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1 January 24, 2017

There will be weekly problem sets due Tuesdays. There will be two in-class
midterms, on Feb 16 and Mar 28. Our textbook is Townsend, A Modern Ap-
proach to Quantum Mechanics, 2nd edition. The main prerequisite will be linear
algebra. You don’t necessarily have to take Physics 15c to take this course.

1.1 Introduction

Quantum mechanics is more of a principle that underlies many theories, e.g.,
classical mechanics. There are many forms of classical mechanics. The under-
lying principle of Newtonian mechanics is ~F = m~a, the principle in Lagrangian
mechanics is ∂L/∂q − (d/dt)∂L/∂q̇ = 0. The universal law in Hamiltonian
mechanics is q̇ = ∂H/∂p and ṗ = −∂H/∂q.

Once you have the universal principle, you can study different theories by
applying that law to different situations. Let me list a few of these theories.

• hydrogen atom: its energy levels and transitions (Ch. 10)

• quantum electrodynamics: relativistic theory of EM field (photons), elec-
trons, positrons, . . .

• BCS superconductivity: Cooper pairs, . . .

• theory of nuclear matter

• cosmology: inflation and destiny perturbations

• standard model

• string theory

Most of the things here are things we won’t see in the course, but I wanted to
give a sense of where you can go with quantum mechanics.

The logic of quantum mechanics is very weird, in the sense that it is different
from the classical world. Classical physics emerges from quantum mechanics of
large numbers of particles. This emergence is largely due to entanglement and
decoherence. We will get a glipse by the end of the semester, but the real world
is quantum mechanical.

1.2 Linear superpositions

Consider the wave equation

∂2

∂t2
f(x, t)− ∂2

∂x2
f(x, t) = 0.

If f1(x, t) and f2(x, t) are solutions, then c1f1(x, t) + c2f2(x, t) is also a solution
for any constants c1, c2. However, the equation

∂2

∂t2
f(x, t)− ∂2

∂x2
f(x, t) = εf(x, t)2
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does not have this property.
Quantum mechanics postulates that linear superpositions of physical states

are physical states. So linearity is built into quantum mechanics in a fundamen-
tal way. This is a postulate that we assume because it matches experiment.

Example 1.1. Let us look at a “qubit”, a quantum bit. The classical bit takes
values in 0 or 1. What happens in quantum mechanics is that the bit can take
any linear combination:

|ψ〉 = c0|0〉+ c1|1〉

These |0〉 and |1〉 are quantum states corresponding to the classical state, and
c0 and c1 are complex numbers. This notation is something like the vector
notation ~v = v1~e1 + v2~e2 in mathematics. Sometimes we might change the
notation, e.g., |↑〉 and |↓〉 if it represents a spin, or |L〉 and |R〉 if it represents
light polarization.

When we work with vectors, we take the dot product as

~w · ~v = w1v1 + w2v2 + w3v3 = wT v.

We are going to do something similar with quantum states. Assume we have an
orthonormal basis,

〈0|1〉 = 1, 〈1|1〉 = 1, 〈0|1〉 = 0, 〈1|0〉 = 0.

I’ve introduced some funny notation here. For two quantum states |ψ〉 and
|χ〉, we write the inner product as 〈χ|ψ〉. Suppose |ψ〉 = c0|0〉 + c1|1〉 and
|χ〉 = d0|0〉+ d1|1〉. Then their inner product is

〈χ|ψ〉 = d∗0c0 + d∗1c1.

If we were taking the inner product in the other way, we would get

〈ψ|χ〉 = c∗0d0 + c∗1d1 = (〈χ|ψ〉)∗.

We will choose to work with normal states, i.e., 〈ψ|ψ〉 = 1. Note that if I
define |ψ′〉 = eiθ|ψ〉 by rephasing it, then 〈ψ′|ψ′〉 = 〈ψ|ψ〉 = 1. Physics doesn’t
really care about phase change, and so we can say that quantum states is a
complex vector space modulo scaling and phase change.

The reason we flipped the angle on the right is because the angle on the left
has a meaning of its own:

if |ψ〉 = c0|0〉+ c1|1〉 then 〈ψ| = c∗0〈0|+ c∗1〈1|.

This is called the Dirac notation. The |ψ〉 is called a ket and 〈ψ| is called
a bra so that the inner product becomes a bracket. We can represent |ψ〉 as
column vectors and 〈ψ| as row vectors. In this context, the inner product is like
w†v, where † is Hermitian conjugation.
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2 January 26, 2017

2.1 The Stern–Gerlach experiment

An electron has an intrinsic spin ~S, and a non-uniform magnetic field exerts a
force. The force is given by

~F ∝ ~S · n̂.

When (non-polarized) particles pass though a Stern–Gerlach device, it turns
out that there are discrete outcomes observed, not a continuous pattern. Let
us write the Stern–Gerlach device that checks the ~S · n̂ by SGn̂. You can do
the experiment with multiple devices like letting the particles pass tough SGẑ,
choose one of the beams, and then let us pass though SGx̂. The result is that
the particles split into two deflection patterns, with 50% chance each.

At the early state of quantum mechanics, there were many confusing exper-
iments like this. There is a mathematical formalism that matches the result.
Let us write |+n〉 the quantum state that is definitely deflected up and |−n〉
the quantum state that is definitely deflected down. Then we can write any
quantum state as

|ψ〉 = c+|+n〉+ c−|−n〉,

where |c+|2 + |c−|2 = 1.
Now we make the following assumptions:

• If |ψ〉 goes through an SGn̂ device, and the outgoing particle is detected,
we see |+n〉 with probability |c+|2 and |−n〉 with probability |c−|2.

• After measuring, the state is is |+n〉 or |−n〉.

It turns out that the state space for an electron’s spin is really 2-dimensional.
So we can choose a basis and write |ψ〉 = c+|+z〉 + c−|−z|. There should be
states |+x〉 and |−x〉 and so there must be presentations

|+x〉 = c+|+z〉+ c−|−z〉, |−x〉 = d+|+z〉+ d−|−z〉,

with |c+|2 = |c−|2 = |d+|2 = |d−|2 = 1/2 and d∗+c+ + d∗−c− = 0. There will also
be states in the y direction. If you solve the equation, you can choose the states

|+x〉 =
1√
2
|+z〉+

1√
2
|−z〉, |−x〉 =

1√
2
|+z〉 − 1√

2
|−z〉

work. If you solve the equations, you see that

|+y〉 =
1√
2
|+z〉+

i√
2
|−z〉, |−y〉 =

1√
2
|+z〉 − i√

2
|−z〉

work.
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2.2 Unitary transformations

For a vector |ψ〉+ c+|+z〉+ c−|−z〉, we associate a vector (c+ c−)T . If we have
the same vector in another bases, say |ψ〉 = c′+|+x〉+ c′−|−x〉, then(

c′+
c′−

)
=

(
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

)(
c+
c−

)
.

If we note |+z〉 = (〈+x|+ z〉)|+x〉+ (〈−x|+ z〉)|−x〉, we can abstractly write(
〈+x|ψ〉
〈−x|ψ〉

)
=

(
〈+x|+ z〉 〈+x| − z〉
〈−x|+ z〉 〈−x| − z〉

)(
〈+z|ψ〉
〈−z|ψ〉

)
.

This matrix is unitary, i.e., U†U = UU† = 1. This is because

U =

(
〈+x|+ z〉 〈+x| − z〉
〈−x|+ z〉 〈−x| − z〉

)
, U† =

(
〈+z|+ x〉 〈+z| − x〉
〈−z|+ x〉 〈−z| − x〉

)
.

Note that the U† is then going from the x-basis to the z-basis. This shows that
U†U = 1.
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3 January 31, 2017

One remark I would like to make is that when we measure the spin ~S, its
magnitude is

|S| = ~
2
, ~ ≈ 6.6× 10−16eV · sec ≈ 1.1× 10−34J · s.

Because this is a fundamental constant in nature, this allows us to write time
as inverse energy, or distance as inverse momentum. The reason why particle
physicists like to see what happens when particles collide with large momentum
is because they want to know things in small length scale.

One other thing is, if you have a device that is a like SGẑ plus SG(−ẑ) so
that the result is always the same, then you get |ψ〉 again. This is because we
don’t measure the state of the particle. A measurement is any physical process
that “strongly” depends on the result. When you measure something in a lab,
you usually have something like when an electron comes in then some material
absorb it and emits lots of photons. This kind of transports the information from
the electron to the material. In short, the laws of quantum mechanics applies to
everything including measuring devices and there is nothing too special about
measuring. It is just that the device has a complex structure and it is hard to
follow all the details in the device.

Finally, in the homework you found out that

|+n〉 = cos
θ

2
|+ẑ〉+ eiφ sin

θ

2
|−ẑ〉.

Now this has two parameters θ and φ and so it is a 2-dimensional state. A
general quantum state is of the form α|+ẑ〉+ β|−ẑ〉 and so there are 4 degrees
of freedom. In quantum mechanics we normalize our states and so that leaves 3.
But we also don’t care about phase so that leaves 2. So there are 2 important
real degrees of freedom, parameterized by

CP1 = {(z1, z2) ∈ C2 : (z1, z2) ∼ λ(z1, z2)}.

So problem 1.3 can be thought as giving a link S2 ∼= CP1.

3.1 Linear operators

Given a matrix M , its entries can be read of as Mij = eTi MeTj . So in quantum
mechanics, given basis states |1〉, |2〉, . . . , |n〉, we have

〈m|n〉 = δmn =

{
1 m = n

0 m 6= n,
Mij = 〈i|M |j〉.

We normalize states |ψ〉 to compute probabilities. But in general we do not
normalize M |ψ〉.



Physics 143a Notes 9

The states |+z〉 and |−z〉 are orthonormal, and SGẑ will output either ~/2
or −~/2. Now define a matrix

Sz =

(
+~/2 0

0 −~/2

)
.

We observe that |+z〉 and |−z〉 are eigenstates of Sz with eigenvalues +~/2 and
−~/2. This is a very general thing we can do. When we have a measurable
quantity, we can represent it with a linear operator whose eigenstates have
definite measurement outcomes given by the eigenvalues. This doesn’t mean
anything, because it’s just a construction.

But this is a useful notion because we can compute things nicely. Given a
quantum state |ψ〉 = c+|+z〉+ c−|−z〉, we can compute its expectation value as

〈Sz〉 = p+

(~
2

)
+ p−

(
−~

2

)
= (|c+|2 − |c−|2)

~
2
.

We also have

〈ψ|Sz|ψ〉 =
(
c∗+ c∗−

)(~/2 0
0 −~/2

)(
c+
c−

)
=

~
2

(|c+|2 − |c−|2).

This is going to be true in general, because we made the states into eigenvectors
with suitable eigenvalues. But the second definition is more useful, because we
don’t need to use the eigenstate basis.

3.2 Rotation matrices

Suppose we have the 90◦ rotation along the y-axis that takes +z to +x. For
classical vectors this is easy. But we need to know how this acts on 2-dimensional
quantum states.

This linear operator should map(
1
0

)
7→
(

1/
√

2

1/
√

2

)
,

(
0
1

)
7→ eiϕ

(
1/
√

2

−1/
√

2

)
,

(
1/
√

2

i/
√

2

)
7→ eiϕ

′
(

1/
√

2

i
√

2

)
.

This is satisfied by the unitary operator

R̂
(π

2
ĵ
)

=

(
1/
√

2 −1/
√

2

1/
√

2 1/
√

2

)
in the z-basis.

This matches our answers up to a phase, but we don’t mind.
Now we would like to build a general rotation that acts on the vectors in a

nice way. We want to define rotations around the z-axis. R̂(φk̂) should obey:

• R̂((φ1 + φ2)k̂) = R(φ1k̂)R(φ2k̂) = R(φ2k̂)R(φ1k̂)

• R̂(φk̂) = 1 + (· · · )dφ.
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4 February 2, 2017

We want a family of rotations given by R̂(θ, n̂). It is reasonable to ask that
if we do a rotation by θ1 then do a rotation by θ2 the result is a rotation by
θ1 +θ2. Another thing we would like to require is that rotation by a small angle
is almost the identity. This can be written as R̂(dφk̂) = 1 + M̂dφ+O(dφ2). We
are going to write M̂ = −i/~Ĵz for reasons that will become clear later.

We can write

R̂(Ndφk̂) = R̂(dφk̂)N =
(

1− i

~
Ĵzdφ+O(dφ2)

)N
,

where φ = Ndφ. Thus

R̂(φk̂) = lim
N→∞

(
1− i

~
Ĵz
φ

N

)N
= exp

(
− i
~
Ĵzφ

)
,

where exp(M) = 1 + M + M2/2 + M3/6 + · · · . This may seem intimidating
to compute, but there is a nice trick. If M is a diagonal matrix with diagonal
entries m1, . . . ,mn, then

exp(M) = 1 +

m1 0
. . .

0 mn

+
1

2

m
2
1 0

. . .

0 m2
n

+ · · · =

e
m1 0

. . .

0 emn

 .

For general matrices, we can diagonalize it and apply this formula. If M =
UDU−1 then

exp(M) = exp(UDU−1) =

∞∑
n=0

1

n!
UDnU−1 = U exp(D)U−1.

Because the rotation matrices must not change the probability and inner
products, we need R̂(φk̂) to be unitary. If we take φ to be a very small angle,
we have

R̂ ≈ 1− i

~
Ĵzdφ, R̂−1 ≈ 1 +

i

~
Ĵzdφ, R̂+ ≈ 1 +

i

~
Ĵ+
z dφ.

So unitarity of R̂ implies Ĵz = Ĵ+
z . That is, Ĵz is hermitian.

We also want R̂(φk̂)|+ẑ〉 to be equal to |+ẑ〉 possibly up to some phase

change. So we we want R̂(φk̂) and Ĵz to be diagonal matrices. We would also

want R̂(π/2k̂) to send |+x̂〉 to |+ŷ〉 up to some phase. If you work these out
and make some choices, you can see that

Ĵz =

(
~/2 0
0 −~/2

)
works.
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Recall that

Ŝz =

(
~/2 0
0 −~/2

)
, 〈ψ|Ŝz|ψ〉 = expectation.

This is not a coincidence. There is a very general correspondence

observables ←→ hermitian operators whose
eigenvalues are the result,

with states of definite measurements corresponding to eigenvectors. These are
some of the examples:

rotate through angle φ: exp
(
− i
~
Ĵzφ

)
evolve a state through time t: exp

(
− i
~
Ĥt
)

evolve a state through space x: exp
(
− i
~
p̂x
)

4.1 Projection operators

Take a matrix (
m11 m12

m21 m22

)
in the z-basis. This matrix can also be written as

m11|+z〉〈+z|+m12|+z〉〈−z|+m21|−z〉〈+z|+m22|−z〉〈−z|.

A projection operator is an operator P such that P 2 = P . For example, let
P+ = |+z〉〈+z|. Then

P+|ψ〉 = c+|+z〉 = P 2
+|+z〉.

Likewise we have P− = |−z〉〈−z| is a projection operator, and we have P+ +
P− = 1.
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5 February 7, 2017

This is going to be a midterm on Thursday, February 16. You will be given a
formula sheet, which will be posted online soon. The reason we are having an
exam early is that I want some feedback before the add-drop deadline.

We had these operators Ĵx, Ĵy, Ĵz, which are hermitian and have eigenvalues
and eigenvectors corresponding to measurement outcomes and states. We also
had these rotations R̂(φk̂) = exp(−i/~Ĵzφ), which are unitary. These rotations
are generated by Ĵ .

5.1 Commutator of rotations

The rotations don’t commute in general; rotation by 90◦ around the x-axis and
around the z-axis do not commute. So although we have

R̂((φ1 + φ2)k̂) = R̂(φ1k̂)R̂(φ2k̂),

we don’t have R̂(φk̂)R̂(θĵ) 6= R̂(θĵ)R̂(φk̂). One way to measure the failure of
this is to introduce the commutator

[Â, B̂] = ÂB̂ − B̂Â.

Let us see what the commutator looks like. Consider the case of rotations
in 3-dimensional space. A rotation around the z-axis and the x-axis by a small
angle φ is given by the matrix

Rx =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 , Rz =

1 0 0
0 cosφ′ − sinφ′

0 sinφ′ cosφ′

 .

Then the commutator up to second order can be computed as

[Rz, Rx] =

1− φ2

2 −φ φφ′

φ 1− φ2

2 −
φ′2

2 −φ′

0 φ′ 1− φ′2

2

−
1− φ2

2 −φ 0

φ 1− φ2

2 −
φ′2

2 −φ′

φφ′ φ′ 1− φ′2

2


=

 0 0 φφ′

0 0 0
−φφ′ 0 0

 .

This looks very like

Ry(φ′′)− 1 =

−φ
′′2

2 0 −φ′′
0 0 0

φ′′ 0 −φ
′′2

2

 .

So rotating around the x-axis and then rotating around the z-axis is almost the
same as rotating around the z-axis and then rotating around the x-axis, but the
difference looks like rotation around the y-axis.
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We can also see this by looking at the generating matrices. We have R̂(φk̂) ≈
1− i/~Ĵzφ. So

[R̂z(φ), R̂x(φ′)] ≈ [−i/~Ĵzφ,−i/~Ĵxφ′] = (−i/~)2φφ′[Ĵz, Ĵx]

≈ −i/~Ĵy(φφ′).

So we get

[Ĵz, Ĵx] = i~Ĵy,

and similarly

[Ĵx, Ĵy] = i~Ĵz, [Ĵy, Ĵz] = i~Ĵx.

5.2 Non-commuting observables and uncertainty

Let us first look at commuting observables. It is a fact that

~J2 = Ĵ2
x + Ĵ2

y + Ĵ2
z

commutes with Ĵx, Ĵy, Ĵz. Suppose we have a Stern-Gerlach device that can

measure Ĵz, and suppose we have another device that measures ~J2.
Suppose we measure a particle using a SGẑ device. Take the particles that

give |+z〉, measure its Ĵ2, and then again measure using SGẑ. In this case the
first outcome is always 3/4~2 and the second outcome is always |+z〉.

On the other hand, if you replace Ĵ2 with a SGx̂ device, we know that the
results will split in the first outcome, and even if we use only the |+x〉 we again
get a split result.

The first experiment is related to the fact that [ ~J2, Ĵz] = 0 but [Ĵx, Ĵz] 6= 0.
That is, commuting observables can be measured without changing each other’s
values, while non-commuting observables cannot be measured without affecting
each other.

Define the uncertainty ∆A of a hermitian operator Â of a state |ψ〉 to be

(∆A)2 = 〈(A− 〈A〉)2〉 = 〈ψ|Â2|ψ〉 − 〈ψ|Â|ψ〉2.

This ∆A measure the uncertainty about measure outcomes. Suppose Â has
eigenvalues λ1, . . . , λn. Then ∆A = 0 if and only if P (λi) = 1 for some i and
P (λj) = 0 for j 6= i.

Theorem 5.1 (The uncertainty principle). Given Â, B̂ observables (hermitian
operators) and a state |ψ〉,

∆A ·∆B ≥ 1

2

∣∣〈ψ|[ ˆ̄A, ˆ̄B]|ψ〉
∣∣,

where ˆ̄A = Â− 〈A〉 and ˆ̄B = B̂ − 〈B〉.
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Proof. Define two kets (not necessarily normalized)

|x〉 = ˆ̄A|ψ〉 = (Â− 〈A〉)|ψ〉,

|y〉 = i ˆ̄B|ψ〉 = i(B̂ − 〈B〉)|ψ〉.

These states are constructed so that

〈x|x〉 = 〈ψ|(Â− 〈A〉)2|ψ〉 = (∆A)2.

Similarly 〈y|y〉 = (∆B)2. By the Cauchy–Schwartz inequality,

〈x|x〉〈y|y〉 ≥ 1

4

∣∣〈x|y〉+ 〈y|x〉
∣∣2.

Now

〈x|y〉 = i〈ψ| ˆ̄A ˆ̄B|ψ〉, 〈y|x〉 = −i〈ψ| ˆ̄B ˆ̄A|ψ〉.

So we get the inequality.
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6.1 Representations of su(2) (1)

Last time we say that [Ĵx, Ĵy] = i~Ĵz ad that ~J2 = Ĵ2
x + Ĵ2

y + Ĵ2
z commute with

Ĵx, Ĵy, and Ĵz.
These are what mathematicians call Lie algberas. They are collections of

objects with addition and the commutator [x, y] satisfying the Jacobi identity

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

The physical interpretation is that these things correspond to some symmetries.
In this class we are not going to see the general theory. This specific algebra of
Ĵx, Ĵy, Ĵz is su(2). We can write rotations as 3 × 3 matrices and also as 2 × 2
complex matrices. These two are different representations of su(2).

For ~̂J2 = Ĵ2
x + Ĵ2

y + Ĵz, we claim that [ ~̂J2, Ĵx] = 0. This is because

[ ~̂J2, Ĵx] = [Ĵ2
x , Ĵx] + [Ĵ2

y , Ĵx] + [Ĵ2
z , Ĵx]

= 0 + Ĵy[Ĵy, Ĵx] + [Ĵy, Ĵx]Ĵ + Ĵz[Ĵz, Ĵx] + [Ĵz, Ĵx]Ĵz

= −i~ĴyĴz − i~ĴzĴy + i~ĴzĴy + i~ĴyĴz = 0.

Similarly [ ~J2, Ĵy] = [ ~J2, Ĵz] = 0. Also ~J2 is hermitian. Note that all the states
of a spin-1/2 particle is an eigenvector with eigenvalue 3/4~2.

Here are some examples satisfying the commutation relations. First we take
the matrices

Ĵx =
~
2

(
0 1
1 0

)
, Ĵy =

~
2

(
0 −i
i 0

)
, Ĵz =

~
2

(
1 0
0 −1

)
,

or alternatively, Ĵi = ~/2σi where σi are the Pauli matrices. Then ~J2 = 3~2

4 .
We can also take

Ĵx =
~√
2

0 1 0
1 0 1
0 1 0

 , Ĵy =
~√
2

0 −i 0
i 0 −i
0 i 0

 , Ĵz = ~

1 0 0
0 0 0
0 0 −1

 .

These also satisfies the relations [Ĵx, Ĵy] = i~Ĵz mathematically, but it has
~J2 = 2~2. So different choices of matrices may give different ~J2.

There is a systematic way to find all such representations. Because [ ~J2, Ĵz] =
0, they share the same eigenstates. Suppose I have a state |λ,m〉 such that

~J2|λ,m〉 = ~2λ|λ,m〉, Ĵz|λ,m〉 = ~m|λ,m〉.

We have 〈λ,m| ~J2|λ,m〉 = λ~2 because our states are normalized. On the other
hand,

〈λ,m| ~J2|λ,m〉 = 〈λ,m|Ĵ2
x |λ,m〉+ 〈λ,m|Ĵ2

y |λ,m〉+ ~2m2 ≥ ~2m2.
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This shows that λ ≥ m2 ≥ 0.
The next step relies on a very clever trick. Introduce

Ĵ± = Ĵx ± iĴy.

These are not hermitian, and Ĵ†+ = Ĵ−. Consider the identity

[Ĵz, Ĵ+] = [Ĵz, Ĵx] + i[Ĵz, Ĵy] = i~Ĵy + ~Ĵx = ~Ĵ+,

[Ĵz, Ĵ−] = [Ĵz, Ĵx]− i[Ĵz, Ĵy] = i~Ĵy − ~Ĵx = −~Ĵ+.

These are almost eigenvalue equations.
Using this, we see

~J2Ĵ+|λ,m〉 = Ĵz ~J
2|λ,m〉 = λ~2Ĵ+|λ,m〉,

ĴzĴ+|λ,m〉 = [Ĵz, Ĵ+]|λ,m〉+ Ĵ+Ĵz|λ,m〉 = (m+ 1)~Ĵ+|λ,m〉.

To summarize, Ĵ+|λ,m〉 is an eigenstate of ~J2 with eigenvalue λ~2 and an
eigenstate of Ĵz with eigenvalue (m+ 1)~. Likewise Ĵ−|λ,m〉 is an eigenstate of
~J2 with eigenvalue λ~2 and of Ĵz with eigenvalue (m− 1)~.

Now we have some kind of a puzzle. It seems that we can start with some
λ and m and change m by ±1 if we wanted to. But it has to always satisfy
λ ≤ m2! This is because Ĵ+|λ,m〉 may be zero.
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We had the commutation relation [Ĵx, Ĵy] = i~Ĵz and [ ~J2, Ĵx] = 0. We define

Ĵ± = Ĵx ± iĴy and showed that

[Ĵz, Ĵ±] = ±~Ĵ±,

which resembles the eigenvalue equation. For a eigenstate |λ,m〉 with

~J2|λ,m〉 = λ~2|λ,m〉, Ĵz|λ,m〉 = m~|λ,m〉,

we showed that λ ≥ m2 and that Ĵ± is proportional to |λ,m ± 1〉. This is the
reason we introduced Ĵ±: the relation [Ĵz, Ĵ±] = ±~Ĵ± means that Ĵ± add or
subtract ~ from the Ĵz-eigenvalue.

So this means that we can act by Ĵ+ or Ĵ− to increase or decrease m by 1.
This means that given |λ,m〉, the procedure has to stop somewhere.

7.1 Representations of su(2) (2)

For a fixed λ, label the largest m that makes sense as j. In other words, there
is a state |λ, j| with Ĵ+|λ, j〉 = 0. Additional we cam assume that no |λ, j + 1|
exists. We know that Ĵ−Ĵ+|λ, j〉 = 0. Let us expand this out. We get

0 = (Ĵx − iĴy)(Ĵx + iĴy)|λ, j〉 = (Ĵ2
x + Ĵ2

y + i[Ĵx, Ĵy])|λ, j〉

= ( ~J2 − Ĵ2
z − ~Ĵz)|λ, j〉 = ~2(λ− j2 − j)|λ, j〉.

This implies that λ = j(j + 1). We check that for a spin-1/2 particle, λ =
(1/2)(3/2) = 3/4. This agrees with what we know.

We now learned the relationship between λ (the eigenvalue of ~J2) and the
largest eigenvalue of Ĵz in the ladder, which is given by λ = j(j + 1). We can
do this in the other direction. Consider the most negative eigenvalue j̃ so that
J−|λ, j̃〉 = 0. Then we would get λ = j̃(j̃ − 1).

Because

λ = j(j + 1) = j̃(j̃ − 1),

we have either j̃ = −j or j̃ = j + 1. But the latter doesn’t make sense because
j̃ is the minimum. So we get j̃ = −j.

Now we derived that J−|λ,m〉 = 0 only if m = −j. So if we want Jk−|λ, j〉 = 0
for some large enough k, then we need −j to be j minus an integer. Thus j is
an half-integer.

Now because j is nicer than λ, we introduce this new notation

~J2|j,m〉 = j(j + 1)~2|j,m〉, Ĵz|j,m〉 = m~|j,m〉.

A spin-j representation of angular momentum algebra has a basis |j,m〉
for m = −j,−j + 1, . . . , j − 1, j. So a spin-0 representation has basis |0, 0〉, a
spin-1/2 representation has basis |1/2, 1/2〉 = |+z〉 and |1/2,−1/2〉 = |−z〉.
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There are some problems though. Photons are spin-1 particles, but the
number of independent states is 2. Gravitons are spin-2 particles but the number
of independent polarizations is 2. These are special massless particles, and they
always move at speed c. The resolution of this puzzle is gauge invariance. We
won’t talk about this, but it is something worth being aware of.

For a spin-j representation suppose we want Ĵx, Ĵy, Ĵz as matrices, in basis
|j,m〉. Then

Ĵz =


j~

(j − 1)~
. . .

−j~

 .

To compute Ĵx and Ĵy, we compute 〈j,m|Ĵ−Ĵ+|j,m〉. We can let

Ĵ+|j,m〉 =
√
j(j + 1)−m(m+ 1)~|j,m+ 1〉,

Ĵ−|j,m〉 =
√
j(j + 1)−m(m− 1)~|j,m− 1〉.

Then Ĵ+ and Ĵ− are matrices with entries on the off-diagonal.

7.2 The uncertainty principle

We stated the uncertainty principle as

∆A ·∆B ≥ 1

2
|〈ψ|[Â, B̂]|ψ〉|.

For example, take A = Ĵx and B = Ĵy. Then we get

∆Jx ·∆Jy ≥
1

2
~|〈Jz〉|.

We know that ∆Jx = 0 in the state |+x〉. So the uncertainty principle
implies that 〈Jz〉 = 0 in the state |+x〉, which is true. In the other direction,
we know that 〈Jz〉 = ~/2 in the state |+z〉. So the uncertainty principle tells
us that ∆Jx · ∆Jy ≥ ~2/4. This tells us that the outcomes of the x and y
measurements are necessarily certain.
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If you want to compute the exponential of a matrix, you should first diagonalize
it.

In Chapter 4, we are going to learn time evolution and the Hamiltonian. In
Chapter 6, we are going to deal with continuous systems, position, momentum.
Then we would need to solve differential equation. In Chapter 7, we are going
to look at the example of a quantum harmonic oscillator.

8.1 Classical story to the Hamiltonian

In classical mechanics we study the “phase space” given by positions xi and
momenta pi. The key function is the Hamiltonian H, which is a function of the
xis and pis. We interpret this as the total energy of the system.

Example 8.1. For a non-relativistic particle with mass m in a potential V , we
have

H =
p2

2m
+ V (x).

The equations of motion in Hamiltonian mechanics is given by

ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi
.

So in the case of a non-relativistic particle, we recover

∂H

∂p
=

p

m
= ẋ, ṗ = −∂H

∂x
= −∂V

∂x
= F.

This is precisely Newton’s laws.
Given a function f(xi, pi, t), we have

df

dt
=
∂f

∂t
+
∑
i

[ ∂f
∂xi

dxi
dt

+
∂f

∂pi

dpi
dt

]
=
∂f

∂t
+
∑
i

[ ∂f
∂xi

∂H

∂pi
− ∂f

∂pi

∂H

∂xi

]
=
∂f

∂t
+ {f,H},

where {f, g} is the Poisson bracket. This Poisson bracket is some complicated
object that is not intuitive at all, in classical mechanics. In quantum mechanics,
these become simply commutators of Hermitian operators.

8.2 Time evolution

The problem we want to solve is, given a quantum state |ψ(0)〉, what is |ψ(t)〉?
We expect it to look like |ψ(t)〉 = Û(t)|ψ(0)〉. We like to keep our state nor-
malized, so we want Û(t) to be unitary. We also expect that if dt is small, then
Û(dt) = 1 +O(dt). It is reasonable to also assume

Û(t1 + t2) = Û(t1)Û(t2) = Û(t2)Û(t1).
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Mathematically this identical to what we did with rotations. Then

Û(t) = lim
N→∞

[
1− i

~
Ĥ
( t
N

)]N
= exp

(
− i
~
tĤ
)
.

Since Û is unitary, Ĥ is hermitian. This operator Ĥ is called the Hamiltonian
an it is the generator of time evolution. We will later see that this actually
corresponds to the classical notion of Hamiltonian. We saw that the eigenvalues
of Ĵz corresponded to angular momentum, and so the eigenvalues of Ĥ will be
energies.

We can take the derivative and then write

i~
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉.

This is called the time-dependent Schrödinger equation. Note that we
could have written the rotation as

i~
d

dθ
|ψ(θ)〉 = Ĵz|ψ(θ)〉.

So there is not too much mathematical content in writing in the differential
equation form.

If Ĥ|ψ(t)〉 = E|ψ(t)〉, then we call |ψ(t)〉 and energy eigenstate, and write it
as |E〉. In this case, we get Ĥ|E〉 = E|E〉. This is called the time-independent
Schrödinger equation. If |ψ(0)〉 = |E〉, then

|ψ(t)〉 = e−iĤt/~|E〉 =
(

1− iĤt

~
+

1

2

( iĤt
~

)2

− · · ·
)
|E〉 = e−iEt/~|E〉.

So time-evolution of energy eigenstates simply oscillates by a phase and oscillates
at frequency proportional to E. We sometimes write ω = E/~. For this reason,
energy eigenstates are sometimes called stationary states. Measurements on
energy eigenstates have time-independent probabilities.

Here is a general procedure to solve the time-dependent Schrödinger equa-
tion. First, write

|ψ(0)〉 =
∑
i

ci|Ei〉.

You can do this by finding all the eigenstates |Ei〉 and then letting ci = 〈Ei|ψ(0)〉.
From this finding time evolution is straightforward. We have

|ψ(t)〉 = Û(t)|ψ(0)〉 = Û(t)
∑
i

ci|Ei〉 =
∑
i

cie
−iEit/~|Ei〉.

For a general state, probabilities of measurement outcomes are time-dependent.
This is important, because otherwise the world would be a boring place.
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Given a hermitian operator A, we have

d

dt
〈A〉(t) =

d

dt
〈ψ(t)|Â(t)|ψ(t)〉

=
( d
dt
〈ψ(t)|

)
Â(t)|ψ(t)〉+ 〈ψ(t)|

( ∂
∂t
Â(t)

)
|ψ(t)〉+ 〈ψ(t)|Â(t)

( d
dt
|ψ(t)〉

)
= 〈ψ(t)| ∂

∂t
Â|ψ(t)〉+

i

~
〈ψ(t)|[Ĥ, Â(t)]|ψ(t)〉.

So

d〈A〉
dt

=
〈∂A
∂t

〉
+
i

~
〈[H,A]〉.

This is the quantum analogue of the formula df/dt = ∂f/∂t− {H, f}.
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We saw that

d

dt
〈Â〉 =

〈∂Â
dt

〉
+
i

~
〈[Ĥ, Â]〉.

If Â has no time dependence, then d〈A〉/dt = 0 for all states if and only if
[Ĥ, Â] = 0. So conserved quantities correspond to operators that commute with
the Hamiltonian. In particular, [Ĥ, Ĥ] = 0 so H is a conserved quantity.

Recall that the uncertainty principle says that

(∆A)(∆H) ≥ 1

2
|〈ψ|[Â, Ĥ]|ψ〉| = ~

2

∣∣∣d〈Â〉
dt

∣∣∣,
assuming that Â has not time dependence. We can define from this equation a
characteristic time scale associated with Â:

∆tA =
∆A

|d〈Â〉/dt|
.

We can then rewrite our equation as

(∆E)∆tA ≥
~
2
.

This is sometimes called the energy-time uncertainty relation. So the en-
ergy of a rapidly changing state cannot be measured precisely. You can also
interpret this as “if you want to energy precisely then you need to do it over a
long time.”

9.1 Spin particle in a magnetic field

Take a spin particle. Then the Hamiltonian in a magnetic field is given by
Ĥ = −~̂µ · ~B, where the magnetic moment is given by

~µ =
gq

2mc
~S.

Let us choose ~B = Bz ẑ. Then we get

Ĥ = ω0Ŝz

for some constant ω0.
Suppose we have a spin-1/2 particle. The eigenstates of Ĥ are |+z〉 and |−z〉

with eigenvalues ~ω0/2 and −~ω0/2. Then we have

Û(t) = e−Ĥt/~ = e−iω0Ĵzt/~ = R̂(ω0tk̂).
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So, for instance, if |ψ(0)〉 = |+x〉 we get

|ψ(t)〉 = Û(t)|ψ(0)〉 = |+ cos(ω0t)x+ sin(ω0t)y〉

up to a phase.
Now let us take a magnetic field

~B = B0k̂ +B1 cos(ωt)̂i.

Then our Hamiltonian is Ĥ = ω0Ŝz + ω1 cos(ωt)Ŝx. The equation we have to
solve is

~
2

(
ω0 ω1 cosωt

ω1 cosωt −ω0

)(
a(t)
b(t)

)
= i~

(
da/dt
db/dt

)
.

We solve in the special case when ω1 � ω0. The strategy we are going to
exploit is to write (

a(t)
b(t)

)
=

(
c(t)e−iω0t/2

d(t)eiω0t/2

)
.

If ω1 = 0 then c(t) and d(t) are constants. If you just plug in the equation, we
get

i

(
dc/dt
dd/dd

)
=
ω1

2
cosωt

(
d(t)eiω0t

c(t)e−iω0t

)
=
ω1

4

(
(ei(ω0−ω)t + ei(ω0+ω)t)d(t)

(e−i(ω0−ω)t + e−i(ω0+ω)t)c(t)

)
.

If ω0 = ω, then ei(ω0+ω)t average to zero. So then we get the smeared equation

i

(
dc/dt
dd/dt

)
=
ω1

4

(
d
c

)
.

This gives the approximate solution that are linear combinations of e±iω1t/4.
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We are now going to look at continuous space. This is Chapter 6 of Townsend.

10.1 Position

Suppose there is a particle with discrete position so that particles can only be
at positions x1, . . . , xn. Then the quantum state can be written as

|ψ〉 =

n∑
i=1

ci|xi〉.

This is very much like what we have been doing so far. We would have 〈xi|xj〉 =
δij . For instance, you might have some laboratory experiment where there are
finitely many potential wells. But more commonly we are used to continuous
space.

We generalize this to a continuous quantity. We have position x, which is
a continuous quantity. Our state is going to be parametrized by a continuous
function ψ(x), often called the wave function of the state.

In this case, the probability of the particle being at exactly position 0 is
going to be zero. But we have this probability density

ψ(x) = 〈x|ψ〉.

Then the probability of the particle being found at x0 ≤ x ≤ x1 is∫ x1

x0

dx|ψ(x)|2 =

∫ x1

x0

dx|〈x|ψ〉|2.

We also note that we can also write

|ψ〉 =

∫ ∞
−∞

(〈x|ψ〉)|x〉 =

∫ ∞
−∞

dxψ(x)|x〉.

We note that we are only looking at position now, and we are going to ignore
spin. You can look at particles that have both spin and position, but we are
going to ignore these to make things simpler.

Analogously to the discrete case, we are going to define the inner product as

〈χ, ψ〉 =

∫
dxχ∗(x)ψ(x).

A normalized state satisfies

〈ψ|ψ〉 =

∫
dxψ∗(x)ψ(x) =

∫
dx|ψ(x)|2 = 1.

We want |ψ〉 to have no units, because they are normalized. This implies

that ψ(x) has units of length−1/2 and so |x〉 also has units of length−1/2. The
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position eigenstate |x〉 is not really a state, and in particular, 〈x|x〉 6= 1. Our
position eigenstates of the inner product

〈x|x′〉 = δ(x− x′),

where δ is the Dirac delta. This is the closest we can get to orthonormality.

10.2 Position and momentum operators

Given a wave function ψ(x), we can translate it to get a new wave function
ψ′(x) = ψ(x − a). You can see that this is a linear operation. So we have an
operator T̂ (a) such that

T̂ (a)|x〉 = |x+ a〉,

and make 〈x|T̂ (a)|ψ〉 = 〈x− a|ψ〉.
This is analogous to the rotation R̂(θk̂). We are going to have something

like

T̂ (da) ≈ 1− i

~
p̂xda,

where p̂x is the hermitian generator of translations. It has units of momentum,
and we call it the momentum operator. We can also define the position
operator

x̂|x〉 = x|x〉,

so that

x̂|ψ〉 =

∫
dxψ(x)x̂|x〉 =

∫
dxxψ(x)|x〉.

Let us compute the commutator of the position and momentum operators.
We have

x̂T̂ (a)|ψ〉 = x̂

∫
dx

dxψ(x− a)|x〉 =

∫
dxxψ(x− a)|x〉,

T̂ (a)x̂|ψ〉 = T̂ (a)

∫
dxxψ(x)|x〉 =

∫
dx (x− a)ψ(x− a)|x〉.

So the operations don’t commute and we get

(x̂T̂ (a)− T̂ (a)x̂)|ψ〉 = a

∫
dxψ(x− a)|x〉 ≈ a|ψ〉+ a2

∫
dxψ′(x)|x〉+ · · · .

Using the fact that p̂x is the generator, we get

[x̂, p̂x] = i~.
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The uncertainty principle implies that

(∆x)(∆px) ≥ ~
2
,

which is called Heisenberg’s uncertainty principle.
Still we haven’t talked about what the momentum operator actually does.

This can be computed as

T̂ (∆x)|ψ〉 =
(

1− i

~
p̂x∆x

)
|ψ〉 =

∫
dxψ(x−∆x)|x〉 ≈ |ψ〉 −∆x

∫
dxψ′(x)|x〉.

So we get

p̂x|ψ〉 = −i~
∫
dx
dψ(x)

dx
|x〉.

That is, momentum operators act by taking derivatives.
Let us find eigenstates of momentum. We have −i~(dψ/dx) = pψ(x), and

so ψ(x) = eipx/~. These are called plane waves. These are not normalizable
just like the position eigenstates |x〉. However we still have

〈p|p′〉 = δ(p− p′), 〈x|p〉 = ψp(x) =
1√
2π~

eipx/~.

For a nontrivial particle, the Hamiltonian is given by

Ĥ =
1

2m
p̂2
x + V (x̂).

Then |ψ(t)〉 obeys the Schrödinger equation. Since this does not have explicit
time dependence,

d

dt
〈x〉 =

i

~
〈ψ|[Ĥ, x̂]|ψ〉 =

1

m
〈p̂x〉.
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We defined the momentum and position operators, each with eigenstates |p〉
and |x〉. The relation between them are

〈x|x′〉 = δ(x− x′), 〈p|p′〉 = δ(p− p′), 〈x|p〉 =
1√
2π~

eipx/~.

11.1 Base change between position and momentum

We know that |x〉 states are a basis, and any state can be written as

|ψ〉 =

∫
dxψ(x)|x〉.

The states |p〉 also is a basis, and thus we should be able to always write

|ψ〉 =

∫
dp ψ̃(p)|p〉.

To change basis, we have

ψ̃(p) = 〈p|ψ〉 =

∫
dx 〈p|x〉〈x|ψ〉 =

∫
dx

e−ipx/~√
2π~

ψ(x).

The inverse transform will be given by

ψ(x) =

∫
dp
e+ipx/~
√

2π~
ψ̃(p).

That is, basis change is given by a Fourier transform.
Note that when we look at |x〉 in the momentum basis, the wave function is

given by

ψ̃x(p) =
1√
2π~

e−ipx/~.

So x̂|p〉 is given by the wave function

xψ̃x(p) = i~
∂

∂p
ψ̃x(p).

That is, x̂ looks like i~(∂/∂p) in the |p〉-basis.

11.2 Gaussian wave packet

There is a Gaussian wave packet given by the formula

ψ(x) =
1

π1/4a1/2
e−x

2/2a2 ,
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for some real constant a. This satisfies
∫
dx|ψ(x)|2 = 1. Given this function,

we can compute 〈x〉 = 0 and

〈x2〉 =

∫
dxx2|ψ(x)|2 =

1

2
a2.

So ∆x = a/
√

2. If you look at the same state in momentum space,

ψ̃(p) =

∫ ∞
−∞

1√
2π~

e−ipx/~
1

a1/2π1/4
e−x

2/2a2

=
1

(2~a)1/2π3/4

∫ ∞
−∞

dx e−(x−x0)2/2a2e−p
2a2/2~2

=
a1/2

h1/2π1/4
e−p

2a2/2~2

.

This is still a Gaussian form! The width is given by ~/a. Then we can compute
〈px〉 = 0 and 〈p2

x〉 = ~2/2a2 and ∆p = ~/(
√

2a). We can then calculate

∆x∆p =
a√
2

~√
2a

=
~
2
.

So it satisfies the equality for the Heisenberg uncertainty principle. Gaussian
wave packets are minimum-uncertainty states, i.e., has the smallest possible
value of ∆x∆p.

If ψ(x) is a minimum-uncertainty state at t = 0, is it still at time t > 0?
The answer will necessarily depend on the Hamiltonian. Let us consider the
case of a free particle, Ĥ = p̂2

x/2m. Notice that [Ĥ, p̂x] = 0 and so energy and
momentum eigenstates are the same. Then |p〉 has energy Ep = p2/2m.

Now we can compute the time evolution of a free particle. We want to find
ψ(x, t). We have

ψ̃(p, 0) =
a1/2

~1/2π1/4
e−p

2a2/2~2

.

So we get

ψ̃(p, t) =
a1/2

~1/2π1/4
e−ip

2t/2m~e−p
2a2/2~2

.

Taking the Fourier transform gives

ψ(x, t) =

∫
dp

1√
2π~

eipx/~e−ip
2t/2m~ a1/2

~1/2π1/4
e−p

2a2/2~2

∼ exp
(
− x2

2a2(1− i~t/ma2)

)
,

and this has uncertainty

∆x =
a√
2

(
1 +

~2t2

m2a4

)1/2

.
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For a free particle, the Hamiltonian is given by Ĥ = p̂2
x/2m. This has kinetic

energy but no potential energy. The energy eigenstates are |p〉 and Ĥ|p〉 =
(p2/2m)|p〉.

12.1 Particle in potential

For a particle in a potential, the Hamiltonian is given by

Ĥ =
1

2m
p̂2
x + V (x̂)

for a potential function V .
Let us solve an actual problem. Consider the potential well

V (x) =

{
0 |x| < a/2,

V0 |x| > a/2,

for some V0 > 0 a real number. Then V (x̂) as an operator is

V (x̂)|x〉 = V (x)|x〉 =

{
0 |x| < a/2

V0|x〉 |x| > a/2.

Clearly position eigenstates are always eigenstates of potential energy and mo-
mentum eigenstates are always eigenstates of kinetic energy.

Given |ψ(0)〉 we want to know |ψ(t)〉. In the position basis, the time-
dependent Schrödinger equation becomes[

− ~2

2m

∂2

∂x2
+ V (x)

]
ψ(x, t) = i~

∂

∂t
ψ(x, t).

To actually solve it, we look at the time-independent Schrödinger equation.
We are then trying to solve

− ~2

2m

∂2

∂x2
ψ(x) + V (x)ψ(x) = Eψ(x).

There are two regions:{
d2

dx2ψ(x) = − 2mE
~2 ψ(x), |x| < a/2,

d2

dx2ψ(x) = − 2m(E−V0)
~2 ψ(x), |x| > a/2.

The solutions to these equations depend on the signs of the constants.
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Consider first the range 0 < E < V0. Then in |x| < a/2 the solution is going
to be oscillating and in |x| > a/2 it is going to be exponential.1 Then

ψ(x) =


A sin kx+B cos kx, |x| < a/2,

Ceqx +De−qx, x > q/2,

F eqx +Ge−qx, x < −q/2,
k =

√
2mE

~2
, q =

√
2m(V0 − E)

~2
.

Here, the wavefunction must not blow up as |x| → ∞. This shows that C =
G = 0.

There are also some boundary conditions at x = ±a/2. We want to require
ψ(x) to be continuous. Because we need to be able to take the derivative. Then

A sin(ka/2) +B cos(ka/2) = De−qa/2,

−A sin(ka/2) +B cos(ka/2) = Fe−qa/2.

In this case, we can also impose that dψ/dx is continuous, because d2ψ/dx2 is
locally bounded by the equation we are trying to solve. So we get two more
equations. There is also a normalization constraint. That is, we won’t find a
solution for all E and get a discrete spectrum.

You can solve the equation, but we are going to simplify it by sending V0 →
∞. Then q →∞ and so ψ(x)→ 0 for all |x| > a/2. The equations become

A sin(ka/2) +B cos(ka/2) = 0,

−A sin(ka/2) +B cos(ka/2) = 0.

Because I don’t want A = B = 0, either sin(ka/2) = 0 or cos(ka/2) = 0. That
means k = 0, π/a, 2π/a, 3π/a, . . .. Then

En =
~2k2

n

2m
=

~2n2π2

2ma2
.

The solutions are given by

k1 =
π

a
, ψ1(x) =

√
2

a
cos
(πx
a

)
,

k2 =
2π

a
, ψ2(x) =

√
2

a
sin
(2πx

a

)
, . . . .

For unbound particles, the eigenstates are going to be joined oscillating
functions. They are not normalizable and have a continuous spectrum. But
you can add (integrate) them together to get normalizable states, like the free
particle in Gaussian state.

1A general rule is that if E > V (x) the wave function will be locally oscillating and if
E < V (x) the wave function will be locally exponential. In classical mechanics, E < V (x)
doesn’t make sense, and this is usually reflected in quantum mechanics by exponential decay.
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For the time-independent Schrödinger equation, E < V gives an oscillating
solution and E > V gives an exponentially growing or decreasing solution. The
bound solutions are going to have discrete energy, and the oscillating solutions
are going to be a continuum.

13.1 Physical interpretation of oscillating solutions

Although the oscillating states are not normalizable, there is some physics we
can extract from these solutions. Consider a potential given by

V (x) =

{
0 x < 0

V0 x ≥ 0.

Let us look at the solutions for 0 < E < V0, i.e., solutions that exponentially
decay on the right and oscillates on the left. They are going to look like

ψ(x) =

{
Aeikx +Beikx x < 0,

Ce−qx x > 0,
k =

√
2mE

~2
, q =

√
2m(V0 − E)

~2
.

The conditions ψ begin continuous and differentiable at x = 0 give A+B = C
and ikA− ikB = −qC. Then C = (2k/(k + iq))A = (2k/(k − iq))B. From this
we see that |A| = |B|.

You can solve the similar problem for E > V0 and the answer is going to
have a slightly different form:

ψ(x) =

{
Aeikx +Be−ikx x < 0,

Ceik
′x +De−ik

′x x > 0,
k =

√
2mE

~2
, k′ =

√
2m(E − V0)

~2
.

Let us just look at the solutions with D = 0. Then continuity of ψ and ψ′ again
gives C = (2k/(k + k′))A = (2k/(k − k′))B. Here we observe |A| 6= |B|.

The time evolution of the energy eigenstates are given by

ψ(x, t) = e−iEt/~ψ(x).

Then eikx becomes ei(kx−ωt) where ω = E/~. This is a right moving wave, and
likewise e−ikx is a left moving wave.

In the case of E < V0, the interpretation is that there is stream of particles
going in the left direction and another stream of particles with same intensity
going in the right direction, on the x < 0 region. From the classical perspective,
you can think of these particle bouncing back from the potential wall.

Now what is happening for E > V0? We can think of A as particles that are
moving to the right. Then B are the particles that bounces back, and C are the
particles that get through.
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There is a conservation law related to the conservation of the particles in
the interpretation. We define the probability current as

jx =
~

2πi

(
ψ∗
∂ψ

∂x
− ψ∂ψ

∗

∂x

)
.

If we write the probability density ρ = ψ∗ψ, then there is the conservation law

∂ρ

∂t
+

∂

∂x
jx = 0.

In the case of ψ = Aei(kx−ωt) +Bei(−kx−ωt), the current is given by

jx =
~k
m

(
|A|2 − |B|2

)
.

This ~k/m can be thought of as velocity and |A|2 can be thought of as right-
moving flux and |B|2 as left-moving flux.

This let us define reflection/transmission coefficients. In the case of
E < V0, we have

jx =

{
~k
m (|A|2 − |B|2) = 0 x < 0,

0 x > 0.

The reflection coefficient is given by

R =
|B|2

|A|2
= 1.

For the E > V0 case, the currents are

jtrans =
~k′

m
|C|2, jinc =

~k
m
|A|2, jref =

~k
m
|B|2.

Then the reflection and transmission coefficients are

R =
jref

jinc
=
(k − k′
k + k′

)2

, T =
jtrans

jinc
=

4kk′

(k + k′)2
, R+ T = 1.

Consider potential that looks like

V (x) =

{
0 |x| > a/2,

V0 |x| ≤ a/2.

If we send things from the left, there is something coming out from the right,
unlike the classical case. This is called tunneling. I will not compute this, but
the result is

T =
jtrans

jinc
=

1

1 + k2+q2

2kq sinh2(qa)
≈
( 4kq

k2 + q2

)
e−2qa.

The price you pay for tunneling is the exponential factor e−2qa.
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13.2 Ladder operators

The Hamiltonian for the harmonic oscillator is given by

Ĥ =
p̂2
x

2m
+

1

2
mω2x̂2.

We have a useful fact that [x̂, p̂x] = i~. In the case of Ĵ , we used the trick of
defining Ĵ± = Ĵx ± iĴy and showed that [Ĵz, Ĵ±] = ±~Ĵ±.

We are going to use a similar trick and find ladder operators â and â†

such that

[Ĥ, â] = −~ωâ, [Ĥ, â†] = ~ωâ†.

Note that [x̂2, p̂x] is proportional to x̂ and [p̂2
x, x̂] is proportional to p̂x. So we

can define

â =

√
mω

2~

(
x̂+

i

mω
p̂x

)
.

Then [Ĥ, â] = −~ωâ and [â, â†] = 1 and Ĥ = â†â+ 1
2~ω.
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There is a midterm on March 28, which will cover mostly chapters 3, 4, 6, and
a little bit of 1, 2, 7.

14.1 The harmonic oscillator

We are now going to look at the harmonic oscillator given by the Hamiltonian

Ĥ =
1

2m
p̂2
x +

1

2
mω2x̂2.

You would expect the wavefunction to be large in the middle and decay. We are
going to just guess the ground state as a Gaussian wave function, and it turns
out to work. This is a good guess because Ĥ is roughly symmetric in p̂x and x̂,
and the Fourier transform of the Gaussian has exactly the same form.

So let us see what happens when we plug it in. We are looking for energy
eigenstates, ψ(x) such that

Eψ(x) =
(
− ~2

2m

d2

dx2
ψ(x) +

1

2
mω2x2ψ(x)

)
.

If we guess ψ(x) = Ce−Ax
2

, we get A = mω/2~ and E = ~ω/2. So we have
found an energy eigenstate. I claim, but am not going to prove, that this is the
lowest energy eigenstate. That is, it really is the ground state. Let us give this
state a name

|0〉 =

∫ ∞
−∞

dx
(mω
π~

)1/4

e−mωx
2/2~|x〉.

Last class we talked about the latter operators â, â† such that

[Ĥ, â†] = ~ωâ†, [Ĥ, â] = −~ωâ.

These relations come from [Ĥ, x̂] = −i~/mp̂x and [Ĥ, p̂x] = i~mω2x̂. We can
set

â =

√
mω

2~

(
x̂+

i

mω
p̂x

)
, â† =

√
mω

2~

(
x̂− i

mω
p̂x

)
.

We have normalized the operators so that they satisfy [â, â†] = 1.
So the claim is, given an energy eigenstate |E〉 where Ĥ|E〉 = E|E〉, we can

find a new state â†|E〉 such that

Ĥâ†|E〉 = (E + ~ω)â†|E〉.

Similarly, we can lower the energy by acting with â:

Ĥâ|E〉 = (E − ~ω)â|E〉.
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We already have an eigenstates |0〉. We can ask what â|0〉 and â†|0〉 are.
Our guess is that â|0〉 = 0 since E = −~ω/2 is awkward for V (x) ≥ 0. Indeed,
we compute

〈x|â|0〉 =

√
mω

2~

(
xe−mωx

2/2~ +
i

mω
(−i~)

(
−mωx

~

)
e−mωx

2/2~
)

= 0.

On the other hand, if we act â†, we get

〈x|â†|0〉 =

√
2mω

~
xψ(x).

This state should have E = 3~ω/2. We might as well call

|1〉 =
â†|0〉

(〈0|ââ†|0〉)1/2
.

Then you can define |2〉 to be the normalization of â†|1〉, and if you work out

the algebra, you should get ψ2(x) = (c1x
2 + c2)e−mωx

2/2~. In general, if you
define |n〉 to be the normalization of â†|n−1〉, its wavefunction will be given by

ψn(x) = 〈x|n〉 = Pn(x)e−mωx
2/2~

for some degree n polynomial Pn(x).
It is useful to define the number operator

N̂ = â†â.

Note that N̂ |0〉 = 0. It turns out that N̂ |n〉 = n|n〉 for all n. This follows from
the useful relations

â†|n〉 =
√
n+ 1|n+ 1〉, â|n〉 =

√
n|n− 1〉.

You can also check that Ĥ = ~ω(N̂ + 1/2).
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This lecture was taught by Prateek Agrawal. We defined the raising operator

â† =

√
mω

2~

(
x̂− i

mω
p̂
)
,

and applying this operator gives higher eigenstates by â† =
√
n+ 1|n+ 1〉. The

wave functions have the pattern of ψn(−x) = (−1)nψn(x), and

ψn(x) = Pn(x)e−mω
2x2/2~

for some degree n polynomial Pn(x). We can express this using the parity
operator

Π̂|n〉 = (−1)n|n〉.

This commutes with the Hamiltonian: [Ĥ, Π̂] = 0.

15.1 Coherent states

We want to find eigenfunctions of the lowering operator. Recall that if we set
up a Gaussian wave function with a free particle, it spreads out. But for the
Harmonic oscillator, this does not happen.

For n 6= 0, the states |n〉 are not minimum uncertainty states. Indeed,
Gaussian wave functions are the only minimum uncertainty states. We want
our wave function to take the form of a Gaussian wave packet for any given
time. That is,

ψ(x, t) = Ceiφ(t)e−(x−x0(t))2/2a2(t)eip0(t)x/~.

Now we want this wave function to satisfy the Hamiltonian equation. Then
it has to satisfy the equations

d〈px〉
dt

= −
〈∂V
∂x

〉
= −mω2〈x〉, d〈x〉

dt
=
〈px〉
m

.

Note that 〈x〉 = x0(t) and 〈px〉 = p0(t). This is then just the classical harmonic
oscillator. It can be written as

x0(t) = A sin(ωt+ φ).

Using this, you can then compute a(t) =
√
~/mω and φ(t) = −ωt/2−p0(t)x0(t)/2~.

If you write out, we get

ψ(x, t) =
(mω
π~

)1/4

e−
i
2 (ωt+

p0(t)x0(t)
~ )e−mω(x−x0(t))2/2~eip0(t)x/~.

These have ∆x = a/
√

2 and ∆x∆p = ~/2 at any time.
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You can check that

〈x|â|ψ〉 =

√
mω

2~

(
x+

~
mω

d

dx

)
ψ(x, t) =

√
mω

2~

(
x0(t) +

i

mω
p0(t)

)
ψ(x, t)

=

√
mω

2~
Ae−iωtψ(x, t).

So

â|ψ〉 = α(t)|ψ〉, α(t) =

√
mω

2~
Ae−iω0t.

You can also define coherent state as eigenstates of â and then deduce this.
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Coherent states are eigenstates of the lowering operator:

â|α〉 = α|α〉.

Here â is not hermitian and so |α〉 is not associated with a measurement. I
think this is not a good motivation for coherent states.

The other way to characterize them is that they are minimum uncertainty
states. The ground state |0〉 is a Gaussian wave packet and so it is a minimum
uncertainty state. But for |n〉, it is not a minimum uncertainty state. It is
a special fact of the harmonic oscillator that there are minimum uncertainty
states that remain so under time evolution.

The wavefunctions of coherent states are given by

ψ(x, t) =
(mω
π~

)1/4

e−
i
2 [ωt+ 1

~p0(t)x0(t)]e−
1
2~mω(x−x0(t))2e

1
~ ip0(t)x,

where x0(t) and p0(t) solve the classical equation of motion.
If we look at |n〉 for n � 1, it looks complicated but it stays the same as

time evolves, up to a phase. If we take a coherent state, it looks like a Gaussian,
but it oscillates as time evolves. So it is more closer to classical physics. This
is used in experiments a lot because they have minimum uncertain.

Given a coherent state |α〉, the probability of finding energy En = ~ω(n+ 1
2 )

is

Pn = |〈n|α〉|2 =
∣∣∣e− 1

2 |α|
2 αn√

n!

∣∣∣2 = e−|α|
2 |α|2n

n!
.

Because 〈N̂〉 = 〈â†â〉 = |α|2, we can also write

Pn = e−〈N〉
|N |n

n!
.

This is a Poisson distribution. If 〈N〉 � 1, then the mean is 〈N〉 and its
standard deviation is

√
〈N〉. This means that states with higher energy are

more well explained by classical physics.

16.1 Particles in three dimension

We are now going to look at particles in higher dimension. There are differ-
ent coordinates we can work with. In the future, we are going to solve the
Schrödinger equation for the hydrogen atom. It is natural to work in spherical
coordinates there.

In 3-dimension, there are going to be position operators in 3-dimensions: x̂,
ŷ, ẑ. We assume that they commute with each other.

[x̂, ŷ] = [ŷ, ẑ] = [ẑ, x̂] = 0.

This allows us to talk about simultaneous eigenstates |x, y, z〉 such that

x̂|x, y, z〉 = x|x, y, z〉, ŷ|x, y, z〉 = y|x, y, z〉, ẑ|x, y, z〉.
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Just as we did in the 1-dimensional problem, we can write a general state as

|ψ〉 =

∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ ∞
−∞

dz ψ(x, y, z)|x, y, z〉 =

∫
d3r ψ(~r)|~r〉.

A stated is normalized if ∫
d3~r|ψ(r)|2 = 1.

We also chose

〈x, y, z|x′, y′, z′〉 = δ(x− x′)δ(y − y′)δ(z − z′).

We are going to write this as

〈~r|~r′〉 = δ3(~r − ~r′).

Define the (unitary) translation operator as

T̂ (~a)|~r〉 = |~r + ~a〉.

Translations in different direction are supposed to commute. For instance, we
should have T̂ (axî)T̂ (ay ĵ) = T̂ (ay ĵ)T̂ (axî).

There are the (hermitian) momentum operators p̂x, p̂y, p̂z that generate the
translation operators:

T̂ (axî) = e−iaxp̂x/~.

For a general vector â, we can also define

T̂ (~a) = e−i~̂p·~a/~, ~̂p = (p̂y, p̂y, p̂z).

This is well-defined because p̂x, p̂y, p̂z pairwise commute.
In the case of 1-dimension, we had

[x̂, p̂x] = i~, [ŷ, p̂y] = i~, [ẑ, p̂z] = i~.

We can also ask about commutators with mixed directions. If I translate in
the y-direction and then act by x̂, this is the same as acting by x̂ and then
translating. So x̂ and p̂y should commute. So to summarize,

[x̂i, p̂y] = i~δij .

If we act on a wavefunction, the momentum operators are going to look like

p̂x 7→ −i~
∂

∂x
, p̂y 7→ −i~

∂

∂y
, p̂z 7→ −i~

∂

∂z
.

Also the momentum eigenstates are going to look like

〈~r|~p〉 =
1

(2π~)3/2
ei~p·~r/~ = 〈x|px〉〈y|py〉〈z|pz〉.
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16.2 Multiparticle states

Eventually we want to look at the hydrogen atom, and this is a system of two
particles. If we have two particles, the position eigenstates has to contain the
data of the position of both particles. So we can write this eigenstate as

|~r1, ~r2〉 = |~r1〉1 ⊗ |~r2〉2 = |~r1〉1|~r2〉2.

If I have a general vector space V consisting of |ψ〉 =
∑n
i=1 ci|vi〉 then its

tensor product V ⊗ V consists of

|ψ〉 =

n∑
i=1

n∑
j=1

cij |vi〉1|vj〉2 =

n∑
i=1

cij |vi, vj〉.

We will use both notations.
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I want to resume what we are talking last time, which is states of two particles.
We can label the position eigenstates as

|~r1, ~r2〉 = |~r1〉1|~r2〉2.

There are position operators that act as

x̂1|~r1, ~r2〉 = x1|~r1, ~r2〉, x̂2|~r1, ~r2〉 = x2|~r1, ~r2〉, ŷ1|~r1, ~r2〉 = y1|~r1, ~r2〉, · · · .

There are also translation operators

T1(~a)|~r1, ~r2〉 = |~r1 + ~a,~r2〉, T2(~a) = |~r1, ~r2〉 = |~r1, ~r2 + ~a〉.

We can talk about their generators,

T̂1(~a) = e−i~̂p1·~a/~, T̂2(~a) = e−i~̂p2·~a/~,

where ~̂p1 and ~̂p2 are hermitian momentum operator. We can also talk about the
total momentum,

~̂P = ~̂p1 + ~̂p2, P̂x = p̂1x + p̂2x, · · · .

Generally, a 2-particle Hamiltonian is going to be given by

Ĥ =
1

2m1
~̂p2

1 +
1

2
~̂p2

2 + V (~̂r1, ~̂r2).

We are interested in the special case of a central potential, given by V (~r1, ~r2) =
V (|~r1 − ~r2|). For instance, in the case of the hydrogen atom, the Coulomb
potential is given by

V (~r1, ~r2) = −e2/|~r1 − ~r2|.

Here V (~r1, ~r2) defines an operator

〈~r′1, ~r′2|V (~̂r1, ~̂r2)|ψ〉 = ψ(~r′1, ~r
′
2)V (~r′1, ~r

′
2).

17.1 Center-of-mass frame

Our goal now is to go to the center-of-mass frame to simplify the problem. We
observe that [Ĥ, ~̂p1] 6= 0 because [V (~̂r1, ~̂r2), ~̂p1] 6= 0 if V has any ~̂r1 dependence.

Likewise [Ĥ, ~̂p2] 6= 0 if V has any ~r2-dependence. However,

[Ĥ, ~̂P ] = 0

if V is translation invariant, i.e., V (~r1, ~r2) = V (~r1 − ~r2). This is because T̂ (~a)

commutes with Ĥ. So we can talk about states |E, ~P 〉 because [Ĥ, ~̂P ] = 0 just
as we have talked about states |j,m〉.
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Let us define the center of mass operator ~̂R, relative momentum ~̂p, and
relative position ~̂r as

~̂R =
m1~̂r1 +m2~̂r2

m1 +m2
, ~̂p =

m2~̂p1 −m1~̂p2

m1 +m2
, ~̂r = ~̂r1 − ~̂r2.

We note that ~̂R, ~̂P are associated with overall motion, while ~̂r, ~̂p are associated
with relative motion. So

[X̂, P̂x] = i~, [x̂, p̂x] = i~, [X̂, p̂x] = 0, [x̂, P̂x] = 0.

That is, (X̂, P̂ ) and (x̂, p̂x) both behave like one-particle motion and momentum.
Using them, we can write

1

2m1
~̂p2

1 +
1

2m2
~̂p2

2 =
1

2M
~̂P 2 +

1

2µ
~̂p2, where

{
M = m1 +m2

µ = m1m2

m1+m2
.

Let us look more closely at this reduced mass µ. We have

1

µ
=

1

m1
+

1

m2
.

So if m2 � m1 then µ ≈ m1. In the case of the hydrogen atom, we have
mp ≈ 2000me and so µ ≈ me. Intuitively, the proton states put and the
electron moves.

We can write the entire Hamiltonian as

Ĥ = Ĥcm + Ĥrel,

where

Ĥcm =
1

2M
~̂P 2, Ĥrel =

1

2µ
~̂p2 + V (~r1 − ~r2).
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Today we are going to talk about orbital angular momentum and spin.

18.1 Orbital angular momentum

Recall that the angular momentum algebra

[Ĵx, Ĵy] = i~Ĵz

followed from R ∼ e−iJθ/~ and properties of rotations. We introduce operators
for orbital angular momentum

~̂L = ~̂r × ~̂p, L̂x = ŷp̂z − ẑp̂y, L̂y = ẑp̂x − x̂p̂z, L̂z = x̂p̂y − ŷp̂x.

If we compute the commutator between the two angular momentum opera-
tors, we get

[L̂x, L̂y] = [ŷp̂x − ẑp̂y, ẑp̂x − x̂p̂z]
= [ŷp̂z, ẑp̂x]− [ẑp̂y, ẑp̂x]− [ŷp̂z, x̂p̂z] + [ẑp̂y, x̂p̂z]

= ŷp̂x[p̂z, ẑ] + x̂p̂y[ẑ, p̂z] = i~L̂z.

There are also the commutation relations

[L̂x, ŷ] = i~x̂, [L̂x, x̂] = 0, [L̂x, p̂y] = i~p̂z, [L̂x, p̂x] = 0.

We also have [L̂x, ~̂r
2] = 0 and so

[~̂L, V (~̂r)] = 0

when V is a central potential. Likewise, [~̂L, ~̂p2] = 0. The conclusion is that,

[~̂L, Ĥ] = 0, if Ĥ =
1

2µ
~̂p2 + V (|~r|).

This is ignoring spin. If there is spin, the conserved quantity is going to be

~̂J = ~̂L+ ~̂S.

Because Ĥ and ~̂L commute, we can find a basis of simultaneous eigenstates.
If you remember the case the spin system, we also had another commuting

operator ~̂J2. The analogue of this is

[~̂L2, L̂z] = 0, [~̂L2, Ĥ] = 0.

So we can name the simultaneous eigenstates of L̂2 and L̂z as

~̂L2|l,m〉 = l(l + 1)~2|l,m〉, L̂z|l,m〉 = m~|l,m〉,
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where l and m are integers with |m| ≤ l.
Because Ĥ also commute with these, we can search for eigenstates of all

three:

Ĥ|E, l,m〉 = E|E, l,m〉, ~̂L2|E, l,m〉 = l(l+1)~2|E, l,m〉, L̂z|E, l,m〉 = m~|E, l,m〉.

We also have raising and lowering operators

L̂± = L̂x ± iL̂y, [L̂z, L̂±] = ±~L̂±.

Then L̂+|l,m〉 ∝ |l,m+ 1〉.

18.2 Particle in a central potential

But we are not satisfied with this abstract description, because these are actual
particles in space. There should be wave functions. To work out the wave
function, it is useful to work in polar coordinates:

|r, θ, φ〉 = |x, y, z〉 where x = sin θ cosφ, y = r sin θ sinφ, z = r cos θ.

Then L̂z corresponds to

L̂z ↔ −i~ ∂

∂φ
, i.e., 〈r, θ, φ|L̂z|ψ〉 = −i~ ∂

∂φ
(〈r, θ, φ|ψ〉).

The other operators correspond to

L̂x ↔ −i~
(

sinφ
∂

∂θ
− cot θ cosφ

∂

∂φ

)
, L̂y ↔ −i~

(
cosφ

∂

∂θ
− cot θ sinφ

∂

∂φ

)
.

Note that none of these involve r or ∂/∂r. Because of this, we can separate
the variables and guess

ψE,l,m(r, θ, φ) = 〈r, θ, φ|E, l,m〉 = R(r)Yl,m(θ, φ).

It turns out that this works. The functions Yl,m(θ, φ) are called spherical
harmonics. We them to be normalized as∫ 2π

0

dφ

∫ 1

−1

d(cos θ)|Yl,m(θ, φ)|2 = 1.

So let us find Yl,m = 〈θ, φ|l,m〉. We have 〈θ, φ|L̂z|l,m〉 = m~|l,m〉. We

know that L̂z act as −i~∂/∂φ and so

−i~ ∂

∂φ
Yl,m(θ, φ) = m~Yl,m(θ, φ).

So we expect Yl,m(θ, φ) ∝ eimφ for the φ part. But L̂2 is going to be complicated.
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Instead of expanding everything out, we use L̂+|l, l〉 = 0. We can write

L̂± = L̂z ± iL̂y = ±i~e±iφ
(
±i ∂
∂φ
− cot θ

∂

∂φ

)
.

Using this, we can write ( ∂
∂θ
− l cot θ

)
Yll(θ, φ) = 0

and so Yll(θ, φ) = cll(sin θ)
leilφ.
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We were studying a particle in a central potential

Ĥ =
p̂2

2µ
+ V (|~̂r|).

This gave rotationally invariant operators ~̂L2 and L̂z that commute with Ĥ.

Our strategy is to look for states |E, `,m〉 which are eigenstates of Ĥ, ~̂L2, L̂z
simultaneously. We are also going go work in polar coordinates. Because p̂2

decomposes into a radial part and an angular part, we can look for wavefunctions

〈r, θ, φ|E, `,m〉 = R`(r)Y`m(θ, ϕ).

Here we want

~̂L2|`,m〉 = `(`+ 1)~2|`,m〉, L̂z|`,m〉 = m~|`,m〉.

In particular, Y`,m(θ, φ) are universal for all central potentials but R`(r) depends
on V (|r|). So these functions are going useful for any central potentials.

Our goal is to solve this for the Coulomb potential

V (r) = −e
2

r
, where e2 ≈ 1

137
~c.

19.1 Spherical harmonics

Last time we have worked out the operators

L̂z → −i~
∂

∂φ
, L̂± → −i~e±iφ

(
±i ∂
∂θ
− cot θ

∂

∂φ

)
.

From the first equation, we expect Y`,m(θ, φ) ∝ eimφ. Then we would expect

L̂+|`, `〉 = 0 and so (∂/∂θ − ` cot θ)Y`,`(θ, φ) = 0. This gives

Y`,`(θ, φ) = c`,`(sin θ)
`ei`φ =

(−1)`

2``!

√
(2`+ 1)!

4π
ei`φ(sin θ)`.

Here, note that if we want Y`,m(θ, φ) ∝ eimφ, then

Y`,m(θ, φ+ 2π) ∝ eim(φ+2π) =

{
eimφ if m ∈ Z
−eimφ if m ∈ Z + 1

2 .

Then if we want this to be a single-valued wave function, we would need `,m ∈ Z.
But for spin particles, we did not require this because spin are not rotations.

Anyways, once we know |`,m〉, we can compute |`,m − 1〉 by applying L̂−
and then normalizing it:

Y`,m−1(θ, φ) =
1√

`(`+ 1)−m(m− 1)

1

~
(−i~e−iφ)

(
−i ∂
∂θ
− cot θ

∂

∂φ

)
Y`,m(θ, φ).
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The operator ~̂L2 is given by

~̂L2 = −~2
[ 1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

sin2 θ

∂2ψ

∂φ2

]
.

Even though we have not solved the eigenvalue equation for ~̂L2, it is auto-
matically going to be satisfied because we have used the raising and lowering

operators L̂±. You can explicitly check ~̂L2|`,m〉 = `(`+ 1)~2|`,m〉 if you want.

19.2 Boundary condition for the radial function

To compute the radial functions, we now actually need to solve the time-
independent Schrödinger equation:〈

r, θ, φ
∣∣∣( p̂2

2µ
+ V (|r|)

)∣∣∣E, `,m〉 = EψE,`,m(r, θ, φ) = ERE,`(r)Y`,m(θ, φ).

Then the equation we want to solve is[
− ~2

2µ

( ∂2

∂r2
+

2

r

∂

∂r

)
+

1

2µr2
`(`+ 1)~2 + V (r)

]
RE,`(r) = ERE,`(r)

after canceling out the angular part.
The equation is getting is nicer but it is still ugly to solve. The trick is to

convert (∂2/∂r2 + (2/r)∂/∂r)R into a nice factor (∂2/∂r2)u. Note that

∂2

∂r2
(rR) = r

( ∂2

∂r2
+

2

r

∂

∂r

)
R.

So uE,`(r) = rRE,`(r) satisfies the equation[
− ~2

2µ

d2

dr2
+
`(`+ 1)~2

2µr2
+ V (r)

]
uE,`(r) = EuE,`(r).

If we can solve this for uE,`(r) for V (r) = −e2/r, we will have solved the
hydrogen atom. This now just looks like a one-dimensional particle in a potential
well, with

Veff(r) =
`(`+ 1)~2

2µr2
− Z e

2

r
.

We’re looking for bound states with E < 0, since plane wave-like solutions
exist when E > 0. We are going to impose normalizability:∫

d3r|ψ(r)|2 = 1 = c

∫
r2drR(r)2.

So we want r2R(r)2 to not grow too fast. The decay r2R2 ∼ r−1−ε is enough.
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We are looking for solutions to ψE,`,m(r, θ, φ) = RE,`(r)Y`,m(θ, φ). If we define
uE,`(r) = rRE,`(r), then

− ~2

2µ

d2

dr2
uE,`(r) + Veff(r)uE,`(r) = EuE,`(r),

where

Veff(r) = −Z e
2

r
+
`(`+ 1)~2

2µr2
.

The boundary condition for large r was that
∫
drr2|R(r)|2 < ∞. For small

r, we have (assuming that ` > 0)∣∣∣`(`+ 1)~2

2µr2

∣∣∣� ∣∣∣−Z e2

r

∣∣∣.
Then the centrifugal term dominates and the equation looks like

− d2

dr2
uE,`(r) +

`(`+ 1)

r2
uE,`(r) ≈ E

2µ

~2
uE,`(r).

If we guess that the leading term is uE,`(r) ∝ r−α, then

[−α(α+ 1)u−α−2 + · · · ] + [`(`+ 1)r−α−2 + · · · ] ≈ E 2µ

~2
r−α.

So we get α(α+ 1) = `(`+ 1) and so either α = ` or α = −(`+ 1). But we again
have

∫
drr2|R(r)|2 =

∫
dr|u|2. This shows that the solution for α = ` grows

too fast and so α = −(`+ 1). So for ` ≥ 1, we want uE,`(r) ∼ r`+1 as r → 0.
The case ` = 0 is a bit subtle. We only have the Coulomb term and so

− ~2

2µ

d2

dr2
u(r)− Z e

2

r
u(r) = Eu(r).

If we assume u(r) = r−α + · · · then the equation becomes

− ~2

2µ
α(α+ 1)r−α−2 + · · · − Ze2r−α−1 + · · · = Er−α + · · · .

So α = 0 or α = −1. Both of u ∼ r0 and u ∼ r1 satisfies normalizability.
The “correct” choice is to pick u ∼ r1 and R ∼ const. The textbook gives

two reasons for this:

(1) problem 10.1: 〈pr〉 is not real if R ∼ r−1.

(2) Because ∇2r−1 = δ3(~r), and so the solution with R ∼ r−1 is really solving
the Schrödinger equation with

V (r) = −Z e
2

r
+ bδ3(~r).
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Really, it is not clear whether the interaction between the proton and
the electron is just −Ze2/r or −Ze2/r + bδ3(~r). This is an empirical
fact that in our universe, b is really small. So RE,`(r) = const is a good
approximation.

Anyways, in both ` = 0 and ` ≥ 1, we have the boundary conditionsRE,`(r) ∼ r`
as r → 0.

20.1 Radial function for the Coulomb potential

Now we really need to solve the equation. First choose units of length based on

ρ = κEr, E = −~2κ2
E

2µ
.

Note that this is possible since E < 0. The Schrödinger equation then becomes

− d2

dρ2
uE,`(ρ) +

(
−ξE
r

+
`(`+ 1)

ρ2

)
uE,`(ρ) = −uE,`(ρ),

where ξE = 2µZe2/(κE~2).
We know that the behavior of uE,`(ρ) as ρ→ 0 is like ρ`+1 and the behavior

as ρ→∞ is something like exponential decay. So we make an ansatz

uE,`(ρ) = ρ`+1e−ρFE,`(ρ).

This can be expected to go to a constant as ρ→ 0, and is somewhat controlled
as ρ→∞.

Plugging this in, we get

d2FE,`
dρ2

− 2
(

1− `+ 1

ρ

)dFE,`
dρ

+
(ξE − 2`− 2

ρ

)
FE,`(ρ) = 0.

If we try a series solution F (ρ) =
∑∞
n=0 anρ

n where a0 6= 0, we get

∞∑
n=0

[ann(n− 1)ρn−2 − 2nanρ
n−1 + 2(`+ 1)nanρ

n−2 + (ξE − 2`− 2)anρ
n−1] = 0.

There are no ρ−2 terms, and ρ−1 terms give

(ξE − 2`− 2)a0 + 2(`+ 1)a1 = 0 and so a2 =
2(`+ 1)− ξE

2(`+ 1)
a0.

Next, ρ0 terms give

2a2 − 2a1 + 4(`+ 1)a2 + (ξE − 2`− 2)a1 = 0 and so a2 =
(2`+ 3− ξE)a1

4`+ 6
.

In general, we are going to see

an+1 = an
(−ξE + 2n+ 2`+ 2)

(n+ 2`+ 2)(n+ 1)
.
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Note that for large n, an+1 ≈ (2/n)an. This means that asymptotically,
F (ρ) ∼ e2ρ for large ρ. But note that F ∼ e2ρ is not the solution we want,
because then uE,`(ρ) would grow too fast. What this tells us is that the power
series for F must end at some point.

Recall that

ξE =
2µZe2

κE~2
=

2µZe2√
2µ|E|/~2~2

=
1

~
Ze2

√
2µ

|E|
.

In order for the power series for F to be finite, one of −ξE + 2n+ 2`+ 2 must
be zero. That means that

ξE = 2n+ 2`+ 2

for some integer n ≥ 0. Then k = µZe2/κE~2 = n+ `+ 1 is a positive integer
and

E = −~2κ2
E

2µ
= −e

4µZ2

2~k2
.

This k is called the principal quantum number and is usually denoted n.
So if FE,`(ρ) is a degree p polynomial, the principal quantum number is n =
p+ `+ 1 ≥ `+ 1.

This starts to look like chemistry. For n = 1, there is only ` = 0, (1s orbital)
for n = 2 there are ` = 0, 1 (2s and 2p orbitals), and for n = 3 there are
` = 0, 1, 2 (3s, 3p, 3d orbitals).

We define the Bohr radius as

a0 =
~2

µe2
≈ 0.53× 10−10m,

and the Rydberg constant as

En = − ~2

2µa2
0n

2
= −13.6eV

Z2

n2
.

Here mec
2 = 511keV and α = e2/~c ≈ 1/137 and Rydberg = 1

2α
2mec

2.
The radial functions are given by

R1,0 = 2
( Z
a0

)3/2

e−Zr/a0 , R2,0 = 2
( Z

2a0

)3/2(
1− Zr

a0

)
e−Zr/a0 ,

R2,1 =
1√
3

( Z
2a

)3/2Zr

a0
e−Zr/a0 , . . . .
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We found that the energy levels of hydrogen atom are given by En = 13.6eV/n2.
There are various transitions of between the eigenstates, by emitting a photon.
The Lyman series are the state transitions going down to n = 1, which corre-
spond to ultraviolet light, and the Balmer series are the transitions to n = 2,
and these are in the visible spectrum. This is useful in astronomy, because you
can calculate the velocity of a moving source since there is a Doppler shift.

We saw that that there are lots of degeneracy: the number n determine E,
and there are ` = 0, 1, . . . , n−1 and m = −`, . . . , `. These all have equal energy.
Also, electrons and protons have spin-1/2. There are various small effects, like

the spin-orbit coupling ~L · ~S, and these split the states. Also only ~J = ~L+ ~S is
conserved.

21.1 Entangled states

We go back to chapter 5 and two distinct spin-1/2 particles. We are going to
label the states like

|↑↑〉 = |↑〉1 ⊗ |↑〉2,
where |↑〉 = |+z〉 and |↓〉 = |−z〉. Some states factor like

1√
2
|↑↑〉+

1√
2
|↓↑〉 =

1

2
(|↑〉1 + |↓〉1)⊗ |↑〉2,

but other states like
1√
2
|↑↑〉+

1√
2
|↓↓〉

do not factor. We call this an entangled state. Entanglement can be a useful
resource: quantum computing, quantum cryptography, quantum teleportation,
etc. These entanglements can happen between particles with different spin.

A rule of thumb is that Hamiltonians Ĥ = [~S1 · ~S2]ω/~ that couple two
particles tend to create entanglements.

We define spin operators for particles 1 and 2:

~̂S1 = ~̂S1 ⊗ 1̂, ~̂S2 = 1̂⊗ ~̂S2, ~̂S = ~̂S1 + ~̂S2.

For instance,

Ŝ1z|↑↓〉 = +
~
2
|↑↓〉, Ŝ2z|↑↓〉 = −~

2
|↑↓〉, Ŝz|↑↓〉 = 0.

We have [ ~̂S1, ~̂S2] = 0. You can check that

~̂S1 · ~̂S2 =
1

2
(Ŝ1+Ŝ2− + Ŝ1−Ŝ2+) + Ŝ1zŜ2z.

Here the lower operator Ŝ− = Ŝ1− + Ŝ2− acts like

Ŝ−|↑↓〉 = ~|↓↓〉, Ŝ−|↓↑〉 = ~|↓↓〉, Ŝ−|↑↑〉 = ~(|↓↑〉+ |↑↓〉), Ŝ−|↓↓〉 = 0.
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If you look at this, it looks like a spin-1 particle, with levels

m = 1 : |↑↑〉, m = 0 :
1√
2

(|↓↑〉+ |↑↓〉), m = −1 : |↓↓〉.

You can check that ~̂S2|ψ〉 = 2~2|ψ〉 for these states. There is a fourth state

m = 0 :
1√
2

(|↑↓〉 − |↓↑〉)

that becomes 0 when acted on by either Ŝ+ or Ŝ−.
So hydrogen can be in a spin-1 multiplet or a spin-0 multiplet. This can be

thought of as
2× 2 = 3 + 1.

You can do the same thing for two spin-1 particles:

3× 3 = 5 + 3 + 1.

This is related to the representation theory of SU(2).
The spin-0 hydrogen state

1√
2

(|↑↓〉 − |↓↑〉)

is an entangled state. It turns out that this is the state with minimal angular
momentum.

21.2 Density operator

How do we know if a state is entangled? We will use the density operator
(matrix) ρ̂. This is supposed to general the projection operator P̂ψ = |ψ〉〈ψ|.
This also has the property

〈Â〉 = |ψ|Â|ψ〉 = tr(P̂ψÂ).

The states |ψ〉 will be called pure states, and they have corresponding
density operator

ρ̂ = P̂ψ.

Now a mixed state as a classical probability of being a different pure state:
probability pi of being |ψi〉. Note that a mixed state of a particle either being
|↑〉 with probability 3/4 and |↓〉 with probability 1/4, is not the same as a√

3/2|↑〉+ 1/2|↓〉.
Now the expectation in a mixed state can be computed as

〈Â〉ρ̂ =
∑
i

pi〈i|Â|i〉 =
∑
i

pi tr(P̂ψi
Â) = tr(ρ̂Â).

This is one way ρ̂ generalizes P̂ψ.



Physics 143a Notes 53

22 April 20, 2017

We were talking about density operators:

ρ̂ =
∑
i

pi|ψi〉〈ψi|,

where
∑
i pi = 1 and 0 ≤ pi ≤ 1. This pi is the classical probability of being in

different quantum states. For example,

ρ̂ =
3

4
|↑〉〈↑|+ 1

4
|↓〉〈↓|

is a mixed state, different from |ψ〉 =
√

3
2 |↑〉+ 1

2 |↓〉.
For a pure state, the corresponding density operator ρ̂ = P̂ψ = |ψ〉〈ψ| is a

projection, i.e., P̂ 2
ψ = P̂ψ. For a mixed state ρ̂, this is not true, i.e., ρ̂2 6= ρ̂. For

example, (3

4
|↑〉〈↑|+ 1

4
|↓〉〈↓|

)2

=
9

16
|↑〉〈↑|+ 1

16
|↓〉〈↓|.

For any ρ̂, we have tr(ρ̂) = 1. We also have 0 ≤ tr(ρ̂2) ≤ 1 always, with
tr(ρ̂)2 = 1 if and only if ρ̂ is a pure state.

22.1 Reduced density operator

If a quantum system decomposed into subsystems A and B, we define the re-
duced density operator of the subsystem A as

ρ̂A = trB(ρ̂),

where trB is the partial trace over the subsystem B.

Example 22.1. Take the pure state |ψ〉 = 1√
2
(|↑↓〉− |↓↑〉). We can work in the

basis |↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉. In this basis,

ρ̂ =


0 0 0 0
0 1

2 − 1
2 0

0 − 1
2

1
2 0

0 0 0 0

 .

Now we take the trace over the second particle. Take an orthonormal basis
of the states of B, {|↑〉2, |↓〉2}. Then

ρ̂A =
∑

|j〉B in orthonormal basis

B〈j|ρ̂|j〉B .

In our example, we are going to get

ρ̂A =

(
1
2 0
0 1

2

)
.

This is a mixed state. Intuitively, this is the state for A you will get after
measuring B.
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In this example,

ρ̂2
A =

(
1/4 0
0 1/4

)
6= ρ̂A

so the reduced density matrix is not a projection operator even though the
complete 2-state is pure. This is the hallmark of entanglement. Subsystems A
and B and entangled if and only if ρ̂A = trB ρ̂ is not a projection operator.

22.2 Decoherence and interpretation of quantum physics

These are examples of open quantum systems. We have access to only a subset
of the degrees of freedom of the system. This is very important for the emergence
of classical physics from the microscopic law of quantum mechanics. There is a
tension in the laws of quantum mechanics:

(1) Given |ψ(0)〉 and Ĥ, you can tell me |ψ(t)〉 = e−iĤt/~|ψ(0)〉.
(2) If you measure a state, you change it to an eigenstate of what you measure,

with some probability.

You can consider the whole measuring device as a quantum state, but the first
law seems deterministic and the second law seems uncertain and random. There
has been a lot of discussion on these among physicists and philosophers, and
there is a whole subject on interpretation of quantum physics.

This is related to the decoherence and measurement. Suppose I have a |+x〉
particle and we feed it to a +z Stern–Gerlach device, with one light turning on
if it goes up and another light turning on if it goes down. This whole apparatus
is a very complex system:

1√
2

(|+z〉+ |−z〉)⊗ |measuring device, lights off〉 ⊗ |air in the room〉 ⊗ · · · .

If our measuring device worked as we wanted, this is going to be[ 1√
2

∣∣∣+z,upper lights
turned on

〉
+

1

2

∣∣∣−z, lower lights
turned on

〉]
⊗ |air in the room〉 ⊗ · · · .

If more time passes, you are going to get

1√
2

∣∣∣+z,upper lights
turned on

,
atoms in air

in state (# 1)

〉
+

1

2

∣∣∣−z, lower lights
turned on

,
atoms in air

in state (# 2)

〉
.

So the measuring device correlate a microscopic quantum state with a huge
number of other particles. You can never measure the entire air, and What you
can access is described by the reduced density density matrix tracing over the
air’s state. This is effective like the classical probability.
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22.3 Bell’s inequality

A lot of people tried to make different theories that agree with experimental
results, but failed. Bell was one of those people, and in the course, he showed
something that need to be true. Bell’s inequality is one of them, and I am going
to present one version from John Preskill’s lecture notes.

Two experimenters, Alice and Bob play a game. Each flip a coin, and they
may share some information beforehand. These information has to be classical
or an entangled quantum state

1√
2

(|↑↑〉+ |↓↓〉).

They communicate a bit (classical 0 or 1) and the sefult of their coin flip. They
win the game if “the XOR of the bits they send is 0 if and only if both coins
show heads”.

Here is a classical strategy that winds 75% of the time. Both Alice say 0.
Then they lose exactly when the coins are both heads.

It turns out this is the best possible strategy. This follows from the CHSH
(Clauser–Horne–Shimony–Holt) inequality. For four number αH , αT , βH , βT ,
each of which is ±1, we have

C = (αH + αT )βT + (αT − αH)βH = ±2

and so
|〈αTβT 〉+ 〈αTβH〉+ 〈αHβT 〉 − 〈αHβH〉| ≤ 2.

Let αH = 1 if Alice says 0 if the when she sees H, and αH = −1 if Alice
says 1 when she sees T . Then if you work out,

|2(pTT + pTH + pHT + pHH)− 4| ≤ 2

and so the average winning probability is (1/4)
∑
pIj ≤ 3/4.
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23 April 25, 2017

We were talking about Alice and Bob, who can share information in advance.
They flip a coin, choose a bit and communicate the results. They win if both
coins are heads and the XOR of their bits is true, or one of the coins are tails
and the XOR of their bits is false.

There is an easy classical 75% winning strategy: both say false always. It
turned out that this is the best possible due to the CHSH inequality, which is
similar to the Bell inequality. If αT is the random variable

αT =

{
−1 if Alice says true when she sees tails,

1 if Alice says false when she sees tails,

and define other variables αH , βH , βT analogously, then the CHSH inequality
says

|〈αTβT 〉+ 〈αTβH〉+ 〈αHβT 〉 − 〈αHβH〉| ≤ 2.

Now our claim is that 〈αTβT 〉 is 2pwin
TT −1 where pwin

TT is the conditional prob-
ability of winning when the coins are both tails. Similar interpretations work,
and so the overall probability of winning is 1

4

∑
i,j p

win
ij . Then the inequality

tells us ∣∣∣∣2∑
i,j

pwin
ij − 4

∣∣∣∣ ≤ 1.

So the probability of wining for any strategy based on classical probability is at
most 75%.

23.1 A quantum mechanical strategy

Now suppose that Alice and Bob share an entangled pair of spins

〈ψ〉 =
1√
2

(|↑〉A ⊗ |↑|B − |↓〉A ⊗ |↓〉B).

Here is a strategy that wins more that 75% of the time.

• If Alice sees heads, she measures the spin’s z-component, and says true if
she sees +~/2 and false if she sees −~/2.

• If Alice sees tails, she first act on her state with the unitary matrix

U =

(
cos 3π/8 − sin 3π/8
sin 3π/8 cos 3π/8

)
and then measures the z-component of the spin, and says true if she sees
+~/2 and false if she sees −~/2.

• Bob does the same thing, but gives the opposite answers: false if +~/2
and true if −~/2.
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Now let us calculate the probability of winning.

(1) Alice and Bob both see heads.

The winning condition is that they disagree. Then either they both sees
↑ or both sees ↓. So they win 100% of the time.

(2) Alice sees heads, Bob sees tails.

It doesn’t matter, but let’s assume Alice first does the measurement. Then
1/2 of the time she sees ↑ and says T , and 1/2 of the time she sees ↓ and
says F . If Alice sees ↑, this measurement effectively collapses Bob’s state
into |↑〉B and after acting by U , it becomes

U

(
1
0

)
=

(
cos 3π/8
sin 3π/8

)
.

So Bob cos2 3π/8 of the time sees ↑ and says F , and sin2 3π/8 of the time
sees ↓ and says T .

Alice sees ↓ for 1/2 of the time F , and says F . Likewise, Bob says F
with probability sin2 3π/8 and T with probability cos2 3π/8. So they win
sin2 3π/8 of the time in total.

(3) Alice sees tails, Bob sees heads.

This is going to be the same probability of sin2 3π/8 of winning, because
it is basically case (2).

(4) Alice and Bob both see tails.

They win if they say the same thing. Suppose Alice goes first. The state
becomes

1√
2

[
cos

3π

8
|↑↑〉+ sin

3π

8
|↓↑〉+ sin

3π

8
|↑↓〉 − cos

3π

8
|↓↓〉

]
.

When Alice measures, 50% times of the time she sees |↑〉 and project Bob
onto cos 3π/8|↑〉B + sin 3π/8|↓〉B . Now Bob sees tails so acting on U gives

U

(
cos 3π/8
sin 3π/8

)
=

(
cos 3π/4
sin 3π/4

)
.

Then they in 50% of the time. Same goes for when Alice sees |↓〉. So
overall they win 50% of the time.

So the overall chance of winning is

1

4

[
1 + 2 sin2 3π

8
+

1

2

]
≈ 0.80 > 0.75.

The lesson of all this is that quantum entanglement is distinctly quantum phe-
nomenon; no complicated classical theory can do the same thing.

Another lesson is that quantum entanglement can be a resource. This is the
basic premise behind quantum computing, quantum cryptography, . . . . If you’re
interested in these kinds of stuff, you can read Preskill’s lecture notes on quan-
tum information, Nielson and Chuany’s Quantum Information and Quantum
Computing.
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23.2 No-cloning theorem and quantum transportation

This basically says that you can’t copy a quantum state. That is, there is no
map

U : |ψ〉 ⊗ |0〉 7→ |ψ〉 ⊗ |ψ〉.

This is because of linearity. If we assume U(|0〉 ⊗ |0〉) = |00〉 and U(|1〉 ⊗ |0〉) =
|11〉, then for |ψ〉 = a|0〉+ b|1〉,

U(|ψ〉 ⊗ |0〉) = a|00〉+ b|11〉 6= (a|0〉+ b|1〉)⊗ (a|0〉+ b|1〉).

We can’t clone information, but could we transmit it?

|ψ〉 ⊗ |χ〉 7→ |ξ〉 ⊗ |ψ〉

We can do this if we share an entangled state, even without being at the same
place.

Here is the idea. Let Alice have the qubit |ψ〉C = α|0〉C + β|1〉C . She wants
to send this to Bob. Suppose Alice and Bob share an entangled state

|Φ+〉 =
1√
2

(|00〉AB + |11〉AB).

The three particles state can be written as

|ψ〉C ⊗ |Φ+〉AB =
1√
2

(α|000〉CAB + α|011〉CAB + β|100〉CAB + β|111〉CAB)

=
1

2
|Φ+〉CA ⊗ (α|0〉B + β|1〉B) +

1

2
|Φ−〉CA ⊗ (α|0〉B − β|1〉B)

+
1

2
|Ψ+〉CA ⊗ (α|1〉B + β|0〉B) +

1

2
|Ψ−〉CA ⊗ (α|1〉 − β|0〉B),

where

|Φ±〉CA =
1√
2

(|00〉CA ± |11〉CA), |Ψ±〉CA =
1√
2

(|01〉CA ± |10〉CA).

Now Alice’s goal is to project onto one of |Φ±〉CA, |Ψ±〉CA. Note that she
has access to the particles C and A. If the outcome is |Φ+〉CA, then she knows
that Bob’s state would be a copy. If the outcome is |Φ−〉CA, then Alice could
call Bob and tell him to act with ( 1 0

0 −1 ). To project it, Alice can apply the
CNOT operation.

You still need to send some classical information. So complete quantum
transportation is not possible faster than the speed of light.
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