.

Then this new line is going to correspond to the point as+b
cs+d . That is, this linear

transformation sends s 7→ as+b
cs+d .

Here, note that if we use the matrix(
ak bk
ck dk

)
instead of

(
a b
c d

)
,

we are going to get the same linear fractional transformation RP 1 → RP 1. So
the set of linear fractional transformations is really

PGL2(R) = GL2(R)/ ∼

where ( a bc d ) ∼ k( a bc d ). This is a group under composition.
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A group G is a set with an operation · : G × G → G and an element 1 ∈ G
such that (i) g · 1 = 1 · g = g, (ii) for each g there exists an f = g−1 such that
gf = fg = 1, (iii) (g1g2)g3 = g1(g2g3).

Example 22.1. We saw that isometries of R2 form a group under composition.
We also saw that invertible linear transformations of a vector space form a group
under composition. This is the group GLn(R) of invertible n×n matrices under
multiplication. The set of matrices Mn(R) of all n× n matrices, this is a group
under addition. We also defined the projective general linear group

PGL2(R) = GL2(R)/( a bc d ) ∼ λ( a bc d ).

22.1 More examples of groups

Proposition 22.2. Every isometry in R2 is of the form T (x) = Ax + v for
some v ∈ R2 and A such that AAT = I.

The difference between this and linear transformations is that we can move
the origin around. Linear transformations always send the origin to the origin,
but if we put in this v term, we can move the origin around.

Proposition 22.3. Conversely, if AAT = I, then T (x) = Ax + v is always an
isometry.

Proof. This is an exercise. You can use the formulas ‖x‖2 = 〈x,x〉 and 〈v,w〉 =
vTw to prove this.

We can then think about the orthogonal group

O2(R) = {A ∈M2(R) : AAT = I}.

We can then think of this as the group of isometries that fixes the origin. As
before we can talk about evenness and oddness in O2(R). Note that

1 = det(I) = det(A ·AT ) = det(A) det(AT ) = det(A)2.

So det(A) = ±1. It turns out that an isometry is even if det(A) = 1 and odd if
deg(A) = −1. So we can go and define

SO2(R) = {A ∈M2(R) : AAT = I, deg(A) = 1}.

Note that T (x) = Ax + v can be considered as the matrixa b v1

c d v2

0 0 1

x1

x2

1

 =

ax1 + bx2 + v1

cx1 + dx2 + v2

1

 .

So we may regard Isom(R2) as setting inside GL3(R) (or PGL3(R) if you’d like).
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22.2 Finite order isometry

Let us now talk about some finite cases.

Definition 22.4. An element x ∈ G as order m if xm = 1 but xd 6= 1 for
0 < d < m.

For instance, ( 1 0
0 −1 )2 = I so this matrix has order 2 in GL2(R). If x ∈ G

has order m, then
(x) = {1, x, x2, . . . , xm−1}

is going to be a group under multiplication as well. This group is going to have
size m (it has order m), and it is a subset of G (it is a subgroup of G).

Consider a finite set S = {s1, . . . , sn} ⊆ R2 of points on the plane. Let us
denote the barycenter as

b =
s1 + s2 + · · ·+ sn

n
.

If T is an isometry, then the barycenter of S′ = {Ts1, . . . , T sn} is Tb.
We want to apply this to the case when S is the vertices of a regular n-gon.

Definition 22.5. A regular n-gon is an n-gon with all edges having the same
lengths and all angles the same.

To construct a regular n-gon, here is what you can do. Consider two distinct
points p and v0. Let σ ∈ Isom(R2) be the isometry that is rotating by 2π

n around
the point p. Then we can define v1 = σv0, v2 = σv1 = σ(σ(v0)) = σ2v0, . . . ,
vi = σiv0. Because σn = 1, we see that the points

{v0, v1, . . . , vn−1} = {v0, σv0, σ
2v0, . . . , σ

n−1v0}

form a regular n-gon. This works because σ has order n.
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Last time we talk about various groups of transformations. The group of isome-
tries fixing the origin is

O2(R) = {A ∈M2(R) : AAT = I},

and among them, the even isometries are

SO2(R) = {A ∈ O2(R) : detA = 1} = {A ∈M2(R) : AAT = I, detA = 1}.

Definition 23.1. An element x ∈ G is of order m if xm = 1 and xd 6= 1 for
0 < d < m.

In this case, the subgroup

〈x〉 = {1, x, x2, . . . , xm−1}

generated by x is a cyclic subgroup of order m = order(x).

Proposition 23.2. Every finite subgroup of SO2(R) is cyclic.

To construct a regular n-gon, we fixed σ a rotation about the origin by angle
2π
n . This isometry σ has order n, and if v0 is any point other than the origin,

σv0, σ
2v0, . . . , σ

n−1v0, σ
nv0 = v0

form the vertices of a regular n-gon. Now we want to think about the isometries
of this n-gon.

23.1 Dihedral group

What are the isometries of the regular n-gon? First of all, σ is an isometry.
This is because if we apply σ to the points

v0, σv0, . . . , σ
n−1v0,

we get
σv0, σ

2v0, . . . , σ
n−1v0, σ

nv0 = v0.

So the vertices are preserved. This shows that σk are all isometries of the n-gon
as well.

But there is another isometry, which is reflection τ about the line connecting
the origin and v0. You can check that this is an isometry, because it sends

τ : v0 7→ v0, σv0 7→ σ−1v0, σ2v0 7→ σ−2v0, . . . .

In fact, this also shows that
τσi = σ−iτ.

So we already have a group

D2n = {1, σ, σ2, . . . , σn−1, τ, στ, σ2τ, . . . , σn−1τ}

of isometries. This is called the dihedral group. It is not an abelian group
because τσ 6= σ−1τ . Thus, in particular, this is not a cyclic group.
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Proposition 23.3. The isometry group of the regular n-gon is D2n.

We know that all elements of D2n are indeed isometries of the n-gon. The
content of this theorem is that there are no other isometries, in other words,
D2n are all the isometries of the regular n-gon.

Proof. Take an arbitrary isometry T . Because T sends v0, σv0, . . . , σ
n−1v0 to

that set, it sends the barycenter to itself (you’ll check this in your homework).
That is T (0) = 0. Also, assume that T (v0) = σiv0. Then T ′ = σ−iT is a
composition of isometries, and so it is an isometry of the regular n-gon as well.
Then T ′(0) = 0 and T ′(v0) = σ−iσiv0 = v0 now.

Because T ′(0) fixes the two points 0 and v0, it is either the identity map,
or reflection about the line connecting 0 and v0. Then T ′ = 1 or T ′ = τ . This
means that σ−iT = 1 or σ−iT , and so T = σi or T = σiτ . Therefore T is in
D2n.

23.2 Classification of finite subgroups of Isom(R2)

So D2n is a finite subgroup of Isom(R2). But are there any finite subgroups of
Isom(R2)? Surprisingly, we can find all of them.

Lemma 23.4. Let G ⊆ Isom(R2) be a finite subgroup. Then there exists a point
P fixed by all the transformations of G.

Proof. Let v ∈ R2 be any point. Say that G has n elements and define

P =
1

n

∑
g∈G

gv =
g1v + g2v + · · ·+ gnv

n

as the barycenter of {gv : g ∈ G}. (Here, it might be that giv = gjv, but we
consider them as two points.) Then we claim that P is fixed by every h ∈ G.
The reason is that if h ∈ G, then hP is the barycenter of {hvg : g ∈ G} = {g′v :
g′ ∈ G} after changing variables g′ = hg. This shows that hP = P for arbitrary
h ∈ G.

Theorem 23.5. If G ⊆ Isom(R2) is a finite subgroup, then G is either cyclic
or dihedral.

Proof. First there is a point P fixed by G. Then we can just move P to the
origin and assume that G just fixes 0. Then G ⊆ O2(R). Now consider the
subgroup

G0 = G0 ∩ SO2(R) = {g ∈ G : det g = 1} ⊆ G.

This is a finite subgroup of SO2(R), and by the Proposition we stated at the
beginning, we have that G0 is cyclic.

If G = G0, then G is cyclic and we are done. If G0 ( G, then let us write
|G0| = n and pick and element τ ∈ G with τ /∈ G0. Then det τ = −1 because it
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is not in G. This means that τ is a reflection. Both τ and στ are relfections, so
τ2 = (στ)2 = 1. Then

τσ = σ−1(στ)(στ)τ−1 = σ−1τ−1 = σ−1τ.

So G is a dihedral group in this case.
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We were talking about transformations. Recall that the special orthogonal group
is

SO2(R) = {A ∈M2(R) : AAT = I, detA = 1}.
Note that this actually can be identified as the group of complex numbers with
absolute value 1. This is because every A ∈ SO2(R) looks like

A =

(
cos θ − sin θ
sin θ cos θ

)
,

and this is like cos θ + i sin θ. So SO2(R) ∼= S1. (We are going to see that
SO3(R) ∼= RP 3 later.)

Last time we classified finite subgroups of Isom(R2). Recall that we define
D2n as the group of isometries of a regular n-gon.

Theorem 24.1. Every finite subgroup of SO2(R) is cyclic. Every finite subgroup
of Isom(R2) either is a cyclic group of rotations, or isomorphic to D2n.

24.1 Geometry on S2

Consider the unit sphere

S2 = {(x, y, z) : x2 + y2 + z2 = 1} ⊆ R3

sitting inside R3. (Here, S2 is S2 because the surface is 2-dimensional.) Here,
we can talk about lines in S2. Given two points p, q ∈ S2, we look at the plane
(in R3) passing through 0, p, q. This plane cuts the sphere at a circle, which we
call a great circle. Then the two points p and q are going to be joined by an
arc.

p

q

0

Figure 37: Great circles on a sphere

Here, this is a bit subtle because there are going to be two arcs joining the
two points, on the great circle. Normally we are going to take the shorter one
and define the distance dist(p, q) as the length of the shorter arc. Also note that
if p and q lie on the exact opposite, so that p, 0, q lies on a line, there are going
to infinitely many lines joining p and q.
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Proposition 24.2. Any two distinct lines always intersect at exactly 2 points.

Isometries of S2 are going to be transformations that map great circles to
great circles. These are also going to correspond to isometries of R3 that fix the
origin. Examples include the reflections about the yz, xz, xy-planes

(x, y, z) 7→


(−x, y, z)
(x,−y, z)
(x, y,−z),

and there is also the antipodal map

(x, y, z) 7→ (−x,−y,−z).

How do we write a general reflection about a plane? Suppose this plane
is given by the equation ~n · ~x = 0, where ~n is the unit normal vector. Then
(~p ·~n)~n is the vector that connects the plane to ~p by the shortest length. So the
reflection of ~p is going to be

τ(~p) = ~p− 2(~p · ~n)~n.

You are going to check (in your homework) the three reflections theorem here
as well.

Theorem 24.3 (three reflections theorem). Every isometry of S2 can be written
as a composition of at most 3 reflections.

Proposition 24.4. The composition of two reflections is a rotation.

Proof. Let us reflect about the plane orthogonal to ~a and then about the plane
orthogonal to ~b. Then

τb(τa(~p)) = τb(~p− 2(~p · ~a)~a) = ~p− 2(~p · ~a)~a− 2([~p− 2(~p · ~a)~a] ·~b)~b.

Here, let ~c = ~a ×~b. If ~a and ~b are linearly dependent, then the two reflections
are equal and the composition is just the identity. If ~a and ~b are linearly in-
dependent, then ~c 6= 0. Here, if the angle between ~a and ~b is θ, we claim that
τb ◦ τa is actually rotation around the axis ~c, by angle 2θ. You can calculate this
out and compare it with the formula above. Alternatively, you can observe that
τb(τa(~c)) = ~c and use the fact that on the plane P , the transformation τb(τa(~c))
is just reflection about a line twice, and is thus a rotation.

We can describe isometries of S2 as matrices as well. Because these are
isometries of R3 fixing the origin, we can describe this as

O3(R) = {A ∈M3(R) : AAT = I}.

An isometry A is going to be a rotation if and only if detA = 1, i.e., A ∈ SO3(R).
For instance, we can write down a rotation about the z-axis as

Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .
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We were talking about isometries on the sphere. We saw that if we compose
two reflections, the result is a rotation.

25.1 Orientation-preserving isometries are rotations

Proposition 25.1. Any isometry of S2 that fixes the origin and is represented
by a determinant 1 matrix is a rotation.

Proof. First, any isometry that fixes the origin may be considered as a linear
transformation. To see this, we first note that

~u · ~v =
1

2
(|~u|2 + |~v|2 − |~u− ~v|2)

shows that any isometry preserves the inner product. Then if the transformation
sends the standard basis vectors ~ei to f(~ei), then it should satisfy

~ei · ~v = f(~ei) · f(~v)

and also f(~ei) ·f(~ej) = ~ei ·~ej = δij . This means that f(~ei) form an orthonormal
basis, so

f(~v) =

n∑
i=1

(f(~v) · f(~ei))~ei =

n∑
i=1

(~v · ~ei)f(~ei).

So f really can be written as the matrix

f =

 | · · · |
v1 · · · vn
| · · · |

 .

Furthermore, it should satisfy fT f = id, precisely because f(~ei) · f(~ej) = δij .
Now f is a 3 × 3 matrix, so there are three eigenvalues. Moreover, all

eigenvalues are going to have absolute value 1, because if λ is an eigenvalue
with eigenvector ~v, then

~v
T
~v = ~v

T
f
T
f~v = (f~v)T (f~v) = (λ~v)Tλ~v = |λ|2~vT~v

implies that |λ|2 = 1. Also, we have detA = 1, so the multiple of the three
eigenvalues should be 1. Because the determinant is the solution to det(f−λI) =
0, if one non-real number is an eigenvalue, its complex conjugate should also be
an eigenvalue. (i) If some non-real number λ1 = λ is an eigenvalue, then λ1 = λ
is another eigenvalue, and the third should be λ3 = 1 because the product of
the three eigenvalues is 1. (ii) If all eigenvalues are real numbers, then they
should be ±1 because |λ|2 = 1. Then the eigenvalues are either +1,−1,−1 or
+1,+1,+1.

The conclusion is that 1 is an eigenvalue of f . Let ~v be the eigenvector, so
that A~v = ~v. This implies that f is a rotation about the axis ~v.
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25.2 Quaternions

In the R2 case, we had seen that SO2(R) were exactly like S1, which is the
complex numbers with absolute value 1. We are going to do a similar thing for
SO3(R).

Definition 25.2. The set of quaternions is

H = {a+ b~i+ c~j + d~k : a, b, c, d ∈ R}

that looks like R4, but with multiplication laws

~i2 = ~j2 = ~k2 = −1, ~i~j~k = 1.

You can also thing of

q = a+ b~i+ c~j + d~k =

(
a+ ib c+ id
−c+ id a− ib

)
.

Note that if ‖q‖ = 1, then multiplication v 7→ qv is an isometry of R4,
because

‖qv‖ = ‖q‖‖v‖ = ‖v‖.

Consider now the pure imaginary quaternions

{q = b~i+ c~j + d~k : b, c, d ∈ R}

that looks like R3. For each p ∈ H with ‖p‖ = 1, we consider the isometry

q 7→ pqp−1.

You can check that if q is pure imaginary, then pqp−1 is again a pure imaginary.
So this can be thought of as an isometry of R3, instead of an isometry of R4.

If ‖p‖ = 1, we can write

p = cos
θ

2
+ (l~i+m~j + n~k) sin

θ

2

where l2 + m2 + n2 = 1. Then q 7→ pqp−1 is going to be a rotation (in the

(~i,~j,~k)-plane) through the axis through 0, about the axis l~i + m~j + n~k. Here,
note that p and −p represent the same rotation, becasue

(−p)q(−p)−1 = pqp−1.

But other than this, these are going to be all the rotations, and the same
rotations can only occur in this way. So we are going to get something like

SO3(R) ∼= RP 3.
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We were looking at the quaternions. Consider q = a + b~i + c~j + d~k in H with
q = 1. Then the map

H→ H; p 7→ qp

is an isometry. Moreover, if we look at the (i, j, k)-plane,

(i, j, k)-plane→ (i, j, k)-plane; p 7→ qpq−1

is an isometry.
Note that first −q defines the same isometry as q, because

(−q)p(−q)−1 = qpq−1.

Also, if |q| = 1, we can write it as

q = cos
θ

2
+ (l~i+m~j + n~k) sin

θ

2

with l2 +m2 + n2 = 1.

26.1 Finite subgroups of SO(3)

For the 2-dimensional case, we looked at symmetry groups of regular polygons.
Now, we are going to look at symmetry groups of regular polyhedra.

Let’s look at the isometries of the tetrahedron. There first the rotation about
the axis passing through one vertex. This already gives 3 isometries by rotating
around. We can also move the stick around, in 4 ways. So in total, there are
going to be 12 isometries. Concretely, this can be described as doing these
120◦ rotation, and also doing 180◦ rotations about the axis passing through two
midpoints of the opposite edges of the tetrahedron.

Figure 38: Isometries of the tetrahedron

We can also find the corresponding quaternions to these rotations.
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• The identity isometry corresponds to ±1.

• The 180◦ rotation is with θ = π and axis i or j or k. So they correspond
to ±i,±j,±k.

• The 120◦ rotation is with θ = 2kπ
3 and so θ

2 = kπ
3 . The axis will be

1√
3
(±i± j ± k). So they correspond to

±1

2
± i

2
± j

2
± k

2
.

In total, we recover 1 + 3 + 8 = 12, if we consider q the same as −q. But in
terms of actual quaternions, the isometries of the tetrahedron is represented by
24 quaternions. If we think of these quaternions as 24 points in H ∼= R4, these
will form the vertices of a 24-cell.

Also, note that isometries of R3 corresponds to unit quaternions modulo ±1.
So we have a bijection

SO3(R) ∼= RP 3.

Then we can use this bijection to give RP 3 a group structure.
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Last week we have talked about various transformations. Now we are going to
talk about the hyperbolic plane.

Consider the set
H = {z ∈ C : =(z) > 0} ⊆ C.

In RP 1, there were the linear fractional transformations

f(x) =
ax+ b

cx+ d
, a, b, c, d ∈ R.

It turns out that linear fractional transformations with ad− bc > 0 sends H to
H, and these are the transformations of the upper half-plane.

27.1 Stereographic projection

But let’s talk about the space itself first. We learned before that

RP 1 = R ∪ {∞} ∼= S1.

You can also look at this using the stereographic projection. In R2, we draw
a unit circle, and project the circle onto the x-axis from the point (0, 1). This
defines a map

ξ : S1 \ {(0, 1)} → R,

which we call the stereographic projection.

P

P ′

Figure 39: Stereographic projection for S1

We can actually get an explicit formula for this projection. If P = (x0, y0),
then the equation for the line is going to be

y − 1 =
y0 − 1

x0
x.

So the intersection with y = 1 is going to be

x =
x0

y0 − 1
.



Math 130 Notes 78

You can also compute the inverse of this map, and you are going to do this in
the assignment.

For CP 1 = C∪{∞}, we can do the same thing. Consider a sphere S2 ⊆ R3.
Then again, we can project the sphere S2 to the x1x2-plane R2 by projecting it
from (0, 0, 1). Then we have a projection

ξ : S2 \ {(0, 0, 1)} → R2 ∼= C.

Here, (0, 0, 1) serves as the north pole, and you can get explicit formulae for
both ξ and ξ−1.
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There is an Open Neighborhood Seminar on “A hands-on explanation of non-
Euclidean geometry”. Last time we were trying to describe the upper half-plane
model. We talked about the stereographic projection

ξ : S1 \ {i} → R, S2 \ {N} → R2.

These allowed us two describe S1 and S2 as

S1 = R ∪ {∞}, S2 = C = C ∪ {∞}.

Here, this C is called the Riemann sphere because it actually looks like a
sphere. Like in the 1-dimensional case, the projection map ξ : S2 \ {N} → C
and its inverse map can be written down explicitly.

28.1 Upper half-plane

We can now talk about other structure on the Riemann sphere.

Definition 28.1. A circle on C is either a circle in C or Euclidean line on C
along with ∞.

For instance, the x-axis {z : z ∈ R} ∪ {∞} is a circle in C. We note that
a circle always divides the Riemann sphere into two pieces. If we look at the
circle {w ∈ C : |w − z| = r}, the two regions are going to be

Ur(z) = {w ∈ C : |w − z| < r}, Ur(∞) = {w ∈ C; |w − z| > r}.

Note that both regions just look like discs. For the outer region, it is a disc as
well because we are actually cutting a sphere into two parts by a circle.

The same thing works if our circle is R = R ∪ {∞} in the Riemann sphere.
This also cuts the sphere into two pieces, and one piece

H = {z ∈ C : =(z) > 0}

is the upper half-plane. So you can think of the boundary of H as R∪{∞} =
RP 1.

Now consider a linear fractional transformation f : RP 1 → RP 1, that looks
like

f(x) =
ax+ b

cx+ d
,

where a, b, c, d ∈ R. We can regard this as a linear fractional transformation

f : C→ C; f(z) =
ax+ b

cz + d
.

Then this maps the RP 1 inside C to itself. If we impose the condition that
ad− bc > 0, we even see that f maps H to H.
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We can describe inversion in this setting as well. If we want to send

z = reiθ 7→ 1

r
eiθ,

we can look at the transformation

z 7→ 1

z
.
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Last time we were extending the linear fractional transformations on RP 1 to
the upper half-plane H. We had the following maps:

• z 7→ z + α for α ∈ R,

• z 7→ kα for k > 0,

• z 7→ 1
z̄ ,

• z 7→ −z̄.

All these transformations map H to H. These generate the Möbius transfor-
mations. Generally, Möbius transformations mean C→ C, but here we’re only
considering maps H → H.

29.1 Reflection about a circle

Consider a circle centered at a point C of radius r on the plane. We say that B is
the reflection of A about the circle if A,B,C lie on a line and |AC||BC| = r2.
The formula can be written as

f : A 7→ B = C + (A− C)
r2

|AC|2

because we want B − C to be the same direction as A − C but with length
r2/|AC|. Here, we may consider this reflection as sending C 7→ ∞ and ∞ 7→ C.
This allows us to extend this reflection to C→ C.

C

A

B

r

Figure 40: Reflection of a point about a circle

Note that we can generalize this to Rn for arbitrary n. We can define the
map f : Rn \ {C} → Rn \ {C} in the same way (using the same formula), and
then extend it to f : Sn → Sn by sending C 7→ ∞ and ∞ 7→ C. For n = 2,
these are going to be Möbius transformations as well.

29.2 Lines in the upper half-plane

Definition 29.1. The lines are going to be

(1) lines in R2 that are perpendicular to the real axis R in C,
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Figure 41: Lines on the upper half-plane H

(2) semi-circles that are centered at the real axis R.

Recall that we have computed the expression for the circle (x−h)2+(y−k)2 =
r2 in terms of z = x+ iy before. We saw that the equations looks like

zz̄ − z̄0z − z0z̄ + z0z0 = r2

for some z0. So the general formula for a line in H is going to be

A|z|2 +B(z + z̄) + C = 0

for some A,B,C ∈ R. Note that if A = 0, this becomes the vertical line.

Proposition 29.2. Möbius transformations preserve lines in C.

Proof. We check that the four generating transformations z 7→ z + α, z 7→ αζ,
z 7→ −z̄, z 7→ 1/z all preserve lines.

For the first one, this is just shifting along the real direction. So it clearly
preserves circle and lines. For the second one, this is scaling and again preserves
circles and lines. The third one is reflection about the line <(z) = 0 and so it is
again clear that this preserves lines in H. The fourth one is the tricky one. We
know that the equation of a line in H looks like

A|z|2 +B(z + z̄) + C = 0.

If we divide this by |z|2 = zz̄, this is the same as

A+B
(1

z
+

1

z̄

)
+ C

1

|z|2
= 0.

So for w = 1/z̄, the equation can be expressed as

A+B(w + w̄) + C|w|2 = 0.

This is a line in w, and this means that the transformation z 7→ w = 1/z̄ sends
lines to lines.

Definition 29.3. Two hyperbolic lines (i.e., lines in H) are parallel if two are
disjoint.
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Here, we can observe in Figure 41, there are a bit too many parallel lines to
a given parallel lines. In Euclidean geometry, the parallel postulate stated that
given any point P and a line ` not passing through P , there exists a unique line
passing through P and parallel to `. In the upper half-plane H, we are going to
see that there are going to be infinitely many parallel lines parallel to ` passing
through P .
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Last time we talked about lines in H. There were two types of lines, vertical
lines and semi-circles that are centered on the real line. We can extend any line
infinitely in both directions, because we should think of semi-circles as infinite
lines.

30.1 Ultraparallel lines

Definition 30.1. We say that two lines `1 and `2 are parallel if they are
disjoint. We say that they are ultraparallel if the boundaries of the two lines
at ∞ are disjoint.

Proposition 30.2. Let `1 and `2 be parallel lines. Then `1 and `2 are ultra-
parallel if and only if there exists a unique hyperbolic line perpendicular to both
`1 and `2.

Proof. We just divide into many cases. Suppose that `1 and `2 are ultraparallel
and let us show that there exist a unique line perpendicular to both. If `1 is
a vertical line, then `2 should be a semi-circle disjoint from `1. Then the line
perpendicular to `1 should be a semi-circle centered at where `1 meets the real
axis, and from this we see that there is a unique such semi-circle that is also
perpendicular to `2. If `1 and `2 are both semi-circles, let `i be centered at ci
with radius ri. If c1 6= c2, we need a semi-circle centered at c with radius r,
satisfying |c − ci|2 = r2 + r2

i and so 2c(c2 − c1) = r2
1 − r2

2. This can be solved
uniquely, and r > 0 follows from |c1 − c2| > r1 + r2 or |c1 − c2| < |r1 − r2|. If
c1 = c2, then the vertical line <(z) = c1 is perpendicular to both `1 and `2.

Conversely, if some line is parallel to both `1 and `2, then we can check that
they are ultraparallel.

30.2 Möbius transformations are conformal

We have seen that Möbius transformations preserve angles. Here, we are going
to show that they preserves angles between lines as well. But what is an angle?

Definition 30.3. Given two lines `1 and `2 intersecting at P , the angle between
`1 and `2 is a angle between the tangent lines to `1, `2 at P .

Proposition 30.4. Möbius transformations preserve angles between lines.

Proof. It suffices to check this for the generating transformations z 7→ z + r,
z 7→ kz, z 7→ −z̄, and z 7→ 1/z̄. The first three are clear, because they are
translation, scaling, and reflection. To show that z 7→ 1/z̄ preserves angles,
we instead check that z 7→ −1/z preserves angles. This is okay because if this
preserves angles, we can reflect to get z 7→ 1/z̄.

So consider a point z and a small direction ∆z = εeiθ. If we compare how z
and z + εeiθ are mapped under f(z) = − 1

z , we have

∆f(z) = f(z + ∆z)− f(z) = − 1

z + εeiθ
+

1

z
=

εeiθ

z(z + εeiθ)
≈ εeiθ

z2
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for ε� 1. So if we have another θ′, we will have

∆′f(z) =
εeiθ

′

z2
= ei(θ

′−θ)∆f(z).

This means that the angle between ∆z and ∆′z is θ′ − θ, and this is the same
as the angle between ∆′f(z) and ∆f(z).

Möbius transformations also preserve lengths, if we use a carefully-chosen
notion of length. To define length, we use cross ratio. Recall that

[z1, z2; z3, z4] =
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)
.

Because Möbius transformations are linear fractional transformations, they pre-
serve cross ratio. In particular, if the four points z1, z2, z3, z4 lie on a line, then
the cross ratio is a real number. For instance if zk = izk for ak real numbers,
we have

[ia1, ia2; ia3, ia4] =
(a1 − a3)(a2 − a4)

(a1 − a4)(a2 − a3)
∈ R.
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We checked long before that fractional linear transformations preserve cross-
ratio

[z1, z2; z3, z4] =
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)
.

Our claim here is the cross ratio of any 4 points on a hyperbolic line is a real
number. In the case when z1, z2, z3, z4 all lie on ` = {x = 0} ∩ H, then we
can check this directly. Given any other line k, we can apply a fractional linear
transformation to send k to `. In this process, the cross-ratio is preserved, so
we conclude that if z1, z2, z3, z4 ∈ k, then the cross ratio is in R.

31.1 Hyperbolic distance

Consider the line ` = {x = 0} ∩ H. On this line, consider two points pi and qi.
Then we can look at

[pi, qi; r = 0, s =∞] =
(pi− r)(qi− s)
(pi− s)(qi− r)

=
(pi− 0)(−∞)

(−∞)(qi− 0)
=
p

q
.

We want to say that this is something like distance in the hyperbolic plane,
because the value is not going to change under Möbius transformations. But
things like x 7→ −1/x̄ will send 0 to∞ and∞ to 0. Then our cross ratio becomes
q
p . To fix this issue, we take

d(p, q) = |log[p, q; 0,∞]|

as the distanceupper half-plane!distance in the upper half plane. Another
reason for taking the log is that if we have three points pi, qi, ri, the distances
add up as

d(pi, ri) =
∣∣∣log

r

p

∣∣∣ =
∣∣∣log

q

p

∣∣∣+
∣∣∣log

r

q

∣∣∣ = d(pi, qi) + d(qi, ri)

on a line.
A natural question is, what does the set of equidistanct points from a given

point look like? Let us try to find out what the set of point that has distance
r from i is. This is the same as finding all u such that d(u, i) = r. On the line
` = {<(z) = 0}, the distance of ui and i is

d(ui, i) = |log u|,

and so ier and ie−r are the two points of distance r from i.
Now we note that any Möbius transformation that preserves the center i

preserves distance from i. This means that if we map ier and ie−r under any
transformation that looks like

z 7→ az − c
cz + a

, z 7→ az̄ + c

cz̄ − a
,
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(where we assume a2 + c2 = 1) will lie on the equidistant set. We can write
a = cos θ and c = sin θ, and then the image is

iu 7→ sin 2θ(u− u−1)

2(u−1 cos2 θ + u sin2 θ)
+ i

1

u−1 cos2 θ + u sin2 θ
.

We can find that the image with u = e±r is going to be

x2 + (y − cosh r)2 = sinh2 r.

That is, the equidistant set from a point is a Euclidean circle, although it is
going to be skewed.

We can make sense of congruence between triangles too.

Proposition 31.1. On the upper half plane, the conditions SSS, SAS, ASA,
AAA are all equivalent, and we call this congruence of triangles.

The reason for AAA implying congruence is because the sum of the angle
can be used to calculate the area of the triangle.

31.2 Tiling by triangles

In the Euclidean plane, consider a triangle with angles π
p ,

π
q ,

π
r with p ≤ q ≤ r.

Then this necessarily satisfy

π

p
+
π

q
+
π

r
= π,

and if you work hard, you see that (p, q, r) = (3, 3, 3), (2, 3, 6), (2, 4, 4) are the
only possibilities. Then we can find the corresponding tiling of R2 so that at
each point, we only see the same angles.

Figure 42: (2, 3, 7)-tiling of the upper half-plane

But in H, we can have a triangle of angles π
p ,

π
q ,

π
r as long as

π

p
+
π

q
+
π

r
< 1.
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So there are many more possibilities to choose. In fact, for any such (p, q, r)
there is going to be such a tiling. For instance, Figure 42 shows a tiling with
(p, q, r) = (2, 3, 7).
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Last time we defined distance. Today we are going to show that AAA actually
gives a congruence of triangles. Because we can apply a Möbius transformation
move any side to any other side, it is straightforward to see that ASA and SAS
gives congruence. SSS gives congruence because two equidistant circle meet at
only two points, on opposite sides on the line connecting the two centers.

32.1 Sum of angles in a triangle

We are going show that AAA implies congruence.

Proposition 32.1 (alternate angle theorem). If two lines m and n intersect
` at B,B′, and the angle between m and ` and the angle between n and ` are
equal, then the lines m and n cannot intersect.

m
n

`

D

E

B

B′

Figure 43: Alternate angle theorem

Proof. Suppose that m and n intersect at D. Pick a point E on m such that
B′D = BE. Then by SAS, the triangles B′BD and BB′E are congruent. This
shows that

∠EBD = ∠EBB′ + ∠B′BD = ∠DB′B + ∠BB′E = π.

Then E should be another intersection of m and n, which is a contradiction.

Definition 32.2. The defect of a triangle ABC is defined as

defect(ABC) = π − ∠A− ∠B − ∠C.

Proposition 32.3. If there exists a triangle of defect 0, then there exists a
rectangle, i.e., a quadrilateral with all right angles. If a rectangle exists, then
every triangle has defect 0.

Proof. Roughly, you first construct a right triangle having defect 0, and from
this construct a rectangle by putting two together. Given a rectangle, you can
construct arbitrarily large rectangles, and this can be used to show that all right
triangles have defect 0. Then given an arbitrary triangle you can divide it into
two by an altitude and show that the triangle has defect 0.
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This is really strong because only one triangle having defect 0 shows that
all triangles have defect 0. Then if there is one triangle of defect nonzero, all
triangles should have defect nonzero as well.

Lemma 32.4. There exists a triangle in the hyperbolic plane with the angle
sum less than π.

Proposition 32.5. In hyperbolic plane, rectangles do not exist, and all triangles
have angle sum less than π.

Corollary 32.6. In the hyperbolic plane H, all quadrilaterals have angle sum
less than 2π.

Theorem 32.7 (AAA congruence). Let ABC and DEF be two triangles with
∠A = ∠D, ∠B = ∠E, and ∠C = ∠F . Then 4ABC ∼= 4DEF .

Sketch of proof. We first make A = D, and then A,E, F and A,F,C be on
lines. If the two triangles are not congruent, we have E 6= B and F 6= C. In
this situation, the sum of the angles of the quadrilateral BCFE is 2π.

One reason you should expect AAA congruence is because we have

defect(∆) ∼ area(∆)

in the hyperbolic plane. So one the angles are fixed, the defect is fixed and so
the area of the triangle is fixed.
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When people talk about the Möbius group, they usually mean the set of trans-
formations C → C, not only those sending the upper half-plane to the upper
half plane. These look like

m(z) =
az + b

cz + d

where a, b, c, d now can be complex numbers, with ad− bc 6= 0.

33.1 Fixed points of a Möbius transformation

Definition 33.1. A fixed point of a transformation m is a point z ∈ C such
that m(z) = z.

Let us try to find the fixed points of a Möbius transformation m 6= id. First
consider the case when

m(∞) =
a

c
=∞.

Then c = 0 and m(z) = a
dz+ b

d . Then this has no other fixed point if ad = 1, and
exactly one other fixed point if ad 6= 1. Now consider the case when m(∞) 6=∞.
Then we can just solve the equation

az + b

cz + d
= z

which also can be written as cz2 + (d − a)z − b = 0. This has at most two
solutions, and so at most two fixed points. So in all cases, if m 6= id then m can
have at most two fixed points.

Theorem 33.2. If m has 3 fixed points, then m = id.

Let us look at some examples. For m(z) = 2z+5
3z−1 , m(∞) = 2

3 and so the fixed

points are the two solutions of the quadratic equation of 3z2 − 3z − 5 = 0. For
m(z) = 7z + 6, the two fixed points are z = ∞ and z = −1. For m(z) = z

z+1 ,
there is a double root at z = 0.

We can even classify Möbius transformations up to conjugation.

Definition 33.3. We say that two Möbius transformations are conjugate if
there exists a Möbius transformation p such that pm1p

−1 = m2.

You can check that being conjugate is an equivalence relation. So we want
to figure out what the equivalence classes look like.

If m = id, then any conjugate of m = id is pmp−1 = pp−1 = id. So the
equivalence class is just {id}.

Now assume that m has only one fixed point x. Take a point y ∈ C \ {x},
and consider a Möbius transformation p sending

p : x 7→ ∞, y 7→ 0, m(y) 7→ 1.
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If we let r = p ◦m ◦ p−1, we have

p ◦m ◦ p−1(∞) = p ◦m(x) = p(x) =∞.

So ∞ is a fixed point and r looks like r(z) = az + b. Because p has one fixed
point, r also has only one fixed point. So r(z) = z + b. But r(0) = pmp−1(0) =
pm(y)) = 1. So r(z) = z + 1. That is, p is conjugate to z 7→ z + 1. In this case,
we say that m is parabolic.

33.2 Poincaré disc model

Consider the disc
D = {z ∈ C : |z| < 1}.

There is a Möbius transformation

m : D → H, i 7→ 0 − 1 7→ 1, 1 7→ ∞,

explicitly given by

m(z) =
z − i
z − 1

· −2

−1− i
.

This gives a bijection between D and H, we can think of D as the same upper
half-plane (or the hyperbolic plane). In this model, lines on D are circles that
are orthogonal to the unit circle.
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Last time we looked at the Möbius group of Möbius transformations.

34.1 Minkowski space

Minkowski space is just Rn−1,1 = Rn with the inner product

~v ·L ~w = vTLw = v1w1 + · · ·+ vn−1wn−1 − vnwn, L =


1

. . .

1
−1

 .

These appear in general relativity, and linear transformations preserving this
inner product are called Lorentz transformations. This is

{A : ATLA = L}.

Special relativity is doing geometry in R3,1, where the first three coordinates
are like space and the last coordinate is like time.

We say that v is

• spacelike if v ·L v > 0,

• timelike if v ·L v < 0,

• lightlike if v ·L v = 0,

In the spacetime, matter only move in timelike directions, and light moves in
lightlike directions. The set

{v : v ·L v = −1} = {(x, y, z) : x2 + y2 − z2 = −1}

can serve as another model for the hyperbolic space.

34.2 Presentation I - Torus

This was a presentation by Shanelle. A torus is a surface that can be constructed
by rotating a circle around a coplanar axis in 3-dimensional space. If we take a
circle on the xz-plane of radius d, centered at (S, 0, 0), we get a parametrization

x = (S + d cos θ) cos ρ, y = (S + d cos θ) sin ρ, z = d sin θ.

If S > d, then this is just the normal torus we have, which is called the ring
torus, but if S = d, there is some degeneracy and we get a horn torus. If S < d,
we will have some intersecting point and in this case the torus is called a spindle
torus. If S = 0, the torus will degenerate into a sphere. You can compute the
volume and surface area, and it is going to be

V = (2πS)(πd2), A = (2πS)(2πd).
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34.3 Presentation II - Gabriel’s horn

This was a presentation by Anne. The point of Gabriel’s horn is that this has
finite volume but infinite surface area. This is counter-intuitive, because you
can fill the horn with paint, but you cannot not color the surface of the horn.
Consider the graph of

y =
1

x
, 1 ≤ x

and rotate it around the x-axis in 3-dimensional space. We can calculate volume
and surface area using standard calculus. If we cut it the horn to 1 ≤ x ≤ a,
and then the volume and area are

V = πr2
a = π

∫ a

1

dx

x2
= π

(
1−1

a

)
, A = 2π

∫ a

1

1

x

√
1 +

1

x2
dx > 2π

∫ a

1

dx

x
= 2π log a.

So as a→∞, we get finite volume but A→∞.
The converse is impossible, i.e., we can’t have finite area but infinite volume,

at least for surfaces of revolution. If we rotate f(x), then

lim sup
t→∞

f(x)2 − f(1)2 = lim sup
t→∞

∫ x

1

|2f(t)f ′(t)|dt ≤ A

π
.

If we assume that A is finite, then this shows that f is bounded. Let’s say that
it is bounded by M . Then

V =

∫ ∞
1

πf2(x)dx ≤ M

2

∫ ∞
1

2πf(x)dx ≤ M

2

∫ ∞
1

2πf(x)
√

1 + f ′2(x)dx =
M

2
A

implies that V is finite.

34.4 Presentation III - Octahedron

This was a presentation by Ricky. We can draw the octahedron by putting
two square pyramids together. You can count that this has 12 edges, 8 faces,
and 6 faces. This satisfies Euler’s equation v − e + f = 2 where v is the
number of vertices, e is the number of edges, and f is the number of faces.
So the octahedron has (v, e, f) = (6, 12, 8) and if you look at the cube, we
have (v, e, f) = (8, 12, 6). These are called dual polyhedra and we can put the
octahedron inside a cube and a cube inside the octahedron.

The octahedron can be written down using the equation

|x|+ |y|+ |z| = 1.

The surface of the octahedron looks like the surface of a sphere, and the stere-
ographic projection of this to the plane will look like a 3-set Venn diagram.
There is a theorem that says that the symmetries of a polyhedron is the same
as the symmetries of a octahedron. You can count and they are going to have
the same number of symmetries.
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35.1 Presentation IV - Möbius strip

This was a presentation by Jungyeon. The Möbius strip is a strip that does not
have one “side”. So you can’t color it with two colors so that at each point, the
opposite sides of the strip have different colors. This means that the surface is
unorientable. Here is one way you can see this. If you take some figure on the
surface and move it around the strip once, the figure becomes its mirror image.
Its Euler characteristic is χ = v − e+ f = 0.

If you Möbius strip has some interesting geometry. If you take a Möbius
strip and cut it along the middle line, you get a regular strip. If you take a
Möbius strip, and cut it along the one-third line, you will get two strips linked
together.

35.2 Presentation V - More on the Möbius strip

This was a presentation by Matt. One way you can think of non-orientability is
to look at the normal vector to the surface and sliding it around the strip. You
can also think of the Möbius strip as gluing two opposite sides of a rectangle in
the reverse direction.

You can parametrize the Möbius strip using

x = [R+ s cos( 1
2 t)] cos t, y = [R+ s cos( 1

2 t)] sin t, z = s sin( 1
2 t))

for s ∈ [−w,w] and t ∈ [0, π]. You an also describe this as

−R2y + x2y + y3 − 2Rxz − 2x2z − 2y2z + yz2 = 0.

In astrophysics, there is this theory that there is a non-orientable wormhole,
so that if you go around in space some way, you get the mirror image. People
sometimes use the Möbius strip for a conveyor belt so that both sides of the
belt are used and the belt lasts longer.

35.3 Presentation VI - Nine point circle

This was a presentation by Tushar. Consider any triangle ABC. The statement
says that if you look at the three feet of altitudes, the midpoints of the three
sides, and also the three midpoints of AH,BH,CH, these nine points lie on a
single circle. (Here H is the orthocenter.)

Given a triangle ABC, we can find a triangle A′B′C ′ such that A is the
midpoint of B′C ′ and B is the midpoint of C ′A′ and C is the midpoint of A′B′.
(Here, A′BAC is going to be a parallelogram and so on.) So the orthocenter of
ABC is going to be the circumcenter of A′B′C ′.

By Thales’s theorem, the midpoints of AH, AB, CB, CH form a rectangle.
You can do this for all three sides, and we get that all the midpoints of AB,
BC, CA, AH, BH, CH lies on the same circle. Then we can show that the
feets of altitudes are also on the same circle.
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There is also this cool line called the Euler line. It turns out the orthocenter
H, circumcenter O, centroid G, and the center of the nine point circle N all lies
on this line. N turns out to be the midpoint of OH.

35.4 Presentation VII - Tropical geometry

This was a presentation by Jules. Let’s first define the tropical algebra.

Definition 35.1. The semi-field T = R ∪ {−∞} is defined as

x⊕ y = max{x, y}, x� y = x+ y.

So if we try to draw a graph for 0 + x− x2 in the tropical algebra, you will
see that this is actually max{0, x, 2x − 1} so that we only have a segmented
lines. Polynomials in the algebra are things that look like

P (x, y) =
∑
i,j

aijx
iyj = max

i,j
(ai,j + ix+ jy).

We can think about tropical curves. For instance, if we take 0⊕x⊕y = 0, this
is going to consist of three rays x0 = 0 ≥ y0 and y0 = 0 ≥ x0 and x0 = y0 ≥ 0.
Given such a curve, you can find a dual subdivision, such that vertices on the
curve corresponds to regions in the dual, and lines on the curve corresponds to
segments in the dual. Given a tropical curve, you can also define its ameoba,
which sort of thickens the curve.
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